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Ab initio calculation of the real contact area on the atomic scale
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We present an approach to determine the onset of contact between a tip and a surface. The real contact area
depending on the distance is calculated using Bader’s quantum theory of atoms in molecules. The jump to contact,
which is often observed in atomic force microscopy experiments, is used as an indicator for the initial point of
contact, which in turn is defined by atomic relaxations and thus without the need of external parameters. Within
our approach the contact area is estimated by evaluating the zero flux surfaces between the touching Bader atoms,
where the necessary electronic density cutoff for the Bader partitioning is calculated to depend on the initial
point of contact. Our proposed approach is therefore completely ab initio and we are able to define and calculate
the real area of contact without imposing restrictions or free parameters. As a prototype system we choose a tip
made of a ten-atom tungsten pyramid above a moiré layer of graphene on an fcc iridium (111) substrate. We find
that the contact area depends exponentially on the effective distance between the tip apex and the surface atom
directly below within the atomically relaxed nanosystem.
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I. INTRODUCTION

Historically the introduction of the concept of a real contact
area in 1939 by Bowden and Tabor, which is substantially
smaller than the nominal one, was a huge step forward in
understanding the laws of friction [1]. Since then a multitude
of methods have been used to predict the pressure dependent
real contact area for rough surfaces.

In 1881 Hertz laid the foundations of contact mechanics by
describing the junctions between nonadhesive, homogeneous
elastic solids of simple shapes [2]. Nearly a hundred years later
Johnson, Kendall, and Roberts (JKR) included short-range
adhesion forces inside the contact which lead to larger contact
areas compared to Hertz’s model [3]. In contrast, Derjaguin,
Muller, and Toporov (DMT) assumed that the Hertzian contact
area remains undeformed while long-range adhesion forces are
acting outside the contact zone [4]. Tabor was able to show
that both the JKR and the DMT model can be viewed as
limiting cases of a more general model, with JKR suitable
for soft materials with large adhesion and DMT for hard
materials with low adhesion [5]. Additional work on this
unification was done by Maugis using Dugdale potentials [6].
The analytical solution by Maugis, however, produces rather
cumbersome equations, which can be approximated with
high accuracy by the generalized transition equation derived
by Carpick, Ogletree, and Salmeron [7]. Their result also
describes the transition between the DMT and the JKR
models, but with simpler expressions which can be applied
more straightforwardly to experimental data and only differs
from the Maugis-Dugdale model within the unstable low load
region. Generally these theories agree that the contact area A
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between a single sphere and a flat surface is a sublinear function
of the load L; see, e.g., the original Hertz prediction of A(L) ∼
L2 / 3. These continuum mechanics models are undoubtedly
very successful and play an important role in both theoretical
and experimental work in tribology. However, on the atomic
scale, as tested for example in AFM experiments, the size
of the the contact approaches the size of the involved atoms
and thus models based on continuum mechanics are hardly
applicable [8]. The apparent success of the Maugis-Dugdale
model, which is still widely used to interpret atomic scale
AFM experiments, can be attributed to its flexibility provided
by three fitting parameters [9]. Hence, atomistic methods are of
great value in assessing the validity of the results and provide
a much needed tool to increase the understanding of the real
contact area.

In recent studies and discussions a need for characterizing
the contact area on an atom-by-atom basis was expressed
and various strategies to estimate the number of atoms in
contact were proposed [8,10–13]. However, it is not trivial
to decide at which distance two atoms are in contact or how
big the resulting contact area should be. One possibility is to
define a certain interatomic distance a0 below which contact
should be established, however, this just shifts the problem
to find the correct distance a0. A common method is to
identify a0, and thus the onset of contact, as the beginning of
repulsion between the two observed atoms [11,14]. To this end,
classical molecular dynamics (MD) studies using Lennard-
Jones potentials are often employed, sometimes without the
attractive part if the surfaces of interest are nonadhesive. In our
view, this method is not ideal for describing the onset of contact
on the nanoscale for the following two reasons: (i) if only
repulsive interaction is a sign of contact, the atoms in a solid or
molecule at 0 K are not in contact with each other; (ii) in AFM
experiments one often observes a “jump to contact,” where
either the tip, or some part of the surface below, or both jump
towards each other because of strong attractive interactions. If
now the tip support is lowered further, the distance between the
surface and the tip apex might get even smaller as the chemical
binding becomes stronger. It seems unreasonable to argue that
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the tip is not in contact with the surface after the jump, just
because the interaction is still attractive.

