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We demonstrate that graphene-based photonic superlattices provide a versatile platform for electrical and
all-optical control of photonic beams with deep-subwavelength accuracy. Specifically, by inserting graphene
sheets into periodic metallodielectric structures, one can design optical superlattices that possess photonic Dirac
points (DPs) at frequencies at which the spatial average of the permittivity of the superlattice ε̄ vanishes. Similar
to the well-known zero-n̄ band gaps, we show that these zero-ε̄ DPs are highly robust against structural disorder.
We also show that, by tuning the graphene permittivity via the optical Kerr effect or electrical doping, one can
induce a spectral variation of the DP exceeding 30 nm, at mid-IR and THz frequencies. The implications of this
wide tunability for the photonic Zitterbewegung effect in a vicinity of the DP are also explored.
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Introduction. One of the most daunting challenges one has
to overcome in order to develop ultrafast active photonic
nanodevices is the extremely narrow tunability of physi-
cal parameters of optical media. For example, while the
conductivity of semiconductors can be varied by orders of
magnitude with the help of impurity doping or thermally,
the index of refraction of optical media, which is the main
parameter defining their optical properties, can hardly be
tuned by more than 0.5%. Several approaches that address
this key problem have been proposed, including the resort to
plasmonic materials whose optical nonlinearity is enhanced by
strong optical fields associated with the resonant excitation of
surface-plasmon polaritons (SPPs) [1–3], the use of strongly
anisotropic materials whose optical response can be controlled
via the polarization of the excitation field [4,5], reconfigurable
metamaterials [6], embedding liquid crystals into a photonic-
crystal matrix [7], and tuning the material refractive index via
carrier injection [8]. While promising if targeted at specific
applications, the efficiency of these methods is generally
limited by high-power requirements, slow optical response,
and reduced spectral tunability.

A recently introduced photonic platform that contains
all the ingredients needed to achieve ultrafast broad optical
tunability at the nanoscale is graphene [9–11]. Compared
to the SPPs in metals, graphene plasmons are localized
within much smaller regions, provide a much larger optical
near-field enhancement, and can pass significantly longer
distances [12,13]. Equally important, the conductivity of
graphene and, implicitly, its electrical permittivity can be
varied substantially, locally and ultrafast, by means of chemical
doping or gate voltages [14–17]. For example, changing the
Fermi level by a mere 1 eV causes the relative variation of
the real part of the permittivity, at the 10 μm wavelength,
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by 250%. Depositing graphene onto the surface of specific
materials, which may be both dielectrics and metals, a variety
of graphene-based layered nanostructures have been designed,
and their implementations in functional devices have been
demonstrated [14]. The most salient feature of these photonic
superlattices is that, by incorporating graphene into their
periodic structure, the band structure and thus their optical
response can be dynamically tuned. This key property, in
conjunction with relatively low loss and extremely tight
confinement of the graphene plasmons, opens up promising
applications of tunable graphene photonic superlattices (GPSs)
at mid-IR and at THz wavelengths. In addition to these
important practical considerations, GPSs can also play a
major role at the fundamental level. Specifically, it has
been suggested that electron-wave dynamics in graphene
heterojunctions are in many ways similar to the propagation
of optical beams in photonic superlattices containing positive-
and negative-index materials [18], intriguing phenomena such
as the Klein tunneling [19,20] and Zitterbewegung (ZB)
effect [21–26] being observed in both physical systems.

In this Rapid Communication we demonstrate that, by
including graphene sheets into the unit cell of metallodielectric
superlattices, one can readily design GPSs that possess
electrically and optically tunable Dirac points (DPs) and
feature the ZB of optical beams propagating near the DPs.
A remarkable property of these DPs is that they form when
the spatial average of the permittivity of the superlattice
vanishes, ε̄ = 0, an immediate consequence of this fact being
their remarkable robustness against structural disorder. To add
specificity to these ideas, we consider, as an example of a
GPS, the one-dimensional (1D) periodic structure depicted
in Fig. 1(a). It has a three-layer unit cell, graphene-metal-
dielectric, the metallic and dielectric layers chosen in this work
being silver and silicon, respectively. The dispersion relation
of the structure is easily found by using the transfer-matrix
method (see the Supplemental Material [27] for the derivation
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of this relation), and is given by
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where kx is the Bloch wave vector, kz the propagation wave
vector, ta , tb, and tc are the thicknesses of the layers, � = ta +
tb + tc is the period of the supercell, σ = cos κa cos κb cos κc,
and kj = √

(ω/c)2εjμj − k2
z , with j = a,b,c, where a, b,

and c stand for graphene, silicon, and silver, respectively.
For convenience, we here define �ij ≡ κiτj , κi ≡ kiti , and
τi ≡ εiti . By fixing frequency ω in Eq. (1), dependence
kz = kz(kx) determines the spatial dispersion relation for the
particular frequency.

