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Braiding of Majorana zero modes provides a promising platform for quantum information processing, which
is topologically protected against errors. Strictly speaking, however, the scheme relies on infinite braiding times
as it utilizes the adiabatic limit. Here we show how to minimize nonadiabatic errors for finite braiding times by
finding an optimal protocol for the Majorana movement. Interestingly, these protocols are characterized by sharp
transitions between Majorana motion at maximal and minimal velocities. We find that these so-called bang-bang
protocols can minimize the nonadiabatic transitions of the system by orders of magnitude in comparison with
naive protocols.
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Topological quantum computing is a promising approach to
quantum information processing, which provides remarkable
robustness against errors [1,2]. At the heart of this approach
lie exotic quasiparticles known as non-Abelian anyons, which
can emerge in several condensed matter systems; adiabatic
exchange of such quasiparticles transforms the many-body
wave function to a different degenerate wave function,
in turn processing the information stored (nonlocally) in
these quantum wave functions. In fact, adiabatic exchange,
i.e., braiding, is the key ingredient of topological quantum
computing. However, perfect adiabaticity requires infinite
times. Therefore, it is imperative to be able to perform
such transformations in finite time, while minimizing the
undesirable nonadiabatic effects [3–7].

Majorana zero modes are one of the simplest and most
important non-Abelian quasiparticles [8,9]. There have been
several proposals [10–14], as well as experimental progress
[15–22], toward realizing these modes in one-dimensional
hybrid systems, e.g., semiconducting quantum wires coupled
to superconductors. Making a network of such quantum wires
can in turn allow for braiding of these Majorana modes [23].
Thus, the minimal building block of quantum information
processing with the quantum-wire incarnation of Majorana
zero modes is moving them along the wire adiabatically. These
zero modes are bound to domain walls between the topological
and nontopological phases, whose position and velocity can be
tuned externally, e.g., by means of gate electrodes. Adiabatic
transport of the Majoranas then amounts to slowly moving
these domain walls.

Consider a Majorana mode in a quantum wire bound to a
domain wall at point A, with the system in one of its ground
states (Fig. 1) and imagine moving the domain wall (and
hence the associated Majorana mode) to point B a distance
� away within a prescribed time τ . What is the optimal choice
for the time-dependent velocity of the domain wall? As this
translation is carried out in finite time, there are deviations
from the fully adiabatic evolution. We would like to choose
a protocol which generates a state as close as possible to
adiabatically moving the domain wall to point B. This is clearly
important for realizations of topological quantum computers
as both practical performance considerations and parasitic

decoherence processes such as quasiparticle poisoning limit
the available time for braiding processes [24–28].

More broadly, optimal control has emerged as a new
direction in quantum dynamics [29–38]. By finding the best
protocols to optimize a certain figure of merit, quantum
optimal control paves the way towards harnessing the power of
quantum evolution. While the primary motivation for the field
comes from experimental advances with ultracold atoms, the
applicability of quantum optimal control goes well beyond
these systems. The subject of this Rapid Communication,
i.e., finding the optimal protocol to move a Majorana mode
along a quantum wire, shows that optimal control can play an
important role in topological quantum computing.

Figure of merit. We start by defining an appropriate figure of
merit. A very natural choice in the present case is to minimize

c(τ ) = 1 − ∣∣〈�ad
B

∣∣�(τ )
〉∣∣2

, (1)

which quantifies the deviations from the adiabatic evolution in
terms of the squared overlap between |�(τ )〉 = U (τ )|�(0)〉,
the wave function of the system obtained after the quantum
evolution for a time τ [with evolution operator U (τ )], and

FIG. 1. (Color online) Nonadiabatic motion of Majorana bound
states. When moving a Majorana-carrying domain wall in a finite time
τ by a distance �, the final state will in general experience nonadiabatic
excitations as indicated by the difference in the occupation of the low
energy bound states, before (upper panel: t = 0, position A), and after
(lower panel: t = τ , position B) the motion.
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|�ad
B 〉, the wave function after a perfectly adiabatic evolu-

tion [40]. In the present case, |�ad
B 〉 is simply the ground state

of the Hamiltonian with the domain wall at position B, while
the initial state |�(0)〉 is the ground state with the domain wall
at point A. In general, the above cost function is vulnerable
to the orthogonality catastrophe for infinite systems. Here,
however, we restrict our Hilbert space to the discrete bound
states within the (bulk) gap to the continuum.