In a study from 2009, Mo, Turner, and Szlufarska examined
the contact area between hydrogenated amorphous carbon
tips with radii of up to 30 nm and a flat hydrogenated
diamond surface [10]. For this large scale finite temperature
(300 K) MD study they used a reactive empirical bond-order
(REBO) potential [15] to model the chemical forces and added
an analytical switching function to include van der Waals
(vdW)–like long-range forces. The multiasperity picture of
nanoscale contact presented in their publication relies on the
assumption that contact is established between the atoms
that are interacting chemically through the REBO potential
while a much larger part of the tip is attracted to the surface
via the vdW forces. These ideas are further discussed in a
followup publication by Mo and Szlufarska [16]. Now an
atomic contact area Aat is attributed to every chemically
interacting atom of the tip leading to the total real contact
area Areal = NatAat, with Nat being the number of involved
atoms. Due to atomic scale roughness in the amorphous tip
this real contact area may be significantly smaller than the
expected contact area of a smooth asperity, Aasp, which is
defined as the envelope over the contact points. Concluding,
Mo, Turner, and Szlufarska pointed out how important atomic
corrugations are for an accurate estimation of the real contact
area, and they underlined the need for accurate computational
approaches. Nevertheless, a few points remain to be analyzed
further. In a realistic, continuous potential it might be hard to
distinguish between long-range dispersion forces and chemical
forces, thus making it difficult to define the number of atoms
in contact. Furthermore, the inherent assumption that all
contributions from single atomic contacts Aat are of equal
size might not hold in systems with varying local load.

In the following, we will introduce an ab initio approach
to estimate the distance-dependent real contact area between
a tip and a surface. To prove the feasibility of our approach,
we choose a realistic and thus rather complex system, which
has previously been used to explain contrast inversion between
constant current scanning tunneling microscope and constant
frequency AFM images of graphene moiré on metals [17,18].
We employ van der Waals corrected density functional cal-
culations and use Bader partitioning of the electronic charge
density to identify accurate atomic volumes and surfaces in
different chemical surroundings.

II. COMPUTATIONAL METHODS

The simulation cell consists of four layers of a 9 × 9
iridium (111) substrate covered by a 10 × 10 graphene layer
forming a moiré structure with an average separation of 3.42 Å
and a corrugation of 0.35 Å. The lattice constants obtained
with the optB86b-vdW functional [19,20], aIr = 2.735 Å and
aGr = 2.465 Å, are close to the experimental values of 2.71
and 2.46 Å, respectively. The mismatch of the structure is very
small at 10aGr − 9aIr = 0.015 Å [18]. The tungsten AFM tip
was modeled as a ten-atom pyramid with one atom at the
apex, four in the next layer, and five at the top. The contact
site studied was an on-top position in a top-hcp region of
the moiré structure. This means that the tip apex atom is
positioned directly vertical over a carbon atom in a region

FIG. 1. (Color online) Side (a) and top (b) view of a tungsten tip
on graphene/Ir(111). Iridium atoms are shown in yellow, carbon in
brown, and tungsten in grey.

where each carbon atom is either directly over an iridium atom
or over an iridium hcp position. The simulation cell, containing
534 atoms, is shown in Fig. 1. Relaxations were allowed for the
graphene layer and the bottom five atoms of the tip, keeping the
iridium substrate and the top layer of the tip rigid at their initial
relaxed positions. Relaxations of the iridium substrate during
movement of the tip have been neglected due to the small
binding energy (∼80 meV per carbon atom) of the mainly
physisorbed graphene layer, which makes any effect of the
iridium substrate on the relaxations of the graphene unlikely.
The topmost layer of the tungsten pyramid, on the other hand,
needs to be held fixed to control the distance between the tip
and the graphene sheet.

