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Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal
many-body effects on the thermodynamics of Au
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Application of the generalized gradient corrected functional within standard density-functional theory results
in a dramatic failure for Au, leading to divergent thermodynamic properties well below the melting point. By
combining the upsampled thermodynamic integration using Langevin dynamics technique with the random phase
approximation, we show that inclusion of nonlocal many-body effects leads to a stabilization and to an excellent
agreement with experiment.
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Recent years have seen significant progress in the devel-
opment of ab initio-based databases (e.g., Ref. [1]). Such
databases are valuable tools in modern materials design, given
that the stored data are sufficiently accurate. Only then is full
predictive power guaranteed.

Most present-day ab initio databases contain results from
T = 0 K density-functional-theory (DFT) calculations using
standard exchange-correlation functionals. This is a limitation
in two respects: (a) First, materials development and appli-
cation takes place at finite temperatures at which entropic
contributions become important. In particular, anharmonic
phonon-phonon excitations have been revealed to strongly
modify materials properties, e.g., for dynamically unsta-
ble systems [2] or for defect formation [3]. (b) Second,
standard functionals are known to have intrinsic deficien-
cies, e.g., for elements with nearly full electron shells.
Hybrid functionals provide an improvement by introducing
a fraction of exact exchange [4–6], but the corresponding
mixing parameter is not always well defined, especially for
composite systems. Further improvement requires also the
correlation energy to include nonlocal many-body effects.
A possible route utilizes the random phase approximation
(RPA) within the adiabatic-connection-fluctuation-dissipation
theorem (ACFDT) [7]. RPA has been successfully applied
to various systems [8–10] and recent developments aim at
improving the computational efficiency [11,12]. However,
despite the various developments and applications, RPA has
been employed only at T = 0 K, whereas the impact of
nonlocal many-body interactions at finite temperatures has
remained unknown.

In this Rapid Communication, we compute the material
properties of Au—a prototype closed shell element—using
the RPA within the ACFDT formalism up to the melting
point. This is made possible by advancing our previously intro-
duced upsampled thermodynamic integration using Langevin
dynamics (UP-TILD) technique [13] towards a combination
of molecular dynamics simulations performed at the standard
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DFT level in conjunction with upsampled snapshots computed
within RPA. We shall demonstrate that the inclusion of non-
local many-body effects remedies the deficiencies introduced
by standard DFT.

We start by investigating the thermodynamics of Au within
the Perdew-Burke-Ernzerhof generalized gradient approxi-
mation (GGA-PBE [14]) in conjunction with the projector-
augmented-wave (PAW) formalism [15] as implemented in
VASP [16,17] using the newly designed GW-PAW poten-
tials [10]. We concentrate on the heat capacity, which is a
representative thermodynamic quantity. The state-of-the-art
approach to calculate its temperature dependence includes
electronic excitations in conjunction with the quasiharmonic
approximation. We find that electronic excitations give a
negligible contribution [18] due to the low electronic density of
states of Au at the Fermi level. In contrast, the quasiharmonic
approximation yields an unexpectedly large contribution, as
revealed by the gray dashed line in Fig. 1 [19]. In fact,
the contribution is so large that the heat capacity diverges
at 800 K, i.e., about 500 K below the experimental melting
temperature.
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FIG. 1. (Color online) Ambient pressure heat capacity of Au
(kB = Boltzmann constant) utilizing various theory levels (qh =
quasiharmonic, ah = anharmonic) and compared to experimen-
tal [20] and CALPHAD data [Scientific Group Thermodata Europe
(SGTE) [21]] (T melt = 1337 K).
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FIG. 2. (Color online) Linear thermal expansion ε calculated
within the local-density approximation (LDA) and GGA-PBE (blue
and orange lines; including anharmonicity), fully within RPA (green
line; Au only), and using a mixed approach (red lines; discussed
further below) employing the T = 0 K RPA curve in conjunction
with GGA-PBE finite temperature excitations. For Au, the blue LDA
curve lies fully behind the red curve. For Pt, the electronic entropy
computed with GGA-PBE is included. Experimental values (solid
circles) are from Ref. [23].

