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Electron transport in graphene is along the sheet but junction devices are often made by stacking different
sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within
the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem
by implementing a plane-wave-based multiple-scattering theory for electron transport. This implementation
improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization
over large number of nodes, and does not require the current direction to be along a lattice axis. As a first
application, we calculate the tunneling current through a side-contact graphene junction formed by two separate
graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend
strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two
graphene sheets. Such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and
delocalization as the geometry is varied.
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I. INTRODUCTION

Graphene has some of the most fascinating electrical,
thermal, and mechanical properties [1,2] that promise to make
it an important material for broad applications. However, to
realize such a promise, we need to learn more than its bulk
properties. For example, most large-area graphene films are
produced as polycrystalline sheets [3–6] containing multiple
small domains, usually connected by one of two types of
boundaries, end contacts where two domains connect within
the same sheet with direct atomic bonding and usually referred
to as grain boundaries [7–11], and side contacts formed by
stacking edge regions of the two graphene domains side by side
with van der Waals force holding them together, which are also
observed in recent experiment [12]. There is a great potential
for useful devices [13,14] using side-contact junctions, in
which the overlapping region is the device region while the rest
of the two graphene domains act as electrodes. First-principles
transport study of either types of boundaries in graphene sheets
can be challenging because of poor screening due to low
dimensionality. Moreover, the side-contact junctions present
a particularly difficult problem because of their unaccommo-
dating geometry for computational methods designed to deal
with layer-structured systems.

There are two basic approaches to apply the mesoscopic
theory of Laudauer and Buttiker [15,16] to study quantum
transport of electrons within the first-principles method. The
first approach is to use localized basis sets [17–20] which
allow the calculation of the Green’s function of an electrode-
device-electrode assembly and a straightforward transport
calculation based on the Green’s function method. However,
localized basis sets do not work well for tunneling through
large vacuum gaps that require a faithful description of vacuum
electron wave functions. The second approach is based on the
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scattering theory of plane waves. It has been shown to be
completely equivalent to the nonequilibrium Green’s function
method in the case of noninteracting electrons [21]. A rigorous
first-principles method [22,23] (Choi-Ihm method) based on
scattering theory and pseudopotentials is implemented within
the PWCOND part of the QUANTUM ESPRESSO package [24].
This code has become one of the standard tools for quantum
transport studies [25–29]. Within this second approach there
is also a somewhat different implementation based on the
Korringa-Kohn-Rostoker (KKR) band theory, alternatively
called the multiple-scattering theory, that is adapted to layer-
structured systems and thus named the layer-KKR method
[21,30]. This method has been particularly successful in
the study of spintronics [31–33]. While localized basis is
inadequate for the study of tunneling current between two
graphene sheets in the side-contact junction, neither the Choi-
Ihm method nor the layer-KKR method can be effectively
applied to this problem as well, as we will discuss in the
following. This dissatisfaction compels us to search for a third
implementation of the plane-wave scattering method.

Both the layer-KKR and Choi-Ihm methods use a two-
dimensional plane-wave basis and divide the system under
study into a stack of sufficiently thin slices along the transport
direction. A generalized complex band structure [34] or
transmission matrices are then computed by stitching these
slices together with appropriate boundary conditions. Each
method has its own advantages and drawbacks. On the
one hand, the layer-KKR method first solves the Green’s
function of individual atomic layers and then stitches these
layers together using a layer-doubling technique based on
multiple-scattering theory. This approach is more efficient
and yields the scattering matrix for any part of the system of
interest thus providing more information about the transport
properties of the system. However, it has a serious drawback.
It is implemented within the muffin-tin or the atomic sphere
approximations (ASA), requiring that the space be divided
into spheres around each atom within which the Kohn-Sham
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potential is spherically symmetric. On the other hand, the
Choi-Ihm method does not require spherical approximations.
It uses much thinner slices and stitches the slices together by
matching boundary conditions of the wave functions between
the slices. While this method is in principle rigorous, it is
computationally expensive. Moreover, it only yields transport
information for the whole system at the end without providing
any scattering matrix of the individual parts of the system.

Here, we present a plane-wave multiple-scattering algo-
rithm that combines the advantages of the layer-KKR and
Choi-Ihm methods, and show that it can be an efficient
first-principles quantum transport method for tunnel junctions
represented by the side-contact junction of graphene sheet
discussed above and other devices characterized by low
symmetry. We first completely reformulate the multiple-
scattering theory within a plane-wave basis, then implement
an algorithm similar to the layer-KKR method but without the
muffin-tin or ASA approximations. Additional computational
speedup is realized by calculating the complex bands of
each electrode using only its two-dimensional primitive unit
cell and then folding the complex bands into the smaller
Brillouin zone corresponding to the larger two-dimensional
supercell of the scattering region (described in Sec. II), and
by incorporating the method developed by Srivastava et al.
[35] for low-symmetry nonorthogonal lattices based on the
three-dimensional Bloch theorem. While the implementation
of both improvements is straightforward, neither is available in
the PWCOND code. As a first application, we use the method to
study conduction through a graphene/graphene side-contact
junction. Our calculations show that there are significant
differences in transmission coefficients and their scaling with
the overlapping area between AA and AB stacked graphene
sheets. This difference is explained in terms of the orbital
delocalization and barrier variation for the two geometries.

The paper is organized as follows. An overview of the
theory and the computational approach is given in Sec. II.
In Sec. III, we discuss the calculation of transport properties
of graphene/graphene side-contact junctions and present the

results. Conclusions are in Sec. IV. A detailed derivation of
the method is provided in the Appendixes.

II. MODEL AND METHODS

A. Overview of the method

We consider a system as sketched in Fig. 1, consisting
of a central scattering region connected to left and right
semi-infinite electrodes, which in general can be different
from each other. Mapping this to the graphene side-contact
junction, the two electrodes are two semi-infinite graphene
sheets with bulk potentials, and the scattering region contains
the overlapping region plus a few extra layers outside the
overlapping region on both sides to ensure convergence. The
plane-wave multiple-scattering theory method produces either
complex band structure for each of the bulk electrodes or
the transmission coefficients for the electrode-device-electrode
assembly. The calculation is divided into two stages. In the
first stage, the complex band structures of both electrodes are
calculated. Even though the basic formalism for this stage
is equivalent between the layer multiple-scattering method
and the Choi-Ihm method, the use of the multiple-scattering
theory speeds up the former by about 17% on a single
processor for the same supercell size and allows it to be
more efficiently parallelized (see Appendix D). A further
speedup is achieved by recognizing that the complex band
structures of the electrodes can be computed using primitive
cells only, and be folded into a larger supercell that matches
the transverse dimension (perpendicular to the current) of
the scattering region at the end of this stage (Appendix B).
In the second stage, a set of linear equations are solved
to obtain the transmission coefficients. While the final step
of solving the linear system is identical to the Choi-Ihm
method, most of the computational time is spent in the steps
needed to set up the final equations. Again implementing
these steps using scattering matrices makes the layer multiple-
scattering method significantly more efficient for parallel
computation.

FIG. 1. (Color online) Schematic (a) top and (b) side views of a graphene side-contact junction. The two graphene layers are connected by
one sheet overlapping another to form a bilayer boundary region. The system is periodic along the x direction (six supercells are drawn in the
top view) and has a large vacuum gap (more than 15 Å) along the y direction. Along the z direction, the system contains the overlapping region
and several electrode (graphene) buffer “layers” to ensure the convergence of the potential at the boundary to that in bulk electrodes. The unit
cell contains one edge carbon atom on each graphene sheet, denoted as C1 (top layer) and C2 (bottom layer), respectively.
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To set up the equations, we first apply in each region the two-
dimensional periodic boundary conditions in the transverse
(x, y) directions, which are perpendicular to the direction of
transport. Systems that are not periodic along the transverse
directions can be approximated by sufficiently large two-
dimensional supercells with periodic boundary conditions.
The Kohn-Sham equation [36] within the framework of the
plane-wave pseudopotential method is

Eψ(r) = − �
2

2m
∇2ψ(r) + Vloc(r)ψ(r)

+
∑
αlm

Cαlm

∑
R⊥

eik⊥·R⊥Wα
lm(r − τ α − R⊥), (1)

Cαlm =
∑
uv

Dlm,uv

∫
d3r′[Wα

uv(r′ − τ α)
]∗

ψ(r′), (2)

where Vloc(r) is the total screened local potential that in-
cludes the local part of ionic pseudopotential, electrostatic,
and exchange-correlation potential due to valence electrons;
Wα

lm(r) are a set of projector functions associated with
atom α at position τ α , and form the nonlocal part of the
pseudopotential with the coefficients Dlm,uv [25,37]; we use
subscript ⊥ to indicate vectors in the xy plane. k⊥ and R⊥ are
wave vectors and lattice vectors in the xy plane, respectively.