Strictly speaking, the topological protection is lost if the
system strays too far from the instantaneous ground state and
the Majorana mode leaks to the continuum (separated by the
bulk gap). Here we consider permissible velocities v(t) < vmax

so that we are never too far from the adiabatic limit with
respect to the bulk gap. The evolution, however, does create
nonadiabatic excitations within the bound-state spectrum of
the domain wall, which are corrected by our optimization
scheme.

We use Monte Carlo calculations (simulated annealing) to
find the optimal protocol which minimizes the cost function
in Eq. (1) for a fixed total time τ , average velocity �/τ , and
maximal velocity vmax. This method finds the optimal protocol
without making any a priori assumptions. Remarkably, we find
that the optimal protocols have a bang-bang form, i.e., they are
a sequence of sudden quenches between the maximal (vmax)
and the minimal (0) allowed velocities. Despite ubiquitously
occurring in optimal control theory [30], such bang-bang
protocols appear quite counterintuitive in the present context.
Nevertheless, we find that they reduce the nonadiabatic
errors by orders of magnitude in comparison with simple
nonoptimal protocols, which one may construct intuitively
(see Fig. 2). In addition to our numerical results, which are
obtained for specific models of the domain wall, we also adapt
Pontryagin’s maximum principle to our problem and establish
more generally that the optimal protocols must be bang-bang.

Model. We consider the effective Hamiltonian for a quan-
tum wire (or topological insulator edge) [10–12] in the vicinity
of a topological domain wall, assuming that the gap varies
linearly as a function of position [5]:

Ĥ =
∫

�̂†(x)H�̂(x)dx, H = −iu∂xσz − b(x − y)σx.

(2)
Here, σi are Pauli matrices and �̂†(x) = [ψ̂†

↑(x) +
ψ̂↑(x),ψ̂†

↓(x) − ψ̂↓(x)] with ψ̂↑(x) [ψ̂↓(x)] representing the
fermionic annihilation operator of spin up (down) electrons at
position x. The parameter y denotes the position of the domain
wall and is time dependent when the domain wall is moving
along the wire.

For fixed y, the above Hamiltonian gives rise to single-
particle bound states γ̂n,y localized at x = y with the spectrum
εn = sgn(n)

√|n|ω, where n runs from −∞ to ∞. The cor-
responding wave functions φn = (i + σx)(sgn(n)g|n|−1,g|n|)/2
are given in terms of harmonic oscillator eigenstates gn(x − y)
with frequency ω = √

2ub and oscillator length ξ = √
u/b. It

can be shown that the zero-energy state φ0 is a Majorana
state with quasiparticle operator γ̂0,y = γ̂

†
0,y [5]. We assume

that the domain wall is initially at y(0) = 0 (point A). The
velocity v(t) = d

dt
y(t) of the domain wall is then subject

to the following constraints: 0 � v(t) � vmax and y(τ ) =
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FIG. 2. (Color online) Cost function for bang-bang-type optimal
protocols (Gaussian reference protocol) shown in black (red) as a
function of τ (with fixed average and maximum velocity). Optimal
protocols were individually obtained for each τ (left inset shows a
protocol optimized for τ = 8/ω), while the reference protocol is a
smooth Gaussian curve shown in the right inset. The cost function c(τ )
can be reduced by several orders of magnitude when using optimal
protocols. The dashed blue curve shows the cost function obtained
by applying the optimal protocol shape corresponding to τ = 8/ω

to other times. It outperforms the reference protocol for a wide time
interval. Numerical parameters used: vmax = 0.3u, N = 128, nmax =
30, nc = 7.

∫ τ

0 dtv(t) = �. To avoid the superluminal regime, where the
bound states become unstable [5], we work at velocities
vmax < u.