Recent work [22] showed that explicit anharmonicity
can partly compensate the quasiharmonic heat capacity. As
shown in Fig. 1 (orange line), anharmonicity has indeed a
strong effect, but the divergence persists, shifting only to a
higher temperature of 1100 K. Considering that relativistic
effects are covered by the employed PAW potentials, the
only remaining source for this unphysical divergence is the
GGA-PBE approximation.

The failure of the GGA-PBE functional to describe properly
the heat capacity of Au is highly unsatisfactory. We traced back
this failure to an unphysical softness of bulk Au leading to an
exponentially increasing thermal expansion well below the
experimental melting point. This divergence is not observed
in other metals (cf. orange lines in Fig. 2) where it is “hidden”
since melting occurs already at temperatures below the onset
of the divergent expansion. We can therefore conclude that
GGA-PBE leads to an unphysical instability of fcc Au at
temperatures that are more than 200 K below the melting point,
in clear contrast to experimental observations (black circles in
Figs. 1 and 2).

Knowing that RPA improves the T = 0 K properties of
Au [10], we anticipate RPA to have an impact on finite
temperature properties as well. Thus, an explicit finite tem-
perature calculation would be desirable but is at present
unfeasible due to the prohibitive computational workload. The
strategy we follow here is to extend the UP-TILD method
that was previously shown to largely reduce the number
of configurations needed to get accurate thermodynamic
averages [13]. The original UP-TILD method was designed
as a perturbation theory in the space of DFT convergence
parameters (plane-wave cutoff, k-mesh sampling). Here, we
extend the method in the following way. We utilize a molecular
dynamics simulation performed within standard DFT, i.e.,
using GGA-PBE in the present case, to obtain a phase-space
sampling at the desired volume and temperature. We then
extract N uncorrelated snapshots (each corresponding to a
32 atomic supercell in this study) and calculate the UP-TILD
energy 〈�E〉UP

λ as an averaged difference between the RPA
and GGA-PBE energies, ERPA

λ,i and EGGA
λ,i , as

〈�E〉UP
λ = 1

N

N∑
i

(
ERPA

λ,i − ERPA
0K,sc

) − (
EGGA

λ,i − EGGA
0K,sc

)
, (1)

FIG. 3. (Color online) (a) UP-TILD energy, F UP (gray dia-
monds), and anharmonic free energies computed using GGA-
PBE, F GGA

ah (orange circles), and RPA, F RPA
ah = F GGA

ah + F UP (green
squares) at T melt = 1337 K. The vertical dashed (dotted) lines
indicate the theoretical T = 0 K (experimental melting temperature)
equilibrium lattice constant of RPA (green) and GGA-PBE (orange).
For GGA-PBE only the T = 0 K value is shown. (b) Convergence of
the UP-TILD energy as a function of the number of electronic bands
included in the calculation.

where i runs over the snapshots and where each energy is
referenced with respect to the T = 0 K energies, ERPA

0K,sc and
EGGA

0K,sc, calculated in the same supercell and with the same
convergence parameters. Integrating the UP-TILD correction
〈�E〉UP

λ over the coupling parameter λ, and adding the GGA-
PBE quasiharmonic and anharmonic free energies, F GGA

qh and
F GGA

ah , we obtain the RPA vibrational free energy as

F RPA
vib = F GGA

qh + F GGA
ah + F UP, F UP =

∫ 1

0
dλ〈�E〉UP

λ .