Following Choi and Ihm [22], we divide each scattering
or electrode region into slices perpendicular to the transport
direction (z). The slices are sufficiently thin so that within each
slice the local potential can be treated as independent of z. In
the following, Eqs. (1)–(7) are reproduced from Ref. [22] for
the sake of completeness. The steps after Eq. (7) are different
from the Choi-Ihm method. If one such region starting from
z0 = 0 and ending at zN = d is divided into N slices, then
Eq. (1) can be rewritten for each slice (labeled by superscript
p) as

Eψp(r) = − �
2

2m
∇2ψp(r) + V

p

loc(r⊥)ψp(r)

+
∑
αlm

Cαlm

∑
R⊥

eik⊥·R⊥Wα
lm(r − τ α − R⊥). (3)

The solutions of the above inhomogeneous differential equa-
tion for each slice are to be connected together using the bound-
ary conditions that the wave functions and their derivatives are
continuous to yield the total wave function ψ(r) of the entire
region in Eq. (1). The first step is to find a set of basis functions

ψp
n (r) = φp

n (r⊥)e±ik
p
n (z−zp) (4)

satisfying a homogeneous equation obtained by setting
all Calm’s in Eq. (3) to zero, where n labels different
homogeneous solutions and goes up to N2D , the cutoff
number of the reciprocal lattice vectors G⊥ in the xy plane,
k

p
n =

√
2m(E − E

p
n )/�2 is the nth wave vector along z

direction in the pth slice, E is the total incident energy, and
E

p
n is the energy eigenvalue of the following equation:

Ep
n φp

n (G⊥) = �
2

2m
|k⊥ + G⊥|2φp

n (G⊥)

+
∑
G′

⊥

V
p

loc(G⊥ − G′
⊥)φp

n (G′
⊥), (5)

where φ
p
n (G⊥) is the Fourier transform of φ

p
n (r⊥). In addition

to the homogeneous solution basis set, we also need a particular
solution basis set as described in the following. Starting from
Eq. (3) we set only one of Calm’s to one and all others to zero:

Eψ
p

αlm(r) = − �
2

2m
∇2ψ

p

αlm(r) + V
p

loc(r⊥)ψp

αlm(r)

+
∑
R⊥

eik⊥·R⊥Wα
lm(r − τα − R⊥), (6)

which yields a particular solution ψ
p

αlm(r) for each (α,l,m).
Both the homogeneous and the inhomogeneous solution basis
sets satisfy the Bloch boundary condition within the xy plane,
ψn (αlm)(r + R⊥) = eik⊥·R⊥ψn (αlm)(r). The general solution of
Eq. (3) is written as a linear combination of ψ

p
n and ψ

p

αlm:

ψ
p

ki
(r) =

∑
n

A
p

n,ki
φp

n (r⊥)eik
p
n (z−zp) +

∑
n

B
p

n,ki
φp

n (r⊥)e−ik
p
n (z−zp)

+
∑
αlm

Cαlm,ki
ψ

p

αlm(r), (7)

where ki labels the wave vector of the Bloch and evanescent
states when computing complex band structure, and labels
the wave vector of the incident waves of the entire scattering
region when computing the transmission coefficients.

At this point, we take a different approach than Choi and
Ihm [22]. The coefficients A

p

n,ki
and B

p

n,ki
, which depend

on ki , are the only unknowns in the wave function and are
determined by matching the wave functions between adjacent
slices, usually in a transfer matrix [38] formulation. However,
a transfer matrix approach is usually numerically unstable
because of the appearance of the exponential factors in Eq. (7).
For k

p
n containing nonzero imaginary parts (corresponding to

evanescent states), these terms are exponentially decaying and
growing waves. Therefore, some transfer matrix elements, as
given by Eq. (A14), will grow exponentially while some others
will decay exponentially, creating a numerically unstable
system. As iteration proceeds, information for the decaying
modes will be lost, causing the numerical solution to diverge.
To avoid this numerical instability, we separate the waves
into forward and backward waves. The forward waves are
those that propagate or decay in the positive z direction,
the backward waves are those that propagate or decay in
the negative z direction. By iterating both types of waves
along their exponentially decaying directions, we can avoid the
numerical instability, a practice already adopted in a number of
previous studies [39,40]. This is accomplished by rearranging
the boundary conditions between the slices in terms of incident
waves of slice p + 1 with coefficients Ap and Bp+1, the
outgoing waves of slice p + 1 with coefficients Ap+1 and Bp

using the scattering matrix [41,42] S(p,p + 1) [see Eq. (A15)]
that couples them:[

Ap+1

Bp

]
=

[
S11(p,p + 1) S12(p,p + 1)

S21(p,p + 1) S22(p,p + 1)

][
Ap

Bp+1

]

+
[
ha(p,p + 1)C

hb(p,p + 1)C

]
. (8)

The coefficient h(p,p + 1) is also defined in Eq. (A15).
Clearly, S(p,p) = I , ha(p,p) = 0, and hb(p,p) = 0.
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Calculating the scattering matrix for each slice is the first
step to obtain the total scattering matrix S(1,N ) of the entire
region. The second step is to stitch the slices together by
applying a doubling technique similar to that employed in the
layer-KKR method. In general, one can obtain the scattering
matrix for a collection of slices m through k by combining
the scattering matrices for m through n and for n through
k (m < n < k) using the following multiple-scattering
equations [43]:

S11(m,k) = S11(n,k)[I − S12(m,n)S21(n,k)]−1S11(m,n),

S12(m,k) = S12(n,k) + S11(n,k)[I − S12(m,n)S21(n,k)]−1

×S12(m,n)S22(n,k),

S21(m,k) = S21(m,n) + S22(m,n)S21(n,k)

×[I − S12(m,n)S21(n,k)]−1S11(m,n),

S22(m,k) = S22(m,n)S22(n,k) + S22(m,n)S21(n,k) (9)

×[I − S12(m,n)S21(n,k)]−1S12(m,n)S22(n,k),

ha(m,k) = ha(n,k) + S11(n,k)[I − S12(m,n)S21(n,k)]−1

×[S12(m,n)hb(n,k) + ha(m,n)],

hb(m,k) = hb(m,n) + S22(m,n)hb(n,k) + S22(m,n)

×S21(n,k)[I − S12(m,n)S21(n,k)]−1

×[S12(m,n)hb(n,k) + ha(m,n)].

Each time these equations are applied, the number of slices
represented by the scattering matrix is doubled, thus the
name “layer doubling.” The final scattering matrix S(1,N ) is
obtained by applying layer doubling repeatedly until all slices
are contained within the scattering matrix.

While the scattering matrix formalism is numerically
more stable than the transfer matrix formalism, the latter is
computationally faster than the former. To achieve the optimal
balance between speed and numerical stability, we iterate two
of the transfer matrices I11 and I12 along with the scattering
matrices S21 and S22 [see Eq. (A16)] for the first few doubling
steps, when the condition number of the transfer matrix I11 is
reasonable. As soon as the condition number of III turns bad,
we switch over to iterate entirely with the scattering matrices
S11, S12, S21, and S22.

The final inhomogeneous equation is identical in form to
Eq. (8): [

AN

B1

]
=

[
S11(1,N ) S12(1,N )

S21(1,N ) S22(1,N )

][
A1

BN

]

+
[
ha(1,N )C

hb(1,N )C

]
. (10)

Equation (10) provides a direct connection between the total
incident waves of the entire region with coefficients A1 and
BN and the total outgoing waves of the entire region with
coefficients AN and B1. Equations (8)–(10) are the essence of
the layer multiple-scattering method.