Physically, the linear form b(x − y) of the domain wall
extends over a finite length scale. This implies that we have
a finite number of bound states and then a continuum of
excitations. We implement this by using two cutoffs: the
time evolution is done within the bound state spectrum with
|n| < nmax, where very large n model the continuum. The
cost function is computed by projecting the wave functions
onto a smaller Hilbert space with |n| < nc. Physically, nc

represents the number of bound states. We can relate the
cost function to occupation numbers n̂i with n̂i �=0 = γ̂

†
i,B γ̂i,B .

The Majorana mode requires special treatment. We define
the delocalized fermionic zero mode d̂0 = (γ̂0,B + iγ̂0,C)/

√
2

(note that γ̂0,C is static). Then, we write the corresponding
occupation number n̂0− = d̂

†
0 d̂0, assuming 〈�ad

B |n̂0−|�ad
B 〉 = 1

without loss of generality. The minus (plus) subscript indicates
that n̂0− (n̂0+ = d̂0d̂

†
0) should be treated like the other negative-

energy (positive-energy) states.
For small maximal velocities vmax, the occupation numbers

n̂i�0 are still close to unity, which allows for an expansion of
n̂−i = 1 − n̂i in small n̂i (with i � 0+). The cost function can
then be approximated as

c(τ ) ≈
∑

nc>i�0+

〈n̂i〉τ −
∑

nc>j>i, nc>i�0+

〈n̂i n̂j 〉τ , (3)

which may be evaluated straightforwardly in the Heisenberg
picture by computing operators γ̂n,B(τ ) [and d̂0(τ )]. We have
made use of the fact that the cost function is an expectation
value of the Heisenberg evolved projector |�ad

B 〉〈�ad
B | =

i�0n̂i .
We evaluate the Heisenberg operators by approximating the

protocol for moving the domain wall by a piecewise constant
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sequence of velocities vi (each of duration δt) for i = 1 · · · N .
For each piece, the time evolution can be described by a
mapping to the static case by a Lorentz boost, with boosted
bound-state wave functions φ(vi )

n (x − vit) and a renormalized
spectrum ε(vi )

n [5] (see also Supplemental Material [39]).
With these exact constant-velocity solutions, the Heisenberg
evolution of the domain wall bound states takes the form

U (τ )†γ̂n,BU (τ ) =
∑
{mi }

a(vN )
n,mN

· · · a(v1)
m2,m1

γ̂m1,A, (4)

where U (τ ) is the full many-body time evolution operator and
a(v)

n,m = ∑
k〈φ(0)

n |φ(v)
k 〉〈φ(v)

k |φ(0)
m 〉 exp(−iε

(v)
k δt). The matrix ele-

ments 〈φ(0)
n |φ(v)

k 〉 are essentially overlaps of harmonic oscillator
wave functions shifted by ∼√

kv/uξ relative to each other. For
small velocities, we have 〈φ(0)

n |φ(v)
k 〉 ∝ (v/u)(|n|−|k|) [41]. The

sums over the states (denoted by the indices k and mi) can thus
be cut off at a large nmax for numerical evaluation.

Optimization. Based on the cost function (3), we use
simulated annealing to find the optimal protocol [32,42]. In
this method, we fix the total time τ and distance � and use a
piecewise-constant protocol with N pieces of duration δt =
τ/N . (We then increase N systematically until convergence.)
We implement the constraint of a fixed average velocity in each
Monte Carlo step by increasing the velocity of one randomly
chosen interval while decreasing the velocity of another by
the same amount. If the change �c in the cost function is
negative, we accept the move. Otherwise, we accept it with
probability e−�c/TMC , where TMC is a fictitious temperature
that is gradually reduced to zero.

As mentioned above, we only include nmax bound states
in the numerical optimization. This makes the time evolution
of states close to nmax unreliable. Since the cost function is
evaluated using a smaller cutoff nc � nmax, corresponding
to the physical number of bound states, our results are
independent of nmax. Note that the optimization is aimed
at conserving the overall parity of the bound states, which
ultimately protects the Majorana qubit [43]. The states
|n| > nc that are left out from the optimization would represent
high-energy continuum states, with nonadiabatic occupations
that are not necessarily weaker for the optimal protocol than
for a naive protocol. They are, however, naturally suppressed
if the protocols are slow with respect to the inverse bulk gap.
Moreover, excitations in these states do not affect the parity of
the delocalized fermionic mode, i.e., iγBγC (see Supplemental
Material for details [39]).