All calculations were performed within density functional
theory (DFT) employing the Vienna Ab-Initio Simulation
Package VASP [21–24] using the projector augmented-wave
(PAW) method [25,26]. To include van der Waals (vdW)
forces, which are relevant in this system, the optB86b-vdW
functional was employed [19,20]. This vdW density functional
has been applied to a wide range of materials and proven to be
of good accuracy [27–33]. The Brillouin-zone sampling was
performed on a �-centered 3 × 3 × 1 k grid, with a smearing
of 0.1 eV using the method of Methfessel and Paxton to first
order [34]. To ensure good accuracy for the Bader-partitioning
scheme, the electronic charge density was calculated on a
dense mesh of 432 × 432 × 448 points in the simulation cell.
Electronic energies were converged to 10−6 eV and the ionic
relaxations were stopped after converging forces between the
interacting atoms to better than 0.01 eV/Å. Following the
investigation by Garhofer, who also provided us with initial
structural data [18], we chose a plane-wave cutoff of 300 eV,
which is the minimum recommended value for carbon, and at

195436-2



Ab INITIO CALCULATION OF THE REAL . . . PHYSICAL REVIEW B 91, 195436 (2015)

the same time larger than the suggested value for iridium and
tungsten.

To partition the electronic charge density ρ in our sim-
ulation cell into single atoms we use Bader’s quantum
theory of atoms in molecules (QTAIM) [35]. In contrast to
other similar approaches [36– 41], Bader’s method produces
nonoverlapping atomic domains with well-defined boundaries,
which are perfectly suited to analyze the contact between two
adjacent bodies. The necessary and sufficient condition that
needs to be fulfilled to define the boundaries of a selected
atom according to the QTAIM is formulated using the basic
quantity in DFT, namely the electronic charge density ρ and
is given as [42],

∇ρ(r) · n(r) = 0, ∀r ∈ S(r). (1)

Here S is the boundary surface of the atom and n(r) is the unit
vector normal to this surface. The condition states that the flux
of the gradient field of the charge density, ∇ρ, through the
boundary surface S must vanish, which is thus called a zero
flux surface. The Bader analysis in this work was performed
with the code developed by Henkelman, Sanville, and Tang
which is directly compatible with the format of VASP output
files [43–45].

III. RESULTS

If one seeks to define the real contact area on an atomic
scale, it is quite natural to think about the size, shape, and
deformations of the involved atoms. Once the size and shape of
all atoms in the contact region are determined, the calculation
of the real contact area is reduced to a simple summation of
the regions that are in contact, provided one can distinguish
unambiguously between the two contacting bodies. Since
ρ formally is nonzero everywhere, the Bader atoms at the
surfaces of the contacting bodies extend into the vacuum region
to infinity or until they encounter another atom. This would
mean that contact between two bodies is established at all
distances, which is a clearly unphysical result, unless one
defines a density cutoff. This density cutoff ρcut cannot be
chosen arbitrarily, since it directly influences the contact area.

A possibility to extract a value for ρcut is to analyze the
interaction potential between the tip and the surface, divide it
into a long- and a short-range part, and define the contact at the
onset of the short-range interaction, analogous to Mo, Turner,
and Szlufarska [10]. This procedure defines a density cutoff
ρcut so that the Bader partitioning yields contact only after
the onset of short-range interactions. However, as long-range
interactions are included implicitly in the exchange-correlation
potential that we use (see the Computational Methods section),
the separation into a long- and a short-range part is not
straightforward. A more unambiguous way to define the onset
of contact is to analyze the atomic relaxations that happen if the
tip is lowered towards the surface. We distinguish the distance
for the static, unrelaxed system (ds) and the relaxed distance
(dr ), which are both measured between the tip apex atom
and the carbon atom directly beneath it. For large distances no
relaxations will happen, although there might be attraction due
to vdW forces, and the distance dr in the relaxed system will be
equal to the (static) distance ds measured before relaxing the
system. At some point during the approach of the tip stronger

FIG. 2. Sketch of possible tip-surface interactions. If the tip is
far away from the surface (middle panel), atomic relaxations will not
have an effect on the distance between the tip and the surface. If the
tip gets closer, the surface will interact with the tip and will either
jump towards the tip, if the interaction is attractive (left panel), or will
get depressed, if the interaction is repulsive (right panel). This effect
can be used to define the onset of contact.

forces will cause relaxations, which will result either in a
“snap” or “jump” to contact (a phenomenon often observed
in AFM experiments) if the interaction is attractive, or in a
depression of the surface layer if the interaction is purely
repulsive. A sketch of this process is given in Fig. 2. In any case,
the dr vs ds curve will have a discontinuity at some distinct
distance where the system begins to strongly interact. Below
this distance the system will try to hold the ideal separation
between tip and surface. It is straightforward to identify this
discontinuity as the onset of contact.

