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Phonon-assisted tunneling of electrons in a quantum well/quantum dot injection structure
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We study theoretically phonon-assisted relaxation and tunneling in a system composed of a quantum dot which
is coupled to a quantum well. Within the k · p method combined with the Löwdin elimination, we calculate the
electron states. We calculate acoustic phonon-assisted relaxation rates between the states in the quantum well and
in the quantum dot and study the resulting electron kinetics. We show that transition efficiency crucially depends
on the system geometry. We show also that under some conditions, transition efficiency can decrease with the
temperature.
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I. INTRODUCTION

Quantum dots (QDs) have been proposed for realization of
various optical devices. In particular, QD lasers exhibit many
advantages such as low threshold current [1–4], wide spectral
tunability [5,6], or high-temperature insensitivity [4,5,7–10].
However, a problem related to the concept of a QD laser
is low carrier density inside the dot, which leads to low
efficiency [11]. In order to avoid this problem, tunnel injection
structures have been developed [12]. Due to high density of
states, quantum wells (QWs) are good reservoirs providing car-
rier supplies for QDs. In a properly designed coupled QW-QD
system, carriers can be injected with high speed [11], which
considerably increases the optical efficiency. Carrier spectra
as well as tunnel coupling have been widely investigated in
double quantum dot systems [13–18]. However, the energy
structure in QW-QD system differs significantly from that case,
due to the existence of the quasicontinuum of states in the QW.
Recently, carrier states in such structures have been calculated
within eight-band k · p model on a three-dimensional (3D)
mesh under periodic boundary condition [19].

The carrier kinetics in the QW-QD systems is also strongly
affected by phonon-assisted processes which appear in a
crystal environment. Carrier-phonon interaction leads to
relaxation between states, which can involve carrier transfer
(phonon-assisted tunneling) between the two structures, that
is, carrier capture to the QD. The essential role of phonons
in the QW-QD injection process is confirmed by experiments
[19–24], which indicate that the magnitude of the relaxation
rate highly increases when the energy difference between the
states of the QD and the QW becomes comparable with the
energy of longitudinal optical (LO) phonons. Theoretically,
carrier capture between structures of different dimensionality
was studied for various systems and on different levels
(Fermi golden rule [25], Boltzmann kinetics [26], Green
function formalism [27], and full quantum kinetics [28–30])
involving LO phonons [25,26,31] (also including two-phonon
effects [31,32]) and Coulomb dynamics [26]. The capture pro-
cess involving tunneling between a QW and a QD was analyzed
within a model including LO phonons and Auger effects, based
on a relatively simple model of wave functions [33,34]. On the
other hand, it was shown that the exact shape of wave functions
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may be important for the correct calculation of the capture
rates [35]. The carrier dynamics in tunnel injection structures
is often limited by the transitions in a conduction band hence
it is the conduction band dynamics that attracts much attention
both in the theory and in interpreting experiments [23,34].
Efficient hole transfer, in spite of its stronger localization, can
be attributed to a great number of valence band states in QD
which can provide efficient channels of hole injection [22].

In this work, we study theoretically phonon-assisted tun-
neling of electrons between a QW and a QD. In order to
provide reliable carrier wave functions, which is essential
for the study of phonon-assisted tunneling kinetics, and to
include the effects of strain in the inhomogeneous system,
we base our discussion on wave functions obtained by the
k · p method. The carrier kinetics in the system of coupled
nanostructures of different dimensionality, induced by the elec-
tron coupling to acoustic phonons, is described by equations
derived within the correlation expansion framework, which
allows us to take into account the quasiequilibrium carrier
distribution in the QW and the Pauli blocking effects on the QD
state.

The paper is organized as follows. In Sec. II, we present
the model. In Sec. III, we discuss the results of the obtained
electron states and carrier kinetics. Finally, concluding remarks
and discussion are contained in Sec. IV.