Results. The central result of our Monte Carlo simulations
is that the optimal protocols are of bang-bang character
and outperform naive protocols by orders of magnitude (see
Fig. 2). The sharp bang-bang transitions can be very well
resolved numerically for not-too-large τ (see Fig. 3). For
a fixed number of velocity steps N , the time resolution
decreases for larger τ . Once the minimal time steps δt = τ/N

exceed the interval between consecutive velocity jumps of the
optimal protocols, the numerics average the optimal protocol
over times δt resulting in a smoothing of the bang-bang
character. Thus, when taking the adiabatic limit τ → ∞ before
increasing N → ∞, the optimal protocols become smooth
and are determined by the density of underlying high-velocity
sections.
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FIG. 3. (Color online) Optimal bang-bang-type protocols for dif-
ferent durations τ . The number of bangs increases with τ . Due to the
finite number of time steps (here N = 128), this leads to numerical
artifacts for large times where the size of the bangs reaches the time
step width δt . The optimal protocols are then smoothed out because
of an effective averaging over times δt . Further numerical parameters
used: vmax = 0.3u, nmax = 30, nc = 7.

For good time resolutions, the main characteristic of the
optimal protocols is the number p of high-velocity plateaus.
Interestingly, p is independent of many of the specifics of
the braiding process such as the maximal velocity vmax and
the displacement � (controlling the average velocity for fixed
τ ), which only change the size of the plateaus. Instead, we
find that p is determined by the domain-wall spectrum. More
specifically, p/τ is of the order of the bound-state energy
(see Fig. 4). In a simple picture, the bang-bang protocols
can be thought of as well timed echos that reverse the
nonadiabatic evolution. From this point of view, it is natural
to assume that the relevant scale for this timing is given
by the energy of the excited bound states. This is in line
with the approximate p/τ ∼ ω

√
nc = εnc

behavior that we
observe in our simulations (see Fig. 4). We will see below that

FIG. 4. (Color online) Dependence of the bang-bang-type proto-
cols on the duration τ . The number of plateaus with high velocity
p scales linearly to the protocol duration τ . The inset shows the
change of the slope p/τω with the number of bound states in the cost
function nc. A fit to our data shows that it can be well approximated
by p/τω = 0.3

√
nc + 0.5.
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ω
√

nc also appears as a characteristic frequency scale of the
corresponding Pontryagin equations that describe the optimal
protocol.

Although the form of the protocols does not converge
for large nc, the changes become less and less important
for the cost function. Our data indicate (see Supplemental
Material [39]) that c(τ ) saturates for large nc. Similarly,
when applying the cost function (with fixed nc) to protocols
optimized for “wrong” values of n′

c, their performance is still
very close to the n′

c = nc case for not too small values of
n′

c,nc. Specifically, even though a large nc yields an optimal
protocol with large p, it can still be well approximated by
a protocol with fewer bangs than would be obtained when
choosing a smaller n′

c. All these observations reflect the weak
occupation of states with large quantum numbers due to the
weakly diabatic regime.

Pontryagin equation. We now prove that the optimal
protocols must be bang-bang by using a generalization of the
calculus of variations known as Pontryagin’s principle [44].
We briefly review the formalism. Assume we have a set of
dynamical variables X(t) that evolve with the equations of
motion Ẋj = fj ({X},v), boundary conditions Xj (0) = X0

j ,
and permissible control v(t). (In our case, these variables
correspond to some parametrization of the wave function.)
For a given control the equations of motion then determine the
the dynamical variables as a function of time.

We would like to find the optimal control v∗(t) that
minimizes a general cost function c({X(τ )}) + ∫ τ

0 L({X},v)dt .
The function c({X(τ )}) only depends on the final values
of the dynamical variables at t = τ , while the additional
integral over L({X},v) allows for a dependence on the entire
trajectory. We can think of the equations of motion above as
constraints that can be implemented by Lagrange multipliers
Pj (t) (hereafter referred to as conjugate momenta) at every
point in time by considering a cost function S = c({X(τ )}) +∫ τ

0 dtL({X},v) + ∑
j

∫ τ

0 dtPj [fj ({X},v) − Ẋj ]. Minimizing
S (i.e., setting δS = 0) then implies the following equations
of motion for the conjugate momenta: Ṗj = − ∂H