In the examined system the interaction between the tip
and the surface is attractive at the onset of contact and a
jump to contact occurs between ds = 3.65 Å and ds = 3.53 Å
[see Fig. 3(a)], such that dr is changing from 3.5 to 2.7 Å,
accordingly. Most of the movement is done by the surface,
which jumps upwards to meet the tip [see Fig. 3(b)]. This
means that when the tip support is lowered by only 0.12 Å,
the distance between the tip apex and the surface is reduced
by 0.8 Å. This allows us to define the onset of contact at
ds � 3.6 Å and to tune the value of the density cutoff ρcut

accordingly. Note that an infinitely stiff cantilever is assumed
in our calculations, as the uppermost atoms of our tip are kept
rigid. In principle, the influence of a more compliant AFM
apparatus on the initial jump to contact, however, could also
be modeled by using a multiscale approach.

Once ρcut is selected the determination of the real contact
area for each distance is straightforward. Since the partitioning
code produces only Bader volumes rather than zero flux
surfaces, we have to construct the contact area from these data.
To this end the Bader volumes of both contacting bodies are
added up and by pairwise comparison of the respective values
for neighboring grid points a point cloud forming the contact
area is generated. The contact area can now be obtained by
triangulation.

We calculated contact areas for cutoff densities from
10−3e/Å3, which is the default cutoff in the partitioning code
by Henkelman, Sanville, and Tang [43–45], up to a cutoff of
10−1e/Å3. While the default value of ρcut = 10−3e /Å3 and
other low cutoff densities are giving sizable contact areas for
all distances, we approach the desired effect of establishing
contact only for ds < 3.6 Å, for a value of ρcut ∼ 10−2e /Å3.
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FIG. 3. (Color online) (a) Distance dr in the relaxed system
(red crosses) vs the (static) distance ds between a rigid tungsten
tip approaching graphene/Ir(111). The dashed line gives dr = ds .
Attractive interactions cause a jump to contact between ds = 3.65 Å
and ds = 3.53 Å, which is marked with a vertical dotted line. After
the jump to contact the relation between dr and ds is also linear (solid
black line). This line crosses the dr = ds line at the equilibrium point,
where the graphene layer has relaxed back into its original shape. A
hypothetical curve for a purely repulsive interaction is sketched by
the dashed-dotted line to illustrate that the method is also viable if
no jump to contact is occurring in the system. (b) Displacement DC

of the carbon atom situated directly below the tip apex with respect
to its initial position vs the distance ds . The jump to contact is again
marked by a vertical dotted line.

Obviously, a very high ρcut is unphysical, as the number of
electrons that are “lost” into the vacuum region increases with
rising cutoff. This means that we want to select a value that
is high enough to guarantee that the contact area A is only
nonzero after the snap to contact has occurred, but is otherwise
as low as possible. We analyzed several values of ρcut ranging
from 7.5 × 10−2e/Å3 to 1.0 × 10−2e/Å3 in order to find the
lowest value that still satisfies these conditions, resulting in an
optimal value of ρcut = 5 × 10−2 electrons per Å3.

Of course, changing the contact site of the tip away from
a position directly above a carbon atom or to another section
of the moiré structure could conceivably change the exact
point of the jump to contact and thus modify the value of
ρcut. However, the obtained cutoff density of ρcut = 5 × 10−2

is low enough to result in an essentially flat graphene surface

and hence changing the tip position should only marginally
alter the computed contact area. As this paper is mainly
concerned with the presentation of an approach in defining and
calculating the real contact area ab initio, and given the rather
large computational effort [46], we decided against repeating
our calculations on different contact sites and calculating an
average.

In a preliminary calculation of the same tip on an fcc copper
(111) surface we found an optimal charge density cutoff value
of 5.3 × 10−2 electrons per Å3, which is approximately the
same as for the graphene/Ir(111) system.