There are 4N2D + Norb unknown coefficients counting
A (2N2D), B (2N2D), and C (Norb), with Norb being the
total number of nonlocal spheres characterized by Wα

lm. As
mentioned above, the total wave function of the entire region in
Eq. (1) can be obtained by connecting the wave function in each

slice [see Eq. (7)], which means that the total wave function
can be expressed as a function of the unknown coefficients
A, B, and C. Therefore, the definition of C in Eq. (2)
provides Norb equations about the unknown coefficients. In
addition, Eq. (10) gives us another 2N2D equations. So, a
total of 2N2D + Norb linear equations are provided by Eqs. (2)
and (10). Additional 2N2D equations are needed, which are
provided by the boundary conditions below. Two different
types of boundary conditions are needed depending on the
physical problem under study. For complex band structures,
the generalized Bloch boundary conditions [34] are employed
along the transport direction (see Appendix B). For the
transmission coefficients of the scattering region, continuity
conditions for the wave function and its derivative are applied
at the interfaces between the scattering region and each side
of the electrodes (see Appendix C).

To compute the complex band structure of an electrode
region, the generalized Bloch conditions along the z direction
[see Eqs. (B1) and (B2) in Appendix B] need to be applied as
the boundary conditions. With Eq. (10), we can express AN and
B1 as a function of A1, BN , and C. In addition, we can denote
the coefficients C with nonlocal spheres completely fitting the
electrode region as C(αlm)′ , and those with nonlocal spheres
crossing the boundaries of the electrode region as C(αlm). From
the definition of C(alm)′ in Eq. (2), we can express C(αlm)′ as a
function of AN , B1, A1, BN , and C(αlm). Therefore, Eq. (10)
and the definition of C(αlm)′ in Eq. (2) give us an expression of
AN , B1, C(αlm)′ as a function of A1, BN , and C(αlm). So in the
definition of C(αlm) [Eqs. (B3) and (B4)] and Bloch condition
Eqs. (B1) and (B2), we can substitute AN , B1, C(αlm)′ with A1,
BN , and C(αlm). As a result, the only unknowns in Eqs. (B3) and
(B4) and (B1) and (B2) are A1, BN , and C(αlm). Rearranging
these equations by setting the unknowns A1, BN , and C(αlm)

as X, we can obtain the generalized eigenvalue problem that
takes the form

PX = eikdeik⊥·a3⊥QX, (11)

where a3 is the third lattice vector which is not in the xy plane;
k = (k⊥,k) is the wave vector. Solving this equation yields a
set of forward waves {ψ+

k (r)}, backward waves {ψ−
k (r)}, and

also complex band structure k(E).
For transmission coefficient calculations, we need to

match the boundary conditions at z0 = 0 and zN = d for
the wave function and its derivative [see Eqs. (C14)–(C16)
in Appendix C]. Through this process, A1 and B1 can be
expressed as a function of A0, B0, and C [see Eq. (C5)]; AN

and BN can be expressed as a function of AN+1, BN+1, and
C [see Eq. (C6)], where A0 and B0, AN+1 and BN+1 are the
wave coefficients in the 0th and (N + 1)th slices, as defined in
Appendix C. Therefore, the unknowns in the definition of C of
Eq. (2), and Eqs. (C14)–(C16) are AN+1, B0, and C (noting that
A0 and BN+1 specify the incident waves, which are known).
Rearranging these equations by setting the unknowns AN+1,
B0, and C as X, we can write a set of linear equations in the
matrix form

MX = D. (12)

The reflection and transmission matrices can be obtained from
the solution of X in Eq. (12). The details about the dimension of
matrices P , Q, M , D as well as the elements of X are discussed
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in Appendixes B and C. Equations (11) and (12) have the same
form and same dimensions as the corresponding equations in
the Choi-Ihm method [22] but the contents of these equations
obtained from the layer multiple-scattering theory and thus are
entirely different from those in the Choi-Ihm method which
are obtained from matching boundary conditions for the layer
wave functions.

Next, we compare the efficiency of this method
against that of the Choi-Ihm method. In the first stage, in which
the complex band structures of the electrodes are calculated,
there are two speedups. First, by using the primitive cells of
the electrodes, the dimension of Eq. (11) for complex band
calculations can be reduced by up to severalfold for a large
calculation. This strategy can also be implemented in the
original Choi-Ihm method, although it is not yet available
in PWCOND. Second, on a single processor, the layer multiple-
scattering method speeds up the complex band calculations by
about 17% according to benchmark runs. There is an additional
speedup in a parallel calculation. Since this parallel speedup
is the same for both stages, we describe it specifically for the
second stage. The most time-consuming parts for either stages
are the steps to set up Eq. (11) for the complex band calculation
or Eq. (12) for the transmission coefficient calculation, not
the final step of solving either equation (which is parallelized
efficiently but does not consume much computational time).
Both the layer multiple-scattering method and the Choi-Ihm
method have identical Eqs. (5) and (6) used at the beginning
of the calculation, for which nearly perfect parallelization can
be achieved. The major difference between the two methods
is in the steps immediately following this calculation. In the
multiple-scattering method, the scattering matrix for each slice
[Eq. (8)] is computed, then the doubling technique [Eq. (9)]
is applied to obtain the scattering matrix [Eq. (10)] for the
entire system. In the Choi-Ihm method, the wave functions in
individual slices are matched across the boundaries in a layer-
doubling process until the wave function of the entire system
is obtained. In both methods, the bottleneck for parallelization
is the layer-doubling step, which can scale at best as log2 L

where L is the number of processors used. However, while
the Choi-Ihm method relies entirely on the layer-doubling
technique for the wave functions, in the multiple-scattering
method much of the computation load is shifted to the
extraction of the scattering matrices for individual layers,
which can be parallelized with nearly 100% efficiency. Once
the scattering matrices of all slices are calculated, evaluating
Eq. (9) is twice faster than matching boundary conditions for
the wave functions across layer boundaries. Therefore, the
prefactor of the log2 L term for the layer multiple-scattering
method is half of that for the Choi-Ihm method.

B. Models and computational details

We apply the plane-wave multiple-scattering trans-
port method to study the transport properties of a
graphene/graphene side-contact junction, as illustrated in
Fig. 1. The edges of the graphene sheets are zigzag H-
terminated in the supercell, and the unit cell contains one edge
carbon atom for each sheet with a dangling bond saturated
by the H atom. We denote these edge atoms as C1 (top
graphene layer) and C2 (bottom graphene layer), respectively.

Transmission and reflection coefficients of the incident elec-
trode Bloch states through the scattering region are calculated
by applying the scattering boundary conditions (C14)–(C16).
The electronic structures of the electrodes and the scattering
region are calculated separately using the QUANTUM ESPRESSO

package to obtain the self-consistent potentials. Fourteen unit
cells of graphene outside the overlapping region are added to
the scattering region on each side to ensure the convergence
of the potential at the boundaries of the scattering region (see
Fig. 1). The electronic-structure calculation for the scattering
region is obtained by repeating the region in the z direction.
To achieve translational invariance under a unit lattice vector
along the z direction, the graphene sheet on the left must
coincide with the graphene sheet on the right after translation.
The best way to accomplish this is to tilt the supercell
such that the lattice vector a3 of the scattering region is no
longer perpendicular to the xy plane [see Fig. 1(b)]. Such
a configuration cannot be handled by the existing PWCOND

code as we discussed earlier. The PWCOND code can only treat
this system by doubling the size of the supercell to make
the repeating lattice vector perpendicular to the xy plane,
thus incurring an eightfold increase in computation time and
fourfold increase in memory requirement.