II. MODEL

We investigate a vertically stacked system composed of a
QW and a QD. The schematic picture of the system under
consideration is shown in Fig. 1. We assume homogeneous
alloying In0.65Ga0.35As inside the dot, In0.2Ga0.8As in the QW,
and In0.41Ga0.59As in the WL. The QW-layer thickness is
set to HW = 20 nm, the WL to HWL = 0.6 nm, and the QD
height to HD = 4 nm and radius r = 10 nm (see Fig. 1 for
the definition of the geometrical parameters). We assume also
an axial symmetry of the system and perform the calculations
in cylindrical coordinates (ρ,φ,z). Numerical computations
are performed in a cylinder with the radius Rc = 300 nm
and height Hc = 80 nm. The results have been verified for
convergence with respect to the radius Rc.

The system is strained due to the lattice mismatch between
InAs and GaAs. In order to calculate the elements of the strain
tensor ε̂, we minimized the elastic energy of the system [36,37]
in the continuous elasticity approach. Because of the axial
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FIG. 1. (Color online) The schematic cross section of the system.

symmetry of the system, the wave functions can be represented
in the form

ψn(ρ,z,φ) = 1√
2π

ϕn(ρ,z)eiMφ,

where M is the axial projection of the envelope angular
momentum. The local band structure is derived from the
eight-band Hamiltonian with strain-induced terms (Bir-Pikus
Hamiltonian) using the Löwdin elimination [38,39]. As a
result, we obtain the effective Hamiltonian in the form

Hc = − 1

ρ

∂

∂ρ
ρ

�
2

2m⊥(ρ,z)

∂

∂ρ
− ∂

∂z

�
2

2mz(ρ,z)

∂

∂z

+ �
2M2

2m⊥(ρ,z)ρ2
+ Ec(ρ,z), (1)

with the conduction band edge

Ec(ρ,z) = Ec0 + acTr{ε̂},
where Ec0 is the unstrained bulk conduction band edge. The
in-plane component of the effective mass tensor takes the form

m−1
⊥ (ρ,z) = m−1

0

(
1 + EP

2Ehh
+ EP

6Elh
+ EP

3Eso

)

and the z component of the effective mass is

m−1
z (ρ,z) = m−1

0

(
1 + 2EP

3Elh
+ EP

3Eso

)
,

where EP is given by 2m0P
2/�

2 (where P is a parameter
proportional to the interband matrix transition element), Eg

is the energy gap, and energy differences dependent on the
position are defined as

Ehh = Eg + (ac − av)Tr{ε̂} + bv[εzz − 0.5(ερρ + εφφ)],

Elh = Eg + (ac − av)Tr{ε̂} − bv[εzz − 0.5(ερρ + εφφ)],

Eso = Eg + (ac − av)Tr{ε̂} + 	,

	 is the spin-orbit split-off element, ac,av,bv are the conduc-
tion and valence band deformation potentials. The occupations
of the electron states in the QW are given by the Fermi-Dirac
distribution with the chemical potential μ, which is related
to the surface density of the electrons. For a given chemical
potential we calculate the concentration of electrons ne as a
sum over all the occupations in the QW divided by the cylinder
base surface (πR2

c ). The values of material parameters are the

same as in Ref. [18] (following Refs. [40,41]) except for Ep

which are 28.0 eV for GaAs and 22.2 eV for InAs.
The Hamiltonian of the system interacting with acoustic

phonons is [42]

H =
∑

n

εna
†
nan +

∑
kλ

�ωkλb
†
kλbkλ

+
∑

n,m,kλ

Fnmλ(k)(bkλ + b
†
−kλ)a†

nam,

where εn denotes the energy of the nth state, a
†
nλ,anλ are the

creation and annihilation operators for the electron nth state,
respectively, b†kλ,bkλ are operators of creation and annihilation
of a phonon with the wave vector k and phonon branch λ.
Fnmλ(k) = F ∗

nmλ(−k) is the electron-phonon coupling con-
stant [42,43]

Fnmλ(k) =
∑

α

Fnm(k)v(α)
k,λ,

where α = DP, PE denote the deformation potential and
piezoelectric coupling channel. A form factor depending on
the wave-function geometry is