As the optimized cutoff of 5 × 10−2e/Å3 is 50 times larger
than the default value it is important to check if it is still a
reasonable number and does not give any unphysical results.
We therefore calculated the nominal number of electrons that
are assigned to the vacuum region and thus are not part of any
Bader atom. For the default ρcut of 1 × 10−3e/Å3 only about
half of an electron is not represented by a Bader atom. For
the cutoff value needed for the calculation of the contact area,
5 × 10−2e/Å3, this number is increased to nearly 30 electrons.
Although this value seems to be very large, one has to consider
the total system size, which includes 3776 electrons. Thus, the
relative number of “missing” electrons is below 0.8%. We
also evaluated the Bader radii RB of a single tungsten atom
and a single carbon atom in a box. The value for tungsten of
2.9 Å obtained for ρcut = 5 × 10−2e/ Å3 is more than twice
as large as the empirical atomic radius, 1.35 Å [47], and about
1 Å larger than the calculated atomic radius of 1.93 Å [48].
Reported values for the atomic radius of carbon reach from
the calculated value of 0.67 Å [48] over the empirical value
of 0.70 Å [47] to a van der Waals radius of 1.70 Å [49]. As
for tungsten, also the carbon Bader-atom radius for a cutoff
density of 5 × 10−2e/ Å3 is significantly larger than all these
reported values at 2.30 Å. This ensures that neither the tip
atoms nor the surface Bader atoms are artificially small. It also
shows that it is questionable to assume that contact between
two bodies is established only after the surface atoms overlap
if one uses spherical atoms and traditional radii.

It is worthwhile to compare our approach to the onset of
contact with the method by Mo, Turner, and Szlufarska [10],
which uses the beginning of short-range interaction as a crite-
rion for contact. As already mentioned, the distinction between
long-range and short-range forces is not trivial, but it might
be approximated by disabling the long-range contributions
in the correlation potential of the optB86b-vdW functional.
We calculated the corresponding energies at the vdW relaxed
positions and fitted the data with a Morse function [50]. The
interaction strength of this short-range potential at the jump
to contact is 2.0% of the total potential depth which could be
classified as the “beginning of the interaction.” This means
that our approach, at least for the system investigated here,
is in accordance with the approach of Ref. [10]. However,
an interaction strength of 1%, 5%, or even 10% of the
short-range binding energy could also be reasonably selected
as the beginning of the interaction, each leading to different
results. This highlights the advantages of using the jump to
contact as the criterion for the initial point of contact, as no
further assumptions are needed proceeding in this manner.

Figure 4 shows a decomposition of the contact area into
contributions of the tip apex (one atom) and contributions
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FIG. 4. (Color online) Ab initio real contact area A obtained
for ρcut = 5 × 10−2e/Å3 vs the distance dr in the relaxed system
between the tungsten tip and graphene/Ir(111). Blue crosses give the
contribution of the tip from the apex atom and green plus signs show
the contribution from the second layer (four atoms). The total contact
area (red circles) is given by the sum of these two contributions and
is fitted by an exponential (dashed line). The inset shows the total
contact area vs the static distance ds . The solid line is an exponential
function resulting from Eq. (2) and the linear relation between dr and
ds [see Fig. 3(a)]. The dotted vertical line marks the jump to contact.

from the second tip layer (four atoms). We find that the second
layer only contributes to the total contact area for the three
closest distances but is then responsible for nearly all of the
increase. The dashed line in Fig. 4 is an exponential fit of the
form

A(dr ) = A�e−λr (dr−�r ), (2)

to the seven nonzero data points (red circles) with the

coefficients λr � 4.2 Å
−1

and �r � 3.0 Å. The factor A� =
1 Å2 is included for dimensional reasons and has not been
used as a fitting parameter. Although the exponential fit is not
perfect, the agreement with the data is certainly reasonable,
especially considering that only two fitting parameters were
used. Also the point of vanishing contact is predicted well,
although only points of positive contact area were considered
for the fit. As there is a linear relation between dr and ds

in the region where contact is established [dr = κds + δ =
0.23ds + 1.84; see solid black line in Fig. 3(a)], it is also
possible to express the contact area A through the static
distance ds , which is more easily accessible in experiments
through the vertical displacement of the tip support. In the
relation A(ds) = A� exp [−λs (ds − �s)], the decay constant

is smaller than in A(dr ) with λs = λrκ � 1.0 Å
−1

, while
�s = (�r − δ)/κ � 5.0 Å is increased compared to �r , and
A� = 1 Å2 is the same dimensionality factor as before. This
relation is plotted in the inset of Fig. 4. Quite naturally only
the region after the jump to contact is represented well.