We use the Rappe-Rabe-Kaxiras-Joannopoulos ultrasoft
pseudopotentials [44] for the C and H atoms with the Perdew-
Burke-Ernzerhof exchange-correlation functional [45]. Be-
cause of the zigzag H-terminated edges which have nonzero
magnetization [46], the calculation is spin polarized. The
energy cutoffs are 60 and 360 Ry for the wave function and
charge density, respectively. Gaussian smearing with a width
of 0.05 eV is used for the energy levels. The scattering region
is periodic along the x direction with a thick vacuum layer of
more than 15 Å in the y direction. A 2.46 Å × 20 Å rectangular
area is used for the supercell’s xy plane. For self-consistent
calculations, the z dimension of the supercell is much larger
because of the added unit cells of electrodes, and also depends
on the width of the overlapping region. A 20 × 1 × 1 k-space
mesh is sufficient to sample the Brillouin zone (BZ) for the
scattering region.

Graphene has a zero density of states (DOS) at the Dirac
point. Using it as electrodes requires the transport calculations
to be performed at an energy away from the Dirac point to
ensure a finite transmission. In our calculation, the incident
electron energy is chosen to be 0.1 eV above the Dirac point.
At this energy, electrode conduction channels only exist within
a small volume of the reciprocal space. The reciprocal space
is discretized as k⊥ = (mx�kx,m

y�ky), where �kx(y) is the
mesh interval along the x(y) direction, and mx(y) runs from
N

x(y)
i to N

x(y)
f . The number of k⊥ points along the x(y)

direction in the reciprocal space is Nx(y) = N
x(y)
f − N

x(y)
i + 1,

which defines the number of conduction channels in the
electrode. The transmission coefficient T (mx�kx,m

y�ky) for
each mesh point is computed using the method described in
Sec. II. Because the supercell along the y direction is the
vacuum layer of y direction in the electrode in our model
system is sufficiently large that the total energy is independent
of ky , the transmission coefficients are also independent of ky .

Because of the small number of conduction channels in
graphene, even if the junction does not contain any scattering
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the total transmission is still small, a situation we refer to
as “electrode-limited” conduction. In order to distinguish
the effect of junction scattering from that of the electrode-
limited conduction, we compute a transmission probability
per electrode conduction channel as follows:

T̄ = 1

NxNy

Nx
f∑

mx=Nx
i

N
y

f∑
my=N

y

i

T
(
mx�kx,m

y�ky

)
. (13)

Equation (13) can be reduced to the following form since the
transmission coefficients are independent of ky :

T̄ = 1

Nx

Nx
f∑

mx=Nx
i

T
(
mx�kx,0

)
. (14)

We find that �kx = 4.167 × 10−4(2π/a1) is sufficient to
converge T̄ to 1%. Here, a1 is the lattice constant of electrode
in the x direction. In particular, if the k mesh in the reciprocal
space is infinitesimal or continuous, Eqs. (13) and (14) can be
rewritten in an integral form

T̄ = 1

�eff

∫
�eff

T (kx,ky)dkxdky, (15)

T̄ = 1

λx
eff

∫
λx

eff

T (kx,0)dkx, (16)

where the effective projected Fermi area of the electrode,
denoted as �eff , is the area projected to the xy plane in k

space from the effective Fermi volume of the electrode; λx
eff

is the effective projected Fermi length in the x direction of k

space for the electrode graphene.
The conductance of the junction is readily calculated from

the transmission probability using the Landauer formula [15].
This is the usual approach taken by almost all quantum
transport studies. However, if the transmission is close to
unity, the Landauer formula becomes less accurate [47]. In
this case, accurate calculation of the junction conductance can
be obtained by combining the Landauer approach with the
Boltzmann transport equation [47,48]. Boltzmann equation is
also needed for nonballistic transport properties as well as
inelastic electron scattering [49,50], which can be important
in graphene.

III. RESULTS AND DISCUSSION

A side contact formed between two graphene sheets has
already been observed experimentally and is found to be
more resistive than grain boundaries formed between graphene
domains within the same sheet [10]. The conduction through
the side contact can be greatly improved by increasing the
overlapping area in the experimental samples. Therefore, the
effect on the transport properties of a side-contact junction
due to the overlapping area as a function of the interlayer
distance between the two graphene sheets is the focus of this
first-principles study. We begin with the limiting case that
the two graphene domains have no overlapping with each
other. In this case, the edges play an important role, where the
dominant factor is the orbital hybridization between the states
from the edges of the two graphene layers, which varies with

the interlayer distance. This hybridization affects the degree of
localization of the electron orbitals near the edges, thus have
a deciding role on the transport properties.

A. Tunneling without overlapping between two graphene layers

We first examine how the interlayer distance (d⊥) and
horizontal distance (d‖) affect the tunneling properties when
there is no overlap between the two sheets [see Fig. 2(a)].
The spin-polarized calculations show that the edge of each
graphene layer has a small amount of magnetization and the
antiferromagnetic (AFM) bonding state between the two edges
is the ground state. The carbon atoms on equivalent positions
from the two edges in each layer, e.g., C1 and C2, have
the same magnitude of magnetization with opposite signs.
Due to this spatially antisymmetric spin configuration, the
transmission coefficient for the spin-down channel is identical
to that for the spin-up channel [51,52]. In the following, all
the transmission coefficients calculated are for the spin-up
electrons.

With fixed d⊥, the calculated transmission as a function
of d‖ shows an exponential decay, as plotted in Fig. 2(b)
for d⊥ = 0 and 2.1 Å. Such a result is expected for simple
tunneling through a vacuum barrier with a thickness equal to
the separation d‖.

The dependence on the interlayer distance (d⊥) is more
complex. We set d‖ = 0 which yields the maximum transmis-
sion for nonoverlapping sheets. In this case, the transmission
coefficient first increases with the distance, reaching its maxi-
mum at d⊥ = 2.1 Å, followed by an exponential decrease for
large distances [see Fig. 2(c)]. The distance of 2.1 Å coincides
with the minimum of the total absolute magnetization as shown
in Fig. 2(c), which also plots the total energy as a function of d⊥
with and without van der Waals (vdW) correction. The energy
difference between ferromagnetic (FM) and AFM states is
5 meV when d⊥ = 1.5 Å. For other interlayer distances, we
cannot find the FM states in the calculation. With vdW
functional, the interlayer distance at equilibrium position is
about 3.4 Å and the binding energy between the two-layer
graphene increases from 22 (without vdW) to 39 meV (with
vdW) per unit-cell length along the x direction (see Fig. 1).
The fact that the maximum transmission coincides with the
minimum of absolute magnetization suggests that there is
a “cancellation” of the magnetic moments between the two
opposing edges due to the majority-spin electrons from each
edge “leaking” into the minority-spin channel of the other
side.

To understand the mechanism of this spin leakage, we
examine the degree of the orbital hybridization between the
edge atoms of the two graphene layers. In Fig. 3, we plot the
projected density of states (PDOS) of edge C1 and C2 atoms
at several interlayer distances. When the interlayer distance is
large [e.g., d⊥ = 4.0 Å, Fig. 3(a)], C1 has a peak below the
Fermi level for spin up and a peak above the Fermi level for
spin down and C2 is the opposite, which gives them the same
magnitude of magnetization but with opposite signs. When the
distance becomes smaller (below around 3.0 Å), we observe a
small peak above the Fermi level in the spin-up PDOS of C1
[see Fig. 3(b)], and correspondingly a small peak above the
Fermi level in the spin-down PDOS of C2 (not shown here).
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FIG. 2. (Color online) (a) Schematic side view of two-layer graphene with horizontal distance d‖ (parallel with graphene plane) and
interlayer distance d⊥ (perpendicular to graphene plane). The supercell is tilted so that the left of the bottom layer graphene can match the
right of the top graphene layer with a periodic boundary condition. (b) Spin-up transmission as a function of d‖ with d⊥ = 0.0 and 2.1 Å.
(c) Transmission for spin-up channel in the left panel and total energy with and without vdW correction (EvdW and E), absolute magnetization
(M) in the right panel as a function of d⊥ with d‖ = 0. The total energy is shifted with respect to the energy at d⊥ = 3.4 Å such that the total
energy at d⊥ = 3.4 Å is zero for both E and EvdW. The y axis in both (b) and (c) for transmission is in logarithm scale.