Fnm(k) =
∫ ∞

−∞
d3r ψ∗

n (r)eikrψm(r)

and v
(α)
k,λ is a material factor

v
(DP)
k =

√
�k

2
V cl

ac,

v
(PE)
k,λ = − i

√
�

2
V cλk

dpe

ε0εr

Mλ(k),

where Mλ(k) is a geometrical factor, V is volume of the system,

 is a crystal density, dp is a piezoelectric constant, e is an
electron charge, cλ is speed of sound, λ = s,t1,t2 denotes lon-
gitudinal and two transversal phonon branches, respectively.
The geometrical factor for the zinc-blende structure is

Mλ(k) = 2[k̂x(êλ,k)y k̂z + k̂y(êλ,k)zk̂x + k̂z(êλ,k)x k̂y],

where k̂ = k/k and êλ,k is unit polarization vector of a phonon
from the branch λ and with the wave vector k. The geometrical
factor does not depend on the length of k, but only on its
direction, so Mλ(k) = Mλ(θ,φ) where

êl,k ≡ k̂ = (sin θ cos φ, sin θ sin φ, cos θ ) ,

êt1,k = (− sin φ, cos φ,0) ,

êt2,k = (cos θ cos φ, cos θ sin φ,− sin θ ) .

We find the kinetics of the electrons by solving the
Heisenberg equation of motion

d

dt
〈a†

i ai〉 = i

�
〈[H,a

†
i ai]〉,

where 〈a†
i ai〉 ≡ fi is the average occupation of the ith state.

We perform calculations following the correlation expansion
(CE) approach. The detailed derivation is given in Appendix B.
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As a result, we obtain

ḟi =
∑

j,εj >εi

γij {fj [nB(ωji) + 1] − finB(ωji) − fifj }

+
∑

j,εj <εi

γij {fjnB(ωij ) − fi[nB(ωij ) + 1] + fifj },

(2)

where ωij = (εi − εj )/� and γij is phonon-assisted relaxation
rate given by

γij = 2πJij (ωji),

where Jij (ωji) is a phonon spectral density

Jij (ωji) = 1

�2

∑
kλ

|Fijλ(k)|2[δ(ωji − ωkλ) + δ(ωji + ωkλ)],

and nB is the Bose distribution. We took into account coupling
to phonons by deformation potential (DP) as well as by
piezoelectric field (PE). In order to account how fast charge is
flowing into the dot from the QW, we introduce the capture rate
as γ0 = ∑

i γ0ifi[nB(ωi0) + 1] where we add all relaxation
rates from the states in the QW to the ground state (localized in
the QD). This procedure describes phonon-assisted relaxation
properly if the state in the QD state is completely unoccupied.
Otherwise, the Pauli blockade reduces the charge transfer.
In consequence, in order to study the time evolution of the
occupations, we numerically solve Eq. (2).

The average number of electrons in the QD was found
by 〈Nqd〉 = ∑

i fiηi , where ηi is the probability of finding
electron in the ith state in the upper half of the system. The
details related with calculations are given in Appendix B.

III. RESULTS

We calculated single-electron states in the considered
structure. First, we investigated the influence of strain on
electron states. We compared the probability density for the
two lowest electron states in a hypothetical structure without
strain [Figs. 2(a) and 2(b)] and in a real strained structure
[Figs. 2(c) and 2(d)]. In the former case, in order to have
similar energy structure as the realistic one, we took a bulk
effective mass and we adjusted the conduction band edges
to fixed values, constant within each structure (QD, QW,
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FIG. 2. (Color online) The probability density for the ground
state and the first excited state (the lowest state in the QW) in the
case of neglected strain field (a), (b) and in the presence of strain field
(c), (d).
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FIG. 3. (Color online) The energies of two lowest states in the
system as a function of the distance between the dot and the well.

barrier). Ground states in both cases are localized in the QD
and their character is the same. As shown in the Fig. 2(b),
if the strain field is disabled, the probability density of the
lowest state in the QW (which has M = 0) has a maximum
at ρ = 0. In the presence of strain [Fig. 2(d)], the character
of this state is different and the density forms a ring. This
effect is caused by a repulsive potential generated by the strain
field from the QD. However, for higher states in the QW (not
shown here) this effect vanishes and for the fourth (M = 0)
state is no longer clearly visible. The detailed discussion
of strain-induced potential generated by the QD is given in
Appendix A. Aside from the strain field, carriers could also
be affected by a piezoelectric field (and other atomic effects)
which lowers the symmetry of the system to C2v and creates
two confinement centers in the QW [44].