Figure 5 shows the geometrical shape of the nonvanishing
real contact area for four distances. The different colors
denote different depths, ranging from ∼0.3 Å in Fig. 5(a) to

∼1.4 Å in Fig. 5(b). Initially, for larger distances, the shape
is rather flat and is dominated by the threefold symmetry of
the graphene layer [Figs. 5(a) and 5(b)]. As the graphene layer
gets depressed towards the iridium substrate, the contact area is
beginning to show a pronounced bowl shape [Fig. 5(c)], which
increases in depth for decreased distance [Fig. 5(d)]. Note that
for the closest distance [Fig. 5(d), ds = 1.30 Å] not only is the
threefold symmetry of the graphene layer visible in the center,
but the edges of the bowl have the fourfold symmetry of the
second tip layer.

We can also analyze how many carbon atoms are in contact
with the tip for each distance and compare the contact area
predicted by our approach with the results by Mo, Turner, and
Szlufarska [10]. To this end we count every surface Bader
atom that touches our tip as contacting, a different approach
than described in the Introduction, since we have no pairwise
forces at our disposal. In our case, with a cross section of
the simulation cell AC ∼ 262 Å2, and 200 carbon atoms in
the graphene layer, the contribution per atom to the real
contact area is Aat = AC/200 = 1.31 Å2. Each carbon atom
has three nearest neighbors in dnn = 1.42 Å, six next-nearest
neighbors at 2.46 Å, three third-nearest neighbors at 2.84 Å,
and six fourth-nearest neighbors at 3.76 Å distance. Already
directly after the jump to contact at ds = 3.53 Å, more than
one carbon atom is in contact with the tip, although the
majority of the contact is formed by the central carbon atom
which is responsible for 5.90 Å2 of the total 6.82 Å2. This is
about 30% more than the contact area predicted in Ref. [10],
with 4Aat = 5.25 Å2. The area contributed by the central
carbon atom alone exceeds the value of 4Aat by ∼12%. The
next-nearest and third-nearest neighbors begin to play a role
at ds = 2.18 Å, contributing to about 7% of the total area of
16.89 Å2. Here the method by Mo, Turner, and Szlufarska
gives a very comparable area of 13Aat = 17.05 Å2. However,
the nine outermost atoms that contribute 7% to the contact area
in our approach are responsible for nearly 70% of the contact
area in Ref. [10] considering all contacting atoms equally.
The situation at ds = 1.85 Å is visualized in Fig. 6, with the
method of Ref. [10] still giving an area of 13Aat = 17.05 Å2,
while our approach yields 21.13 Å2. Only for the two closest
positions at ds = 1.51 Å and ds = 1.30 Å more than 13 atoms
are in contact, according to the Bader partitioning, and the
central 13 are still responsible for 98% and 87% of the contact
area, respectively. Including the six fourth-nearest neighbors
into the model by Mo, Turner, and Szlufarska [10] leads
to 19Aat = 24.92 Å2 for both of this distances, while our
approach gives A(1.51) = 28.89 Å2 and A(1.30) = 35.03 Å2.
Thus, the results are comparable, but the outermost atoms are
again over-represented compared to our approach. Our model
offers higher resolution of the real contact area and allows for
a distance dependent contribution of each atom. It is important
to note that our contact areas are curved and have a more or
less pronounced bowl shape while Mo, Turner, and Szlufarska
consider flat contact areas (see Fig. 6). Overall both methods
show fair agreement.