This clearly indicates hybridization between the orbitals of C1
and C2. The degree of hybridization between the orbitals of the
two graphene edges can be estimated from the size of the small
peak in the spin-up PDOS of C1. The small peak reaches its
maximum when the interlayer distance is 2.1 Å, indicating that
the orbital hybridization is strongest at this distance, leading
to the largest transmission coefficient. The size of the small
peak is almost the same for d⊥ = 1.5 and 3.0 Å, consistent
with Fig. 2(c) which shows that the transmission coefficient at
these two interlayer distances is almost equal.

The degree of orbital hybridization as a function of d⊥
can be visualized directly from the spin-up integrated local
density of states (LDOS), as shown in Figs. 4(a)–4(d), which is
calculated by integrating the spin-up DOS from 0.05 eV below
the incident energy to 0.05 eV above the incident energy (in
compliance with our smearing parameter). These plots show
that the orbitals around incident energy that carry current are
mainly the carbon pz orbitals. When d⊥ = 4.0 Å [Fig. 4(d)],
there is negligible LDOS on the top graphene layer (contains
C1) indicating that there is almost no hybridization between the

FIG. 3. (Color online) (a) Projected density of states (PDOS) for the p orbitals of the edge carbon atoms C1 and C2 for d⊥ = 4.0 Å. At this
distance, there is little evidence of coupling between the two graphene sheets. (b) Spin-up PDOS for the p orbital of C1 at different interlayer
distances. Here, we use a smearing of σ = 0.005 Ry, and the Fermi energy is at 0 eV.
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FIG. 4. (Color online) Isosurfaces (at 0.0002 states/Å
3
, in red

color) of integrated spin-up local density of states from 0.05 eV
below the incident energy to 0.05 eV above the incident energy for
two graphene layers with interlayer distance (a) 1.5 Å, (b) 2.1 Å,
(c) 3.0 Å, (d) 4.0 Å. (e) The tilting angle of the pz orbital in C1 of
the top sheet as a function of the interlayer distance. Yellow balls are
carbon atoms and blue balls are hydrogen atoms.

carbon orbitals from different graphene sheets. This explains
the exponentially decaying part of the transmission curve at
large interlayer distance. With decreasing interlayer distance,
one can observe some spin-up LDOS on the top graphene
layer due to the hybridization between the spin-up orbitals
of two carbon atoms at the edges of two sheets. Because of
the hybridization, some electrons with the spin opposite to
the magnetization direction appear on the edge, as if they are
“leaked” from the other edge whose magnetization is in the
opposite direction, reducing the total absolute magnetization
of the junction [see Fig. 2(c)]. The pz orbital in C1, which
has the largest spin leakage compared to other carbon atoms
on the top graphene layer, tilts with different angles at
different interlayer distances, as shown in Fig. 4(e). At an
angle when the orbital points directly at the C2 atom on

the other edge, the hybridization, spin leakage, and degree
of the LDOS delocalization in the top layer graphene are the
largest. This happens at the interlayer distance of 2.1 Å [see
Fig. 4(b)].

B. Tunneling between two overlapping graphene layers

In the case of two graphene layers overlapping each other,
transmission depends sensitively on how the two layers are
stacked together, and even whether there is a rotation angle
between the two layers [12]. There are two typical types of
stacking. One, in which every atom on the second layer lies
over an atom of the first, is called the AA stacking. The other,
in which half of the atoms in the second layer lie directly
over the center of a hexagon in the lower sheet and the other
half over an atom, is called the AB stacking. We first examine
the AA stacking pattern. We fix the interlayer distance of
graphene layers to that of bilayer graphene, which is about
3.4 Å [53]. By varying the overlapping area, expressed in the
unit of graphene primitive unit-cell area (S0), we can calculate
the transmission coefficient as a function of the overlapping
area, which is plotted in Fig. 5(a) for AA stacking. The
transmission first increases superlinearly with the overlapping
area, as it varies from two to eight graphene primitive cells.
Then, the increase slows for larger overlapping areas until
the transmission coefficient appears to converge when the
overlapping area exceeds 10 graphene primitive cells. For large
overlapping areas, electrode-limited conduction is reached,
evident from the transmission per conduction channel close to
unity, a situation for which Eq. (13) is designed to uncover.
When the overlapping area is small, it presents a constriction
to the current in the junction. The transmission per conduction
channel of electrode is expected to be much smaller than unity
in this case, and it is confirmed by our calculation. Small
transmission due to the constriction at the junction will be
referred to as junction-limited transport.

For AB stacked junctions, the transmission as a function
of overlapping area is shown in Fig. 5(b). The transmission
for AB stacking is about an order of magnitude smaller than
that for AA stacking, as shown in Fig. 5(b). Consequently,
the transmission per conduction channel is much smaller than
unity, placing AB stacked junctions within the junction-limited
regime. The linear dependence of the transmission on the
overlapping area depicted in Fig. 5(b) indicates a simple
scaling of the tunneling current with area. This may also be
a consequence of weak coupling between the two layers, as

FIG. 5. (Color online) Transmission as a function of overlapping area for (a) AA stacking and (b) AB stacking.
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FIG. 6. (Color online) Isosurfaces (at 0.001 states/Å
3
, in red

color) of integrated total local density of states (summed over both
spins) from 0.05 eV below the incident energy to 0.05 eV above
the incident energy for (a) AB stacking with overlapping area 7S0,
(b) AA stacking with overlapping area 8S0. S0 is the area of graphene
primitive unit cell. Yellow balls are carbon atoms and blue balls are
hydrogen atoms.

evident from the much smaller the total integrated LDOS of the
carbon pz orbitals at the incident energy that carry the current
for AB stacking than for AA stacking, as shown in Fig. 6.

To compare and relate the transport properties between AB
and AA stacked graphene junctions, we examine the effective
potential that electrons experience within the overlapping area
between two graphene layers, plotted for the region outside
the core radius, where the pseudopotential is equal to the
all-electron potential. Figure 7 shows the isosurface of the
effective potential at the incident energy (red color). The region
of interest is between the two layers. The volume is divided
by the red surface into regions with higher potential than
the incident energy, which are enclosed by the red surface
and appear as solid red volumes, and regions with lower
potential, which are the white colored regions between the two
sheets (those outside both layers also have higher potentials).
In the case of AA stacking, regions with higher potentials
between two layers are contained within isolated pockets, and
regions with lower potentials form connected paths through
the entire interlayer volume. For AB stacking, the white color
low-potential regions between the two layers are blocked off
by the red color high-potential regions. This difference in
the topography of the potential can cause large difference in
the transmission of the electron wave function at the incident
energy, leading to both differences in the conductance as well
as wave-function hybridization.

We also plot in Fig. 8 the transmission coefficient as a
function of the interlayer distance between the two layers for
both AA and AB stacking. When the interlayer distance is
larger than 4.5 Å, both AA and AB stacking reach the vacuum

FIG. 7. (Color online) Isosurface of the effective potential that
electrons experience at the incident energy for (a) AB stacking with
overlapping area 7S0, (b) AA stacking with overlapping area 8S0.
S0 is the area of graphene primitive unit cell. The isosurface of the
effective potential is in red. Yellow balls are carbon atoms and blue
balls are hydrogen atoms.

FIG. 8. (Color online) Transmission as a function of interlayer
distance for both AA stacking with overlapping area 8S0 (red) and AB
stacking with overlapping area 7S0 (blue). S0 is the area of graphene
primitive unit cell. y axis is in logarithm scale.

tunneling regime giving us the same decaying rate. But the
AB stacking reaches the vacuum tunneling regime at a shorter
interlayer distance than AA stacking, confirming that the inter-
action between the two layers is much smaller for AB stacking.