Figure 3 presents the dependence of the two lowest electron
energy levels on the distance D. The ground state is (mainly)
localized in the dot and the first excited state is localized in
the well. For a small distance, there is a strong tunnel coupling
which leads to the large splitting between the energy of states
in the QD and in the QW.

Next, we investigated the dependence of the capture rate
γ0 on the distance D. The results are shown in Fig. 4(a). The
dependence is nonmonotonic. On the one hand, for closely
spaced structures the wave-function overlap between the state
localized in the QD and those from the QW is large, which
is required for an efficient phonon-assisted relaxation process.
On the other hand, strong coupling leads to the large energy
splitting, while the phonon spectral density at high frequencies
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FIG. 4. (Color online) (a) The capture rate at T = 0 K and μ =
15 meV (ne = 1.5 × 1011 cm−2) as a function of the distance between
the dot and the well (red solid line) and the contributions to the
capture rate due to the DP coupling (green dashed line) and due to
the PE coupling (blue dotted line). (b) Temperature dependence of
the phonon-assisted relaxation rate at D = 6 nm as a function of the
temperature.
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FIG. 5. (Color online) (a) The time evolution of the average
number of electrons in the QD at D = 6 nm and μ = 10 meV.
(b) The time evolution of the lowest QW state occupation.

is low [45,46]. Therefore, the efficiency of relaxation drops
down. At large distances, the wave functions for the initial
and final states have very small overlap, hence relaxation is
also suppressed. The contribution to the capture rate due to
the DP coupling is much larger than the one resulting from
the PE coupling. The first one has a maximum near D =
5.2 nm, whereas the second one at about 6.6 nm. Similarly as
in the double quantum dot case, this shift is related to different
spectral densities of the DP and PE reservoirs [37,46]. The PE
channel is more efficient at lower frequencies, that is, smaller
energy differences between the two states, which corresponds
to larger separation between the dots.

We studied also the temperature dependence of the capture
rate. In Fig. 4(b), the temperature dependencies for several
values of the chemical potential (corresponding to ne = 1.9 ×
1010 to 1.5 × 1011 cm−2) are shown. The observed dependence
is linear at high temperatures because, in this case, the leading
term of the Bose distribution and Fermi-Dirac distribution
is linear (∼kT ). The nonzero temperature on the one hand
strongly increases the phonon spectral density but also reduces
the occupations of electron states below the chemical potential
(note that the lowest states in the QW give the predominant
contribution in the relaxation process). The latter effect is
particularly important at small values of the chemical potential,
as shown in Fig. 4(b): for μ = 2 meV (ne = 1.9 × 1010 cm−2)
the relaxation rate decreases with the temperature (for small
values of temperature).

We solved Eq. (2) numerically and obtained the electron
kinetics. In Fig. 5(a), the time evolution of the average number
of electrons in the QD, 〈Nqd〉, is shown at D = 6 nm and
μ = 10 meV (ne = 1.0 × 1011 cm−2). As the initial condition,
we assume the zero occupation of the ground state (mainly
localized in the dot) and Fermi-Dirac distribution in the
well. Because of coupling between the dot and the well, the
QW states are also partly localized in the dot and at t = 0,
the occupation of the QD is about 5%. During the time
evolution, electrons from the well tunnel into the dot. The
time dependence of Nqd is nearly exponential with the initial
slope similar to γ0 (but slightly reduced due to the initial
occupation). In our simulation, we consider only one spin
orientation, hence, the occupation of any orbital state cannot
exceed 1, which is assured by the Pauli blocking terms in
our kinetic equation. Although there is only one QD state in
the energy range accessible for electrons at the temperatures
considered here, the occupation of the QD (understood as a
relevant volume in space) can slightly exceed 1 due to the tails
of the occupied quantum well states that enter the QD region