Tunability and robustness of the Dirac points. A peculiar
property of the band structure of such GPSs is that, if it
possesses two transmission bands, then the bands intersect
at the center of the Brillouin zone, kx = 0, giving rise to the
photonic DP [see Fig. 1(b)]. For such a two-band configuration
to occur, the thickness of the dielectric and metallic layers
should be larger than certain critical values. As mentioned
above, a DP in our photonic structure exists provided that the
real part of the average permittivity of the superlattice vanishes,
namely,

Re(ε) = 1

�
Re(τg + τm + τd ) = 0. (2)

DPs are well known in solid-state physics, being at the
origin of many remarkable properties of recently discovered
materials, such as graphene and topological insulators. In
this case they are singular points in the electron energy-band
structure, and the aforementioned similarities between electron
and photon wave dynamics suggest that DPs can also exist
in the photonic band structure of certain periodic structures,
one such example being the GPS presented in Fig. 1(a). As
we demonstrate in this study, the graphene component of the
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FIG. 1. (Color online) (a) A schematic of the graphene photonic
superlattice: The unit cell consists of a graphene-metal-dielectric
trilayer configuration stacked along the x direction. The incident
transverse magnetic (TM)-polarized beam propagates along the z

axis, its nonvanishing field components being Ex , Ez, and Hy . (b) The
photonic band structure calculated in the zero-averaged-permittivity
case, featuring the 1D Dirac point. The structure parameters
are εg = −14.48, εSi = 12.25, εm = −924.05, tg = 0.5 nm, tSi =
604 nm, tm = 8 nm, and λ = 4.2 μm.
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FIG. 2. (Color online) (a) The dependence of the wavelength of
the Dirac point on the graphene’s chemical potential and permittivity.
(b) The photonic band structure calculated for different wavelengths.
Parameters are the same as in Fig. 1. (c) The density of states of a
50-period GPS possessing a Dirac point (at tm = 8 nm) or a Bragg
gap (at tm = 20 nm). (d) The density of states of the GPS in (c) that
possesses a Dirac point, calculated for different disorder levels.

present photonic superlattice allows one to tune the wavelength
of the photonic DPs by simply varying the chemical potential
of electrons in graphene, μc. More specifically, changing μc

by external means (e.g., gate voltage, chemical doping, etc.),
one varies the permittivity of graphene and therefore one can
tune the wavelength λD at which condition Re[ε(λD)] = 0
holds. These ideas are illustrated in Fig. 2(a), where we plot
the dependence of the wavelength of the DP on μc. Note that a
spectral shift of more than 30 nm can be achieved changing μc

by 1.5 eV. The variation of the corresponding band structure
is presented in Fig. 2(b).

Similar to zero-n̄ band gaps, which are formed when the
spatial average of the refractive index of a Bragg grating
vanishes, DPs in our photonic structure are particularly robust
against disorder added to the system. This behavior is expected
because structural disorder weakly affects the spatial average
of the permittivity, hence its vanishing, which determines the
existence of DPs, persists in the presence of disorder as well.
To illustrate this phenomenon, we present in Figs. 2(c) and 2(d)
the density of states (DOS) of periodic and disordered GPSs,
respectively. In the calculations, we used two superlattices,
one selected so as to possess a DP (at tm = 8 nm), whereas
the other one is a regular superlattice featuring a Bragg gap, at
tm = 20 nm. The DOS of these two superlattices is extracted
from dkz/dkx [see the results in Fig. 2(c)]. As expected, while
the DOS for the superlattice featuring a Bragg gap exhibits
a conspicuous wide region of forbidden states (DOS = 0),
the superlattice possessing a DP shows nonvanishing DOS
in the whole spectrum. The robustness of the DP against
the structural disorder is confirmed in Fig. 2(d), where we
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display DOS for the disordered superlattice at several different
levels of the disorder. It is introduced by assuming random
fluctuations of the metallic-layer thickness around its average
value, namely, the nth thickness is tnm = tm0 + δn, where tm0 is
the average thickness (we choose tm0 = 8 nm here), and δn is a
random perturbation. We assume δn to be uniformly distributed
in the interval of [−δ,δ], hence the disorder level may be
characterized by � ≡ δ/tm0. The DOSs in Fig. 2(d) clearly
demonstrate that, even when the disorder level is increased to
80%, the DP is preserved, appearing as a spectral peak in the
DOS, at λD � 4.2 μm.