IV. CONCLUSION

By implementing the multiple-scattering theory within the
plane-wave basis, we have improved over previous plane-
wave-based transport calculation in terms of both speed
and parallel efficiency. We apply this method to study a
graphene/graphene side-contact junction system where the
contact is formed by stacking two graphene layers through van
der Waals interaction. The transmission through such a junc-
tion is closely related to spin leakage between the two graphene
edges, a consequence of orbital hybridization between the car-
bon atoms across the layers which leads to the delocalization
of the DOS. When the overlapping area is large, stacking
pattern becomes an important factor in deciding transport
properties across the layers. The transmission coefficients for
AB stacking are one order of magnitude smaller than those for
AA stacking, primarily due to the larger volume of the blocking
potential within the overlapping region for AB stacking.
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APPENDIX A: LAYER MULTIPLE-SCATTERING THEORY
FOR NONLOCAL PSEUDOPOTENTIALS

The general solution of Eq. (1) can be expressed as

ψ(r) =
∑

n

anψn(r) +
∑
αlm

Cαlmψαlm(r), (A1)
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where ψn(r) and ψαlm(r) are the solutions of the following homogeneous and inhomogeneous equations, respectively:

− �
2

2m
∇2ψn(r) + Vloc(r)ψn(r) = Eψn(r), (A2)

− �
2

2m
∇2ψαlm(r) + Vloc(r)ψαlm(r) +

∑
R⊥

eik⊥·R⊥Wα
lm(r − τα − R⊥) = Eψαlm(r). (A3)

We divide the system along the z direction into N slices. If the slices are sufficiently thin, then within each slice Vloc can be
approximated as independent of z. Applying Fourier transformation for the wave functions in the pth slice, we have

ψp
n (r) = φp

n (r⊥)e±ik
p
n (z−zp) =

∑
G⊥

φp
n (G⊥)ei(k⊥+G⊥)·r⊥e±ik

p
n (z−zp), (A4)

ψ
p

αlm(r) =
∑

j

φ
p

j (r⊥)f p

j,αlm(z) =
∑
G⊥

∑
j

φ
p

j (G⊥)ei(k⊥+G⊥)·r⊥f
p

j,αlm(z), (A5)

where φ
p

j (G⊥) obeys the eigenvalue Eq. (5); f
p

j,αlm(z) = ∑
G⊥[φp

j (G⊥)]∗e−i(k⊥+G⊥)·τα
⊥
∫ zp

zp−1
dz′gp

j (z − z′)Wα
lm(k⊥ + G⊥,z′ − τα

z )

and Wα
lm(k⊥ + G⊥,z) = 1

�2D

∫
d2r⊥Wα

lm(r)e−i(k⊥+G⊥)·r⊥ . Here, �2D is the cross-sectional area of the two-dimensional supercell,
g

p

j (z) = exp(ikp

j z)/2ik
p

j when z > 0 and g
p

j (z) = exp(−ik
p

j z)/2ik
p

j when z < 0. Calculations of Vp(G⊥), φ
p

j (G) in Eq. (5), and
f

p

j,αlm(z) are similar to the Choi-Ihm method [22].
The total wave function in the pth slice in Eq. (7) is obtained from

ψ
p

αlm(r) =
∑

n

φp
n (r⊥)f p

n,αlm(z), (A6)

Cαlm,ki
=

∑
uv

Dlm,uv

N∑
p=1

∫ zp

zp−1

dz

∫
d2r⊥

[
Wα

uv(r − τα)
]∗

ψ
p

ki
(r). (A7)

Matching the boundary conditions for the wave function and its derivative between any two adjacent slices, we obtain the
recurrence relation for the expansion coefficients A

p

n,ki
and B

p

n,ki
:

A
p

nki
= 1

2k
p
n

⎧⎨
⎩

∑
j

A
p+1
jki

exp
( − ik

p+1
j �z

) [(
kp
n + k

p+1
j

)∑
s

(
M

p+1
js

)∗
Mp

ns

]

+
∑

j

B
p+1
jki

exp
(
ik

p+1
j �z

) [(
kp
n − k

p+1
j

) ∑
s

(
M

p+1
js

)∗
Mp

ns

]⎫⎬
⎭ +

∑
αlm

Cαlm,ki
H a

n,αlm(p,p + 1), (A8)

B
p

nki
= 1

2k
p
n

⎧⎨
⎩

∑
j

A
p+1
jki

exp
( − ik

p+1
j �z

) [(
kp
n − k

p+1
j

) ∑
s

(
M

p+1
js

)∗
Mp

ns

]

+
∑

j

B
p+1
jki

exp
(
ik

p+1
j �z

) [(
kp
n + k

p+1
j

) ∑
s

(
M

p+1
js

)∗
Mp

ns

]⎫⎬
⎭ +

∑
αlm

Cαlm,ki
H b

n,αlm(p,p + 1), (A9)

where Ha
n,αlm(p,p + 1), Hb

n,αlm(p,p + 1), and M
p
ns are

Ha
n,αlm(p,p + 1) ≡ 1

2k
p
n

∑
j

(
kp
n − k

p+1
j

)
f

p+1
j,αlm(zp)

∑
s

(
M

p+1
js

)∗
Mp

ns − f
p

n,αlm(zp), (A10)

Hb
n,αlm(p,p + 1) ≡ 1

2k
p
n

∑
j

(
kp
n + k

p+1
j

)
f

p+1
j,αlm(zp)

∑
s

(
M

p+1
js

)∗
Mp

ns, (A11)

Mp
ns = 1

�2D

∫
dr⊥

[
φp

n (r⊥)
]∗ · exp[i(k⊥ + G⊥,s) · r⊥], (A12)

and G⊥,s denotes the sth reciprocal lattice vector in {G⊥} and �z the thickness of a single slice along the z direction.
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The above recurrence relations can be rearranged to form an inhomogeneous equation[
Ap

Bp

]
=

[
I11(p,p + 1) I12(p,p + 1)

I21(p,p + 1) I22(p,p + 1)

][
Ap+1

Bp+1

]
+

[
Ha(p,p + 1)C

Hb(p,p + 1)C

]
, (A13)

where Ap, Bp, and C are matrices with elements {Ap

nki
}, {Bp

nki
}, and {Cαlm,ki

}, respectively; I (p,p + 1) is the transfer matrix
between adjacent slices p and p + 1 in the following form:

Inj (p,p + 1) = 1

2k
p
n

∑
s

(
M

p+1
js

)∗
Mp

ns

[
exp

( − ik
p+1
j �z

)(
k

p
n + k

p+1
j

)
exp

(
ik

p+1
j �z

)(
k

p
n − k

p+1
j

)
exp

( − ik
p+1
j �z

)(
k

p
n − k

p+1
j

)
exp

(
ik

p+1
j �z

)(
k

p
n + k

p+1
j

)
]

. (A14)

The wave function is separated into forward and backward waves with the help of the scattering matrix, whose elements are
calculated from the transfer matrix

S11(p,p + 1) = [I11(p,p + 1)]−1,

S12(p,p + 1) = −[I11(p,p + 1)]−1I12(p,p + 1),

S21(p,p + 1) = I21(p,p + 1)S11(p,p + 1),

S22(p,p + 1) = I22(p,p + 1) + I21(p,p + 1)S12(p,p + 1),

ha(p,p + 1) = −[I11(p,p + 1)]−1Ha(p,p + 1),

hb(p,p + 1) = Hb(p,p + 1) + I21(p,p + 1)ha(p,p + 1).

(A15)

To stitch the slices together, we can derive the general recurrence relations for 1 � m < n < k � N , as shown in Eq. (9).
Each iteration of the recurrence relations results in the doubling of the number of slices represented by the scattering matrix. This
is called the “doubling technique.” At the end of the iteration, we obtain the scattering matrix that represents the entire region
[see Eq. (10)]. To further improve speed, we use a set of recurrence relations based on a mixture of transfer matrices I11, I12 and
scattering matrices S21, S22 which are faster but numerically less stable:

I11(m,k) = [I11(m,n) + I12(m,n)S21(n,k)]I11(n,k),

I12(m,k) = [I11(m,n) + I12(m,n)S21(n,k)]I12(n,k) + I12(m,n)S22(n,k),

S21(m,k) = S21(m,n) + S22(m,n)S21(n,k)[I11(m,n) + I12(m,n)S21(n,k)]−1,

S22(m,k) = S22(m,n)S22(n,k) − S22(m,n)S21(n,k)[I11(m,n) + I12(m,n)S21(n,k)]−1I12(m,n)S22(n,k),

Ha(m,k) = [I11(m,n) + I12(m,n)S21(n,k)]Ha(n,k) + I12(m,n)hb(n,k) + Ha(m,n),

hb(m,k) = hb(m,n) + S22(m,n)hb(n,k) − S22(m,n)S21(n,k)[I11(m,n) + I12(m,n)S21(n,k)]−1

× [I12(m,n)hb(n,k) + Ha(m,n)].