(2)

We observe that F UP is small [gray diamonds in Fig. 3(a)],
that 〈�E〉UP

λ quickly converges with the number of snapshots
N , and that it is nearly independent of λ. The final RPA free
energy is obtained as

F RPA = ERPA
0K + F RPA

vib , (3)

where ERPA
0K corresponds to a highly converged T = 0 K

RPA energy-volume curve of a primitive cell as calculated
previously [10]. Further finite temperature excitations (e.g.,
electronic and magnetic) can be computed on the standard
DFT level and added to Eq. (3). The introduced technique is
not restricted to a combination of standard DFT with RPA. Any
other higher level approach (e.g., quantum Monte Carlo [24])
can be coupled to standard DFT and used to obtain the accurate
energies for the UP-TILD in Eq. (1) instead of the RPA.

In comparison to the original UP-TILD method, the present
RPA UP-TILD technique requires additional convergence
checks. It is known from previous work [9] that RPA is
sensitive to the number of included unoccupied electronic
states. To guarantee that our UP-TILD energy is converged,
we have performed careful tests. Figure 3(b) shows that for the
employed 32 atomic supercell the UP-TILD energy converges
at 8000 electronic energy bands to about 1 meV/atom, which
is sufficient for the present purpose. We have also checked the
influence of the k-mesh sampling and found that a 2 × 2 × 2
k mesh leads to converged results. The energy cutoff was set
to 450 eV for the wave function and 300 eV for the response
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function, and the frequency integration was done up to 800 eV
at 16 frequencies.

Utilizing the RPA UP-TILD technique, we have computed
a set of points at two temperatures and various volumes to
obtain sufficient data for fitting an anharmonic free energy
surface [cf. green squares in Fig. 3(a)]. The resulting RPA
heat capacity—implicitly including quasiharmonic and an-
harmonic excitations—is shown in Fig. 1 by the solid green
curve. Remarkably, the divergence disappears and excellent
agreement with experimental data is achieved. Consistently,
the unphysical softening and exponential thermal expansion
are removed within the shown temperature range (green line
for Au in Fig. 2), i.e., they are shifted to temperatures above
the experimental melting point.

A strength of the developed methodology is that the
different contributions can be investigated separately. A
corresponding analysis reveals that the difference between the
GGA-PBE and RPA finite temperature free energies is rather
small. This is quantified by the small values observed for the
UP-TILD energy in Fig. 3(a) (gray diamonds). We stress that
the absolute anharmonicity is significant, and it is only the
difference between the GGA-PBE and RPA anharmonicity
that is small [orange versus green solid lines in Fig. 3(a)].
Considering this small difference, the question remains why
RPA strongly impacts the thermodynamic properties at all.

Our analysis shows that this strong impact originates
from differences in the T = 0 K energy-volume curves and
corresponding values for the equilibrium lattice constant and
bulk modulus. The GGA-PBE values (4.15 Å and 140 GPa) are
substantially modified by the RPA (4.10 Å and 175 GPa) giving
rise to a considerably stiffer bulk. This stiffness is the factor
responsible for shifting the divergence in the thermodynamic
quantities beyond the experimental melting point.

Utilizing this insight, we propose an efficient approach to
compute accurate finite temperature properties beyond stan-
dard DFT. The approach combines T = 0 K RPA energies with
entropic contributions from standard exchange-correlation
functionals as GGA. Applying this approach, we obtained,
with little computational effort, RPA finite temperature results
for Ag and Pt, the elements showing the largest discrepancies
within GGA-PBE except for Au [25]. As shown by the red lines
in Fig. 2, the mixed approach provides excellent agreement
with experiment for all studied elements and with full RPA for
Au. This indicates that nonlocal many-body effects as captured
by RPA affect predominantly the absolute binding energies at
T = 0 K, while thermal vibrations are unaffected to a good
approximation, as evidenced by the small difference between
GGA-PBE and RPA anharmonicity for Au [Fig. 3(a)].