Real-time tunability of the band structure of the GPS
provides an effective way to control the excitation and
propagation of optical beams. Figures 3(a) and 3(b) show
that, when one varies μc from 0.23 to 1.5 eV, the band
structure transforms from a gapless one, which possesses a
DP, to a gapped structure, this effect being accompanied by
a dramatic change in the beam-propagation dynamics. At the
DP, a normally incident Gaussian beam splits into two, as
the upper- and lower-band excitations are not resolved, due
to the fact that the two bands have identical slopes near the
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FIG. 3. (Color online) (a), (b) Formation of a band gap at the
Dirac point with λD = 4.2 μm by varying the graphene’s Fermi level.
In (a) and (c), permittivities of the layers are the same as in Fig. 1.
In (b) and (d), εg = −195.02. The real part of the permittivities in
(e) and (f) are the same as those in (c) and (d), respectively, whereas
in (e) ε′′

g = 1.28i, ε′′
m = 56.37i and in (f) ε′′

g = 4.95i, ε′′
m = 56.37i.

In all cases, the thicknesses of the layers are the same as in Fig. 1,
and the input conditions select a TM-polarized Gaussian beam with
profile Ex(x) = exp(−x2/w2), where w = 2λD .

DP [see Fig. 3(c)]. By contrast, when a gap opens the output
pattern exhibits four beams, due to the difference in the slopes
of the upper and lower bands near kx = 0 [as per Fig. 3(d)].
Taking losses in graphene and metallic layers into account
yields similar patterns of the output optical field [Figs. 3(e)
and 3(f)]; however, as expected, the output beams now decay
in the course of the propagation. In Figs. 3(e) and 3(f) we
used the scattering time, τ = 90 fs, which was measured in
an ionic-liquid gating configuration [28], the achieved Fermi
level being as large as 2 eV [29,30].

Optically tunable Dirac points. In addition to electrical
means, the wavelength at the DPs can be tuned by means
of the intrinsic optical nonlinearity of graphene, or of the
dielectric and metallic layers as well. Such nonlinearity-
induced tunability of the DP is possible in our superlattices
because, as explained above, the DPs form when the real
part of the average permittivity is zero. Thus, nonlinear
optical effects that change the refractive index can be used
to tune the permittivity in or out of the zero-average state,
thus providing all-optical means to control the formation of
DPs. The optical nonlinearity of graphene is expected to
be particularly strong, due to its unusually large third-order
nonlinear susceptibility [31], as well as the tightly localized
optical field supported by graphene sheets.

Figure 4 illustrates the creation and elimination of a
DP under the action of the optical Kerr effect, induced in
graphene and the neighboring silicon layer. At low optical
powers, starting with a superlattice for which ε(λ) < 0, the
two transmission bands are separated by a gap, as seen in
Fig. 4(a). When the input power increases, both graphene and
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FIG. 4. (Color online) (a) The linear band structure, calculated
for the same parameters as in Fig. 1, except εg = −195.02 (ε =
−0.15). (b) The nonlinear band structure, where the Bloch mode of
the upper band at kx = 0 is used to induce the nonlinear change
of permittivities, δεSi = 0.07 and δεg = 0.46. In (c) and (d), the
input condition is a TM-polarized Gaussian beam with Ex(x) =
A exp(−x2/w2), with w = 2�, and A = 1 V/m in (c) or A = 4.13 ×
107 V/m in (d). The Kerr coefficients are n2,Si = 1.86 × 10−20 m2/V2

and n2,g = 4.09 × 10−17 m2/V2.