(A16)

We iterate these equations until the condition number of I11 exceeds a predetermined criterion. Then, we switch to Eq. (9) after
computing S11 and S12 from I11 and I12 from Eq. (A15).

APPENDIX B: COMPLEX BAND STRUCTURE CALCULATION

If the potential is periodic along the z direction, the Bloch conditions can be applied as the boundary conditions

ψki
(r⊥ + a3⊥,z = d) = eik⊥·a3⊥+ikdψki

(r⊥,z = 0), (B1)

∂ψki
(r⊥ + a3⊥,z = d)

∂z
= eik⊥·a3⊥+ikd ∂ψki

(r⊥,z = 0)

∂z
, (B2)

where a3⊥ is the component of a3 in the xy plane and d is the z component of a3. In a transport problem, the wave functions
(of either electrode) do not extend to infinity in all directions: they match to boundary conditions at the interfaces between the
electrodes and the scattering region. Thus, the requirement that the wave vector k is real is no longer necessary. Solutions with
complex k (evanescent waves) are now allowed, changing the above boundary conditions to the generalized Bloch conditions
[34]. States with real k’s are the propagating (Bloch) states and those with complex k’s are the evanescent states.

A complication of imposing the boundary conditions (B1) and (B2) on a nonlocal pseudopotential is that one must account
for the nonlocal spheres that cross one boundary plane and are thus folded to the boundary plane on the other side of the supercell
by the Bloch boundary condition. This requires Eq. (A7) to be rewritten in the following form when the nonlocal spheres
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(characterized by Wα
lm) cross the left boundary of the unit cell at z = 0:

Cαlm,ki
=

∑
uv

Dlm,uv

[∫ d

0
dz

∫
d2r⊥

[
Wα

uv(r − τα)
]∗

ψki
(r) + e−ikd

∫ d

0
dz

∫
d2r⊥

[
Wα

uv(r − τα − dẑ)
]∗

ψki
(r)

]
, (B3)

and for those crossing the right boundary of the unit cell at z = d,

Cαlm,ki
=

∑
uv

Dlm,uv

[∫ d

0
dz

∫
d2r⊥

[
Wα

uv(r − τα)
]∗

ψki
(r) + eikd

∫ d

0
dz

∫
d2r⊥

[
Wα

uv(r − τα + dẑ)
]∗

ψki
(r)

]
. (B4)

The total number of those spheres is Ncrosl + Ncrosr with Ncrosl(Ncrosr ) being the total number of nonlocal spheres crossing left
(right) boundary of the unit cell.

The unknowns in Eqs. (10), (A7), (B1), and (B2) are A1, AN , B1, BN , C(αlm)′ (nonlocal spheres completely fitting the electrode
region) and C(αlm) (nonlocal spheres crossing the boundaries of the electrode region). Some of these unknowns, AN , B1, and
C(αlm)′ , can be eliminated by expressing them in terms of A1, BN , and C(αlm). The latter are collected as a single vector X:

X =

⎡
⎢⎣

A1
nki

BN
nki

C(αlm),ki

⎤
⎥⎦ . (B5)

Then, the remaining equations from Eqs. (10), (A7), (B1), and (B2) are combined into a generalized eigenvalue problem,
Eq. (11). The dimension of X is (2N2D + Ncrosl + Ncrosr ) × (number of incident waves). P and Q in Eq. (11) are (2N2D +
Ncrosl + Ncrosr ) × (2N2D + Ncrosl + Ncrosr ) matrices.

Next, we describe how to fold the complex bands of each electrode from the bigger first Brillouin zone of the two-dimensional
primitive cell, into the smaller Brillouin zone corresponding to the larger two-dimensional supercell of the junction system.
Both the two-dimensional primitive cell and its corresponding supercell is in the transverse plane formed by the first two lattice
vectors. The third lattice vector a3 is the same for both the primitive cell and the supercell. Let b1, b2 be the reciprocal lattice
vectors of the electrode primitive cell in the plane perpendicular to a3 and B1, B2 the vectors for the supercell in the same plane.
We know that the supercell’s first two lattice vectors in real space can be expressed as a linear combination of the first two lattice
vectors of the primitive cell with coefficients being integers, respectively. The inner product of the lattice vector in real space
and its corresponding reciprocal lattice vector is a constant 2π . Thus, we can write b1 = c11B1 + c12B2 and b2 = c21B1 + c22B2,
where c11, c12, c21, and c22 are integers. We start from the electrode complex band structure described within the larger Brillouin
zone of the primitive cell. For each k⊥ in the first Brillouin zone, the Bloch condition along the third lattice vector a3 is

ψk(r + a3) = eik·a3ψk(r), (B6)

where k = (k⊥,kz). The complex band structure calculation can give us a series of eigenvalues kz and eigenstates ψkz
[see

Eq. (11)]. The Fourier transform of the electrode potential contains only vectors of the reciprocal lattice of the primitive cell
mb1 + nb2, where m and n are integers. Thus, each k⊥ in the first Brillouin zone of the reciprocal space of the primitive cell
couples only to k⊥ + mb1⊥ + nb2⊥. Then, the eigenstate ψkz

is superposition of plane waves containing only the wave vector
k⊥ and wave vectors differing from k⊥ by mb1⊥ + nb2⊥:

ψkz
=

∑
m

∑
n

amnk|k⊥ + mb1⊥ + nb2⊥〉, (B7)

where amnk are the expansion coefficients; |k⊥ + mb1⊥ + nb2⊥〉 is the plane-wave basis.
To fold k = (k⊥,kz) of the primitive cell to K = (K⊥,Kz) of the supercell, we have the following relationship:

k = K + mkB1 + nkB2, (B8)

where mk and nk are integers. Then, the Bloch condition along the third lattice vector a3 (supercell and the primitive cell have
the same a3) for the supercell is

ψK(r + a3) = ψK+mkB1+nkB2 (r + a3) = ψk(r + a3) = eik·a3ψk(r) = ei(K+mkB1+nkB2)·a3ψK+mkB1+nkB2 (r) = eiK·a3ψK(r). (B9)

Therefore, the complex band at k⊥ in the primitive cell will be folded to the complex band at K⊥ in the supercell. The eigenvalue
Kz = kz − mkB1z − nkB2z and the corresponding eigenstate can be expanded in the new plane-wave basis |K⊥ + MB1⊥ +
NB2⊥〉, M and N are integers, as

ψkz
=

∑
m

∑
n

amnk|k⊥ + mb1⊥ + nb2⊥〉 =
∑
m

∑
n

amnk|K⊥ + (mk + mc11 + nc21)B1⊥ + (nk + mc12 + nc22)B2⊥〉. (B10)
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APPENDIX C: REFLECTION AND TRANSMISSION CALCULATION

For transmission coefficient calculations, we need to match the boundary conditions at z0 = 0 and zN = d for the wave
function and its derivative, which can be viewed as adding two more slices. We denote the two added slices as the 0th and the
(N + 1)th slices with wave coefficients A0 and B0, AN+1 and BN+1. Then, we have

A1
jki

= 1

2

⎧⎨
⎩

∑
k′
i∈R

A0
k′
i ki

∑
s

(
M1

js

)† [
ψk′

i
(G⊥,s ,z = 0) − i

k1
j

exp
(
ik1

j�z
)∂ψk′

i
(G⊥,s ,z = 0)

∂z

]

+
∑
k′
i∈L

B0
k′
i ki

∑
s

(
M1

js

)† [
ψk′

i
(G⊥,s ,z = 0) − i

k1
j

exp
(
ik1

j�z
)∂ψk′

i
(G⊥,s ,z = 0)

∂z

]⎫⎬
⎭ , (C1)