∂Xj
, with

boundary condition Pj (τ ) = ∂
∂Xj

c({X(τ )}), where the optimal-
control Hamiltonian is constructed as

H ({X,P },v) = L({X},v) +
∑

j

Pj fj ({X},v). (5)

Furthermore, the optimal control v∗(t) and the corresponding
{X∗,P ∗} satisfy H ({X∗,P ∗},v∗) = min{v} H ({X∗,P ∗},v). In
other words, if we know the optimal trajectories X∗ and P ∗,
then at every point in time v∗ is a permissible v that minimizes
H . An important consequence of this is that if H is linear
in v, then depending on the sign of the coefficient of v(t) at
any given time [which depends on P ∗(t) and X∗(t)], v(t) takes
either its minimum or its maximum allowed value, resulting in
a bang-bang protocol.

In the present case, we have a very similar problem:
The control parameter is the velocity v(t) of the domain
wall for 0 < t < τ and the dynamical variables constitute a
parametrization of the time-dependent wave function of the
system. Our physical cost function c(τ ) only depends on
the final values of the dynamical variables (no dependence
on trajectory). However, we have one additional constraint,

namely, a fixed total displacement �, which can be accounted
for by adding a Lagrange-multiplier term λ(

∫ τ

0 v(t)dt − �) to
the cost function. This constraint only adds a linear term in v

to the optimal-control Hamiltonian, i.e., L({X},v) = λv [see
Eq. (5)]. Now we only need to identify a set of dynamical
variables with linear equations of motion in v to prove the
bang-bang nature of the protocols.

It is convenient to expand the time evolution of the (two-
component) single-particle wave functions as

ψm(x,t) =
∑

n

(
ϕm

n (t), θm
n (t)

)
gn[x − y(t)], (6)

where m denotes the bound-state number of the initial condi-
tion ψm(x,0) = φm(x). The shift of y(t) to the instantaneous
position of the domain wall allows us to readily relate the
dynamical variables, i.e., the real and imaginary parts of ϕm

n

and θm
n , to |�ad

B 〉. The cost function c(τ ) [see Eq. (1)] can
therefore be obtained from the final values of these dynamical
variables. Notice that the harmonic-oscillator eigenstates
gn[x − y(t)] provide an orthonormal basis and the dynamical
variables are some coefficients. As shown in the Supplemental
Material [39], the equations of motion for these dynamical
variables indeed turn out to be linear in v, completing the
proof for the bang-bang nature of the optimal protocol:

ϕ̇m
n = ω

2
(v/u − 1)

(√
n + 1ϕm

n+1 − √
nϕm

n−1

)

+ i
ω

2

(√
n + 1θm

n+1 + √
nθm

n−1

)
, (7)

and a similar expression with v/u − 1 → v/u + 1 and ϕ ↔ θ

for θ̇m
n .

Recall that since the optimal protocol is determined by
the sign of ∂vH , the discontinuities in the optimal protocols
should coincide with zeros of ∂vH . We have checked this
explicitly for our optimal protocols (see the Supplemental
Material [39]). Also notice that the distance between these
zeros (typical duration of a bang) is determined by the
oscillations of H , which originate from the oscillations of
the dynamical variables and their conjugate momenta. The
appearance of ω

√
n in the equations of motion (7) provides

further support for the observed behavior p/τ ∼ ω
√

nc (see
Fig. 4).

Conclusions. As a first application of optimal control
to braiding non-Abelian anyons, we obtained bang-bang
protocols that can move Majorana zero modes along a quantum
wire in finite times, while reducing the associated nonadiabatic
errors by orders of magnitude (compared with naive smooth
protocols). Our calculations were based on a figure of merit
that maximizes the magnitude of the overlap between the
resulting wave function and the adiabatic one. While more
sophisticated cost functions might be needed to account for,
e.g., phase errors in a realistic braiding process, our results
suggest that optimal control could play an important role
in topological quantum computing. Adiabatic braiding can
achieve remarkable robustness at the expense of performance.
By beating the barrier of adiabaticity, our optimal-control
approach may foster the development of high-performance
topological quantum computers.
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