(see, e.g., the green line, T = 20 K, in Fig. 5(a)). Increasing
the temperature, on the one hand enhances tunneling to the
dot, but also enhances the opposite effect (electrons can jump
from the dot to the well). At high temperatures, the occupation
of the dot is reduced because of the thermal redistribution of
occupations from the QD to the QW and also due to decreased
occupation of the lowest QW states. Figure 5(b) shows the
occupation of the lowest state in the QW. At T = 0, the
initial occupation is 1, at the beginning of the evolution its
value is decreasing because of phonon-assisted tunneling to
the dot. However, this effect is small and does not destroy the
exponential character of Nqd evolution. At later times, higher
states from the well also relax and full occupation is restored.
In the case of nonzero temperature, the initial occupation is
lowered and electron can be excited to the higher state in
the QW. In consequence, the initial occupation is no longer
recovered. We note also that other relaxation channels (LO
phonon coupling or Coulomb scattering) might lead to faster
relaxation inside the well [33,34].

IV. CONCLUSIONS

We calculated the electron states in the system of a QD
coupled with a QW. We have shown that a strain-dependent
repulsive potential repels states in the QW from the dot axis.
We investigated the phonon-assisted tunneling and relaxation.
We obtained nonmonotonic dependence of the relaxation rate
on the distance between the QW and the QD. We studied the
temperature dependence of the phonon transitions and we have
shown that the value of the capture rate can decrease with
temperature. Furthermore, we also investigated the electron
kinetics. We obtained the exponential evolution of the average
number of electrons in the dot. We also found a nonexponential
evolution of the state occupations in the well.
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APPENDIX A: STRAIN-INDUCED POTENTIAL
IN A QUANTUM WELL

In general, the character of the strain-dependent potential
which is generated by the QD in the QW region is related
to the ratio between the tensile and compressive strains [44].
If a tensile strain dominates (ερρ + εφφ > εzz), the potential
is attractive [44]. The attractive harmoniclike potential in a
QW was observed experimentally [47,48] and explained in
theoretical works [44,49]. However, in the case of a QD
considered here (which is close to the “buried dot” case in
Ref. [44]), compressive strain in the growth direction (related
to εzz) dominates over that related to dilation and the resulting
potential on the top of the QW is repulsive.

In order to reproduce the situation of attractive potential
we performed additional simulations. We calculated acTr{ε̂},
where ε̂ is the strain tensor in the QD-QW system. In the case
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FIG. 6. (Color online) The strain-induced potential inside the
QW in the QW-QD system for (a) a QD deeply buried in the GaAs, (b)
a QD covered only up to its top, (c) a QD on the surface (uncovered).
In sets in bottom left corners are schematic cross sections of the
system.

of surface QD, the strain field is relaxed due to expansion of
the dot to the top. To model this situation, we introduced a
hypothetical very soft material (apart from GaAs and InGaAs)
the elastic constants of which (C11,C12,C44) are 1000 times
smaller than those for GaAs and the lattice constant is set to be
equal to the GaAs one. Then, the elastic energy of the system
is minimized.

We performed the simulation for the geometry and material
parameters shown in Sec. II and took the distance D = 3 nm.
Calculations in this section have been performed on the
Cartesian mesh. The strain-induced potential in the QW (below
the QD) for the usual situation (that is, a “buried” dot) has
been shown in the Fig. 6(a). Because the compressive strain
dominates, the potential is mainly repulsive (with attraction
in the middle of the QW). Figure 6(b) corresponds to the
situation where the QD is buried in a shallow barrier (as
shown in the scheme in the corner, GaAs is deposited up
to the top of the QD). In that case, the compressive strain in
the z direction is reduced compared to the previous situation.
In consequence, tensile strain is dominating and the potential
becomes attractive. The last situation [Fig. 6(c)] corresponds
to the QD on the surface. In this case, the compressive strain
is highly reduced and the attractive potential generated in the
QW becomes strong.