201402-3



RAPID COMMUNICATIONS

DENG, YE, MALOMED, CHEN, AND PANOIU PHYSICAL REVIEW B 91, 201402(R) (2015)

(a)

(c)

0

-15

15

(a)(a)

z [μm]
24 36 480 12

0

-15

15

x 
[μ

m
]

(d)

0

0

-40

-120

-80

25

-25

-50
0 12 24 36 48

1.5 eV
0.23 eV nonlinear

z [μm]
x 

[n
m

]

(b)(b)
0

-15

15

x 
[μ

m
]

x 
[μ

m
]

FIG. 5. (Color online) Beam propagation in the linear regime:
(a) μc = 0.23 eV, (b) μc = 1.5 eV. (c) The propagation in the
nonlinear regime, with μc = 1.5 eV. (d) Dependence of the center
of mass of the beam on z. The input condition is a TM-polarized
Gaussian beam with Ex(x) = A exp(−x2/w2), with w = 12�. In (c)
A = 1.5 × 107 V/m. The thicknesses of the layers are tg = 0.5 nm,
tSi = 604 nm, and tm = 10 nm, whereas n2,Si = 1.86 × 10−20 m2/V2

and n2,g = 4.09 × 10−17 m2/V2.

silicon are affected by the Kerr nonlinearity, their permittivities
varying by δεg > 0 and δεSi > 0, respectively. As a result,
the average permittivity of the structure ε gradually increases
and the corresponding band structure is modified as well. At
some particular value of the optical power, ε becomes equal
to zero, so that, as shown in Fig. 4(b), the photonic gap
closes and a DP reemerges. For the particular case illustrated
in Fig. 4, δεSi = 0.07 and δεg = 0.46. The propagation of a
TM-polarized Gaussian beam, both in the linear and nonlinear
regimes, is presented in Figs. 4(c) and 4(d), respectively. One
can see that, when the power of the input beam increases, the
beam dynamics changes from the typical discrete diffraction
to 1D conical diffraction, which is a manifestation of the
formation of the DP in the latter case.

Tunable Zitterbewegung effect. Finally, we point out that
the control of the DP and band structure of GPSs suggests a
convenient way to implement, in the classical-optics context,
a series of intriguing quantum-mechanical phenomena. As a
relevant example, here we consider the ZB effect, which, in
the relativistic quantum mechanics, refers to rapid oscillations
(trembling) of a moving electron around its average position.
The ZB of electrons arises because of the interference of
particle and antiparticle components of the wave function. The
electron ZB oscillations have extremely high frequencies, of
about 1021 Hz, therefore this phenomenon is not accessible
to experimental observations. Recently, optical analogs of
the ZB were studied in 1D [22–26] and 2D [21] photonic
crystals. Here we demonstrate that GPSs are highly suitable

physical systems to study this effect. To this end, we show
in Figs. 5(a) and 5(b) the beam propagation at two different
values of the chemical potential, μc = 0.23 and 1.5 eV,
respectively. Note that in both cases the GPS has gaps in the
wave-vector space, the gap at μc = 1.5 eV being wider. In
the latter case, the ZB has a smaller oscillation amplitude
and a larger frequency, which is consistent with the findings
reported in Ref. [24]. This behavior is more clearly observed
in Fig. 5(d), where we plot the evolution of the beam center,
xc ≡ ∫ +∞

−∞ |E(x)|2xdx/
∫ +∞
−∞ |E(x)|2dx.

Still more important, GPSs provide a reliable platform
to implement “nonlinear quantum mechanics,” as shown in
Fig. 5(c), where we examine the ZB dynamics affected by the
self-focusing nonlinearity, associated with the graphene and
silicon layers. The figure shows that, while the ZB amplitude
and frequency remain almost unaltered, the self-focusing
nonlinearity leads to a spatial walk-off of the ZB, viz.,
monotonic spatial drift of the beam’s center in one direction,
in the course of its propagation. Note that, as the thickness of
the layers of the GPSs can be scaled so that the real part of
its averaged permittivity remains equal to zero, one can easily
extend the ZB effect, and the emulation of other DP-related
quantum phenomena, into the THz and other spectral ranges,
different from the standard optical one.

Conclusion. We have proposed graphene-based photonic
superlattices which should provide a highly effective and
robust approach for the control of photonic beams at the
nanoscale. By taking advantage of the strong dependence
of the graphene permittivity on the chemical potential, it
is demonstrated that, due to the peculiar topology of their
photonic band structure, specially designed photonic superlat-
tices, incorporating graphene sheets interlaid with metallic
and dielectric layers, feature large electrical and optical
tunability. Implications of our findings to applications and
studies of fundamental effects, such as Zitterbewegung, are
also proposed.
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