Our chosen system, which has been proven to accurately
model the interaction between a tungsten tip and moiré
graphene on Ir(111) [17], limits our investigation to the attrac-
tive region (dr � 2.24 Å) and small positive loads (2.18 Å �
dr < 2.24 Å). For dr < 2.18 Å, the tip forms bonds with the
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FIG. 5. (Color online) Contact formed by lowering a tungsten tip onto a graphene/Ir(111) surface. The contact area increases from (a)
6.8 Å2, over (b) 9.1 Å2, and (c) 21.13 Å2, to (d) 35.0 Å2. Different depths of the curved contact areas are coded by color contours with the
lowest value set to zero. Please note the different color bars and axes scaling in each panel.

iridium substrate leading again to negative values of the load.
Thus, it is difficult to predict the behavior of the real contact
area A dependent on the load L. However, we can assume
that the interaction potential E(dr ) can be approximated by a
Morse potential in the vicinity of the minimum [50],

EM(dr ) = E0{[1 − e−γ (dr−d0)]2 − 1}, (3)

FIG. 6. (Color online) Top view (left) and side view (right) of the
real contact area resulting from our ab initio approach using Bader
atoms (color code depending on height) for a distance of ds = 1.85 Å
[see Fig. 5(c)], compared to the flat contact area from the model by
Mo, Turner, and Szlufarska (green) [10]. Carbon and tungsten atoms
are sketched as red and black dots, respectively.

where E0 = 2.33 eV is the depth of the potential at the
equilibrium position d0 = 2.24 Å, which we can get directly
from our data. Thus only γ has to be fitted, resulting in

γ = 4.11 Å
−1

. We can now derive the load L = −∂EM/∂dr

yielding

L(dr ) = −2γE0[1 − e−γ (dr−d0)]e−γ (dr−d0). (4)

Solving this for dr produces

dr = d0 − 1

γ
ln ξ (L), (5)

where the dimensionless function ξ (L) is

ξ (L) = 1 ± √
1 − 4u

2
, with u = L

2γE0
. (6)

Now it is possible to express the real contact area dependent
on load using Eqs. (2) and (5), which provides a power law,

A(L) = A0e
−λr (d0−�r ) [ξ (L)]λr/γ . (7)

As γ = 4.11 Å
−1

and λr = 4.19 Å
−1

the exponent is very close
to 1, thus we arrive at a linear dependence of A on ξ (L), namely
A(L) = Cξ (L) with C = 24.15 Å2, which corresponds to an
increase of A with L to the power of 1

2 .
While we believe that our ab initio approach using the

QTAIM for calculating the real contact area is intuitive and
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accurate, its limitations have to be discussed as well. As the
charge density is required to perform the Bader partitioning our
approach is limited to system sizes where ab initio calculations
are still feasible. This limits us to a single asperity case at
the moment, where only a handful of atoms interact with the
surface. However, since our system was used to explain some
experimental results [17,18], we are confident that our scheme
is applicable to real systems, albeit only for sharp tips and low
loads. With the ever increasing power of modern computers
and better scaling codes, on the other hand, it might soon
be feasible to calculate systems with thousands or millions
of atoms and hence to study interesting phenomena such as
multiasperity contacts. Thus, our approach might be used in
MD calculations as well to directly investigate the influence
of the real contact area on frictional forces [51].

IV. CONCLUSION

We propose a new ab initio approach for calculating the
real contact area between a tip and a surface. We apply Bader’s
quantum theory of atoms in molecules (QTAIM) to determine
the volumes and shapes of the atoms in contact together with
their contact areas at each given distance. We define a specific
density cutoff ρcut for this partitioning to confine the Bader
volumes to realistic values. This cutoff density is obtained by
using the discontinuity in the dr vs ds curve to define the initial
point of contact in a perspicuous way, which in the examined
system occurs due to a jump to contact, commonly observed in
AFM experiments. This defines a lower bound for the cutoff
density which is then the optimal value, since ρcut needs to
be minimized to include the maximum number of electrons.
Thus, our approach remains essentially ab initio, as the only
parameter needed can be determined from properties of the

system. We believe that the jump to contact is a less ambiguous
way to define the onset of contact than using a partitioning
of the interaction in long- and short-range regions [10], or
equating contact with repulsive interactions [11,14].

For decreasing the real tip-sample distance dr an expo-
nential increase of the real contact area A is found. This is
a combined effect of the jump to contact and the preferred
distance of the tip apex relative to the surface atom below it,
which first jumps up to meet the tip and then gets pressed
below its equilibrium position for closer separations. As ds is
linear dependent on dr , we can also express the exponential
relation A(dr ) through ds , which can be better controlled in
experiments than dr .
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