The insensitivity of high-temperature vibrations to nonlocal
many-body effects is remarkable since recent studies [22]
showed that close to melting the displacement of atoms
from their equilibrium positions is significant and that the
first-neighbor distance distribution is strongly affected by
anharmonicity. Knowing that the GGA-PBE deficiency is
not related to thermal vibrations but rather to the T = 0 K
energy surface indicates a possible route for the development
of accurate ab initio databases. T = 0 K computations are
generally efficient since small supercells for single (or at most a
few) atomic configurations are sufficient. It becomes therefore
possible to employ computationally elaborate alternatives,

FIG. 4. (Color online) (a) Difference in the T = 0 K exchange-
correlation energy �Exc

x between LDA and RPA (blue lines) and
between GGA-PBE and RPA (orange lines) for x = Pt (dotted lines),
Ag (dashed lines), and Au (solid lines and light orange/blue shading)
as a function of the lattice constant ax scaled with respect to the
T = 0 K equilibrium lattice constant of RPA, aRPA

x . Each curve is
shifted to zero at ax/a

RPA
x = 1. Equilibrium lattice constants of LDA

and GGA-PBE for each element are indicated at the bottom by the
vertical lines and the arrows. (b), (c) T = 0 K binding pressure for
GGA-PBE (orange solid line) and RPA (green solid line) and thermal
phonon pressure (black solid lines) at four temperatures (300, 600,
900, 1200 K) for (b) Ag (melting point: 1235 K) and (c) Au (1337 K).
For Au, the gray shaded area indicates the instability region (see main
text).

such as the RPA technique employed here, to supplement the
databases.

Being able to assign the GGA-PBE error to a computa-
tionally inexpensive energy-volume curve allows us to further
break down the responsible mechanism. To this end, we have
analyzed the T = 0 K exchange-correlation energy of RPA
(i.e., the sum of the exact exchange energy on the Kohn-Sham
level and the RPA correlation energy) and the GGA-PBE
exchange-correlation energy. We were interested in revealing
differences among the investigated elements (Pt, Ag, Au)
and in explaining why Au shows the largest deficiencies
within GGA-PBE (orange curves in Fig. 2). Surprisingly,
for all elements we find similar energy differences, �Exc

x ,
between the RPA and GGA-PBE exchange-correlation energy
as quantified by the orange lines in Fig. 4(a) (dotted for Pt,
dashed for Ag, solid for Au), showing �Exc

x as a function of
the lattice constant. We observe �Exc

x to strongly decrease
with increasing volume, resulting in a shift of the GGA-
PBE equilibrium lattice constants towards larger values [cf.
the bottom of Fig. 4(a)]. Although �Exc

x is similar among
the elements, the shifts in the lattice constant depend on the
element with Ag showing the largest shift. This dependence
can be understood by correlating it with the values for the bulk
moduli of these elements (106, 175, and 267 GPa for Ag, Au,
and Pt within RPA), i.e., the smaller the bulk modulus, the
larger the shift in the lattice constant.

At this point, there seems to be a contradiction in the
obtained results. As just reasoned, the T = 0 K equilibrium
lattice constant is affected strongest for Ag due to the small
bulk modulus. In contrast, finite temperature properties as the
thermal expansion are affected strongest for Au when going
from RPA to GGA-PBE.

The reason for this contradiction lies in the specific volume
dependence of the thermal pressure of Au. In Figs. 4(b)
and 4(c) we use an unconventional, but for the present

201103-3



RAPID COMMUNICATIONS

B. GRABOWSKI et al. PHYSICAL REVIEW B 91, 201103(R) (2015)

discussion convenient, representation to quantify the situation.
The green and orange solid lines show a quantity that
may be regarded as a (negative) T = 0 K binding pressure
−P0K that is obtained from the T = 0 K total energy as
P0K = −∂E0K(V )/∂V . The T = 0 K binding pressure is
the inner pressure due to the chemical bonds keeping the
crystal together. The black solid lines show the thermal pres-
sure Pth(T ) = −∂[F (V,T ) − E0K(V )]/∂V , where F (V,T ) is
the free energy surface as a function of volume V and
temperature T . The thermal pressure is the pressure built up by
the vibrations and is opposite in sign to the binding pressure.
It increases with temperature and leads to the expansion of the
crystal. The crossing points between P0K and Pth(T ) give the
equilibrium volume/lattice constant at a certain temperature,
as shown for Ag and Au in Figs. 4(b) and 4(c) for different
temperatures.