B1
jki

= 1

2

⎧⎨
⎩

∑
k′
i∈R

A0
k′
i ki

∑
s

(
M1

js

)† [
ψk′

i
(G⊥,s ,z = 0) + i

k1
j

exp
( − ik1

j�z
)∂ψk′

i
(G⊥,s ,z = 0)

∂z

]

+
∑
k′
i∈L

B0
k′
i ki

∑
s

(
M1

js

)† [
ψk′

i
(G⊥,s ,z = 0) + i

k1
j

exp
( − ik1

j�z
)∂ψk′

i
(G⊥,s ,z = 0)

∂z

]⎫⎬
⎭

+
∑
αlm

Cαlm,ki

[−f 1
j,αlm(0) exp

( − ik1
j�z

)]
, (C2)

AN
jki

= 1

2

⎧⎨
⎩

∑
k′
i∈R

AN+1
k′
i ki

∑
s

(
MN

js

) [
ψk′

i
(G⊥,s ,z = d) − i

kN
j

∂ψk′
i
(G⊥,s ,z = d)

∂z

]

+
∑
k′
i∈L

BN+1
k′
i ki

∑
s

(
MN

js

) [
ψk′

i
(G⊥,s ,z = d) − i

kN
j

∂ψk′
i
(G⊥,s ,z = d)

∂z

]⎫⎬
⎭

+
∑
αlm

Cαlm,ki

[−f N
j,αlm(d)

]
, (C3)

BN
jki

= 1

2

⎧⎨
⎩

∑
k′
i∈R

AN+1
k′
i ki

∑
s

(
MN

js

) [
ψk′

i
(G⊥,s ,z = d) + i

kN
j

∂ψk′
i
(G⊥,s ,z = d)

∂z

]

+
∑
k′
i∈L

BN+1
k′
i ki

∑
s

(
MN

js

) [
ψk′

i
(G⊥,s ,z = d) + i

kN
j

∂ψk′
i
(G⊥,s ,z = d)

∂z

]⎫⎬
⎭ , (C4)

where L and R represent the sets of forward and backward waves. In the two new slices, we expand the wave function with
the generalized Bloch basis (including both propagating waves and evanescent waves). Thus, for each incident wave ki , the
dimensions of A0, B0 and AN+1, AN+1 are N2D + Ncrosl and N2D + Ncrosr , respectively. Recall that the dimensions of A1, B1

and AN , AN are all N2D . Thus, we rearrange the above equations into the following form:[
A1

B1

]
=

[
I11(1,0) I12(1,0)

I21(1,0) I22(1,0)

][
A0

B0

]
+

[
Ha(1,0)C

Hb(1,0)C

]
, (C5)

[
AN

BN

]
=

[
I11(N,N + 1) I12(N,N + 1)

I21(N,N + 1) I22(N,N + 1)

][
AN+1

BN+1

]
+

[
Ha(N,N + 1)C

Hb(N,N + 1)C

]
, (C6)

where

Ha
j,αlm(1,0) = 0, (C7)

Hb
j,αlm(1,0) = −f 1

j,αlm(0) exp
( − ik1

j�z
)
, (C8)

Ha
j,αlm(N,N + 1) = −f N

j,αlm(d), (C9)
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Hb
j,αlm(N,N + 1) = 0, (C10)

Ijk′
i
(1,0) = 1

2

∑
s

(
M1

js

)†
⎡
⎢⎣ ψk′

i
(G⊥,s ,z = 0) − i

k1
j

exp
(
ik1

j�z
) ∂ψk′

i
(G⊥,s ,z=0)

∂z

ψk′
i
(G⊥,s ,z = 0) + i

k1
j

exp
( − ik1

j�z
) ∂ψk′

i
(G⊥,s ,z=0)

∂z

⎤
⎥⎦ , (C11)

Ijk′
i
(N,N + 1) = 1

2

∑
s

(
MN

js

)⎡
⎣ψk′

i
(G⊥,s ,z = d) − i

kN
j

∂ψk′
i
(G⊥,s ,z=d)

∂z

ψk′
i
(G⊥,s ,z = d) + i

kN
j

∂ψk′
i
(G⊥,s ,z=d)

∂z

⎤
⎦ . (C12)

In addition, Eq. (10) can be rewritten as[
I − S12(1,N )

0 − S22(1,N )

] [
AN

BN

]
=

[
S11(1,N ) 0

S21(1,N ) − I

] [
A1

B1

]
+

[
ha(1,N )C

hb(1,N )C

]
. (C13)

From Eqs. (C5), (C6), and (C13), we can construct the relationship between A0, B0 and AN+1, AN+1:[
I − S12(1,N )

0 − S22(1,N )

] [
I11(N,N + 1) I12(N,N + 1)

I21(N,N + 1) I22(N,N + 1)

] [
AN+1

BN+1

]
=

[
S11(1,N ) 0

S21(1,N ) − I

]

×
[
I11(1,0) I12(1,0)

I21(1,0) I22(1,0)

] [
A0

B0

]
+

[
Ha(1,0) + ha(1,N ) − Ha(N,N + 1)

Hb(1,0) + hb(1,N ) − Hb(N,N + 1)

]
C. (C14)

Because the left electrode and the scattering region share
those atoms whose nonlocal spheres lie across the z = 0 plane,
we have Ncrosl additional equations in the form

C(αlm),ki
=

∑
k′
i∈R

CLE
(αlm),k′

i
A0

k′
i ,ki

+
∑
k′
i∈L

CLE
(αlm),k′

i
B0

k′
i ,ki

. (C15)

Similarly, for those spheres lying across the z = d plane, we
have Ncrosr additional equations

C(αlm),ki
=

∑
k′
i∈R

CRE
(αlm),k′

i
AN+1

k′
i ,ki

+
∑
k′
i∈L

CRE
(αlm),k′

i
BN+1

k′
i ,ki

. (C16)

Here, LE (RE) means left (right) electrode.
Therefore, for each boundary conditon, altogether we have

2N2D + Norb + Ncrosl + Ncrosr equations from Eqs. (C14)
(2N2D), (C15) (Ncrosl), (C16) (Ncrosr ), and (A7) (Norb).
The number of unknowns for {AN+1}, {B0}, and {C} are
{N2D + Ncrosl} + {N2D + Ncrosr} + {Norb}. Note that {A0}
and {BN+1} provide the boundary conditions that specify the
incident wave, e.g., A0 = I , BN+1 = 0 for waves incident from
the left electrode for which the corresponding transmission
and reflection matrices are {AN+1} and {B0}, respectively.
A0 = 0, BN+1 = I represents waves incident from the right
electrode for which the corresponding transmission and
reflection matrices are {B0} and {AN+1}, respectively. As
explained in the main text, rearranging Eqs. (C14), (C15),
(C16), and (A7), we can obtain a set of linear equations listed
in Eq. (12), where M is a (2N2D + Ncrosl + Ncrosr + Norb)
× (2N2D + Ncrosl + Ncrosr + Norb) matrix, D is (2N2D +
Ncrosl + Ncrosr + Norb) ×(number of incident waves), X is
also (2N2D + Ncrosl + Ncrosr + Norb) ×(number of incident

waves) and has the following structure:

X =
⎡
⎣AN+1

B0

C

⎤
⎦ . (C17)

APPENDIX D: PARALLEL EFFICIENCY

In order to compare the parallel efficiency of the layer
multiple-scattering theory method and the Choi-Ihm method,
we perform a benchmark calculation using the system depicted
in Fig. 2(a) with d⊥ = 0 and d‖ = 3.5 Å. The incident energy is
0.1 eV above the Dirac point of the electrode graphene. Setting
k⊥ = (1/3,0), we calculate the corresponding transmission
coefficient using both methods and record the CPU time per
node as a function of the number of CPUs. Figure 9 plots the
calculated CPU time as a function of the number of the CPUs.
The layer multiple-scattering method has a better parallel
efficiency than the Choi-Ihm method. At 32 CPUs, the two
methods differ by about a factor of 2.

FIG. 9. (Color online) Calculated CPU time as a function of the
number of CPUs. Both x and y axes are in logarithm scale.
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