APPENDIX B: CALCULATION DETAILS

In order to model the evolution of the electron occupations
fi(t), we perform calculation within the CE approach. From

the Heisenberg equation for 〈a†
i aj 〉 we obtain

−i�
d

dt
〈a†

i aj 〉 =(εi − εj )〈a†
i aj 〉

+
∑
n,kλ

Fniλ(k)(〈a†
najbkλ〉 + 〈a†

najb
†
−kλ〉)

−
∑
n,kλ

F ∗
njλ(k)(〈a†

naibkλ〉∗ + 〈a†
naib

†
−kλ〉∗).

In a similar way, we calculate 〈a†
naibkλ〉. Here, we assume

fast relaxation of the reservoir which allows us to approximate
〈a†

i aj b
†
k′λbk′λ〉 ≈ 〈a†

i aj 〉〈b†k′λbk′λ〉. Furthermore, we neglected

two-phonon processes 〈b†k′λb
†
k′λ〉 = 〈bk′λbk′λ〉 = 0. After all

these simplifications, we obtain

−i�
d

dt
〈a†

najbkλ〉 = (εn − εj − �ωk)〈a†
najbkλ〉

+
∑
n′

Fn′nλ(−k)〈a†
n′aj 〉nB(ωk)

−
∑
n′

Fjn′λ(−k)〈a†
nan′ 〉[nB(ωk) + 1]

+
∑
n′m

Fn′mλ(−k)〈a†
na

†
n′ajam〉,

where we took 〈b†k′λbkλ〉 = nB(ωk)δk′k. The electron correla-
tions are accounted for within the Hartree-Fock approximation
〈a†

i a
†
najam〉 ≈ 〈a†

i am〉〈a†
naj 〉 − 〈a†

i aj 〉〈a†
nam〉. This yields a

closed set of equations for 〈a†
i aj 〉 and 〈a†

i aj bk〉. The latter
is then formally integrated and substituted to the former.
Since we describe real transitions which, in our case, are
much slower than characteristic times of the memory of
phonon-reservoir (tens of ps versus several ps) we perform the
Markov approximation. This approach would be insufficient
if dephasing of coherences was of interest [50], in particular if
evolution in real space was to be traced [30]. These limitations
of the Markov approximation can be overcome either by an
extended version of the approach presented here [30] or by
more exact methods [50,51] which may, however, be limited by
the complexity (large number of states) of the present system.
Upon performing the Markov and secular approximations, we
obtain

ḟi =
∑

j,εj >εi

γij {fj [nB(ωji) + 1] − finB(ωji) − fifj }

+
∑

j,εj <εi

γij {fjnB(ωij ) − fi[nB(ωij ) + 1] + fifj }.

(B1)

This set of differential equations is solved numerically using
the GSL library [52].

The Schrödinger equation with the Hamiltonian given
by Eq. (1) is solved numerically on a two-dimensional
grid. The eigenproblem has been solved using Lanczos
method combined with the shift-invert spectral transformation
where the linear set of equations is solved using the LIS
library [53].

In order to check the validity of modeling an infinite well
in a finite cylinder, we calculated the capture rate γ0 as a

195421-5



MIELNIK-PYSZCZORSKI, GAWARECKI, AND MACHNIKOWSKI PHYSICAL REVIEW B 91, 195421 (2015)

function of cylinder radius Rc. We confirmed that γ0 converge
at Rc = 300 nm. The reason for this convergence in spite
of the quantized spectrum in the cylinder (as opposed to the
actual continuum restored in the limit Rc → ∞) is as follows:
when the radius of the cylinder increases, the overlap between

the wave function in the QD and those localized in the QW
decreases like ∼1/R2

c . On the other hand, with increasing
cylinder size, the density of QW states increases as ∼R2

c .
As a result, for a sufficiently large cylinder, convergence is
reached.
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