The volume dependence of the thermal pressure has a
similar qualitative dependence for Ag and Au (increasing
with volume), but quantitatively the dependence is different
in the relevant temperature interval (i.e., below melting). For
Ag [Fig. 4(b)], the upward curvature is modest and thus there is
a well-defined crossing with the binding pressure curve −P0K,
regardless of whether the RPA (green) or the shifted GGA-PBE
(orange) curve is considered. The situation is different for
Au [Fig. 4(c)], where Pth strongly increases with volume, in
particular, for higher temperatures. The increase is so strong
that at temperatures above ∼1200 K, no crossing occurs.
This is the critical temperature region where the thermal
properties of Au start diverging, i.e., where the GGA-PBE
Au bulk becomes unstable. This instability shows up also in
the molecular dynamics simulations [gray shaded region in
Fig. 4(c)] by frequent deviations from the perfect fcc structure
(e.g., formation of defects), a phenomenon not occurring for
Ag. We traced back these differences in the finite temperature
behavior between Ag and Au to the Grüneisen parameter γ

which measures the sensitivity of the phonon frequencies to
volume changes. We find γ to be much larger for Au (γ = 3.3)
than for Ag (γ = 2.4). Since a larger Grüneisen parameter
indicates that the restoring forces—which realize the bonding
pressure—quickly vanish with increasing volume, the crystal
becomes prone to instabilities.

Finally, we study the performance of a second, popular
exchange-correlation functional, the local-density approxima-
tion (LDA). Focusing on the thermodynamic properties in

Figs. 1 and 2, we find a surprising agreement between the fully
LDA derived data (blue lines) and RPA or experiment for all
studied elements. Based on this agreement, one is tempted to
conclude that LDA outperforms GGA-PBE. Such a conclusion
is, however, too simplistic, as the following analysis shows.
Similarly as for GGA-PBE, we plot in Fig. 4(a) the difference
between the LDA and RPA exchange-correlation energy for
Pt, Ag, and Au (blue lines). We observe that the differences are
similar for the different elements and that they are even larger
than for GGA-PBE (notice the steeper slope with volume for
LDA). Consistently, the errors in the lattice constants are also
larger than for GGA-PBE.

Considering this significant error in the T = 0 K energy,
why does LDA show such remarkable finite temperature prop-
erties? The reason is that the T = 0 K error shifts the lattice
constants towards smaller values. At these lattice constants
the thermal pressure has a negligible volume dependence,
and therefore the effect of the LDA error is small. Note that
the absolute volume dependence of the thermal pressure is
rather similar for LDA and GGA-PBE, and, in particular, LDA
shows also a strongly increasing thermal pressure at larger
volumes. These volumes are, however, not relevant for the
thermodynamics of LDA due to the well-known overbinding
of this functional. Thus, the agreement with the measured
thermodynamic quantities is only due to a fortuitous error
cancellation and cannot be expected in general. It would be
interesting to extend our work in the future to an evaluation of
other standard DFT functionals (e.g., PBEsol [26]).

In summary, we have extended the UP-TILD methodology,
which now allows one to compute accurate finite temperature
properties, including nonlocal many-body effects within RPA.
The method is general and can be used also in combination
with other higher level approaches. We have shown that the
discrepancies introduced by standard functionals are removed
and an excellent agreement with experiment is achieved.
Identification of the T = 0 K energy as the main source of
the error within standard DFT opens promising routes to a
systematic increase of accuracy.
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