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Interband Coulomb coupling in narrow-gap semiconductor nanocrystals: k · p theory
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We derive the matrix elements of Coulomb interaction between states with different numbers of electrons and
holes in a semiconductor nanocrystal within the eight-band k · p theory. These matrix elements are responsible
for multiple exciton generation which may contribute to the enhancement of the efficiency of solar cells. Our
calculations are performed within the multiband envelope function formalism based on the states resulting from
diagonalization of the eight-band k · p Hamiltonian. We study in detail and compare two contributions to the
interband Coulomb coupling: the mesoscopic one, which involves only the envelope functions and relies on band
mixing, and the microscopic one, which relies on the Bloch parts of the wave functions and is nonzero even
between single-band states. We show that these two contributions are of a similar order of magnitude. We also
study the statistical distribution of the magnitudes of the interband Coulomb matrix elements and show that the
overall coupling to remote states decays according to a power law favorable for the convergence of numerical
computations.
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I. INTRODUCTION

Semiconductor nanocrystals (NCs) are of considerable
current interest for exploring a large number of novel phe-
nomena at the nanoscale and for exploiting their unique size
dependent properties in potential applications. In particular,
these semiconductor nanostructures have a large potential for
applications in nano- and optoelectronics [1–4].

One of the interesting properties of semiconductor
nanocrystals is the interband Coulomb coupling [5–16] that
can lead to multiple exciton generation (MEG) [4,17,18]. In
the MEG process, absorption of a single photon leads to the
creation of two or more electron-hole pairs, as schematically
depicted in Fig. 1. This can occur when absorbing a photon is
followed by the creation of an electron-hole pair (an exciton)
which then relaxes into an energetically lower state and the
excess energy is used to create a second electron-hole pair (thus
creating a biexciton state) [7–11,19,20]. The same process
can also occur coherently via a superposition of single- and
biexciton states, or with the single-exciton state playing the
role of a virtual intermediate state [13–15,21–23]. In any
case, this process is mediated by Coulomb scattering between
electron states in different bands, which does not conserve the
number of electron-hole pairs. Experiments indicate that the
MEG process may indeed contribute to the efficiency of solar
cells [17,18].

Because of its importance both for the full understanding
of nanocrystal properties as well as for practical applications,
the interband Coulomb couplings were extensively studied
by various theoretical methods, including density functional
theory [5,6], the pseudopotential method [7–10], or the
tight-binding approach [11,12,16,24]. Since the ab initio and
atomistic methods are computationally expensive, the less
numerically demanding k · p method has also been used in the
modeling of Coulomb couplings [13–15,25,26]. This approach
allows one to perform more extensive computations, including
coupled exciton and biexcition states, in a wide energy
range.

When viewed from the k · p perspective, the Coulomb
coupling between few-particle states with different numbers

of electron-hole pairs can appear in two ways. First, it can
be due to band mixing, with the two states coupled by the
usual intraband Coulomb interaction terms involving, e.g., the
conduction band admixture to a hole state [26]. We will refer
to this contribution as “mesoscopic” as the relevant matrix
element involves only the envelope parts of the wave functions
(similarly to the common electron-electron or electron-hole
interactions computed in the usual way in a nanostructure).
Second, the coupling between such configurations can appear
directly when one takes the Bloch part of the wave function
into account [23]. This is, in turn, formally similar to the k · p
calculation of electron-hole exchange coupling in a quantum
dot [27]. Because of its formal structure, we will refer to this
contribution as “microscopic.” This microscopic contribution
is formally reduced by a factor on the order of a/R as compared
to the mesoscopic one [23] (where a is the lattice constant and
R is the nanocrystal radius). In the absence of band mixing, the
leading order term in the expansion of the Coulomb coupling is
proportional to a/R. If band mixing is present, a contribution
on the order of 1 will appear. Such terms are, by themselves,
two orders of magnitude stronger than the first-order ones but
their contribution is greatly reduced due to the small amount
of valence band admixture to conduction band states (or vice
versa). On the other hand, since the former (microscopic) term
does not rely on band mixing, it is not possible to predict a
priori whether it will be small compared to the mesoscopic one.
In any case, keeping terms up to the first order in a/R in the
microscopic part and the zeroth order in the mesoscopic part
is sufficient to capture both contributions to the leading order.
Estimates obtained using a simplified, single-band model of
wave functions [23] yield values of the microscopic part of
the matrix element up to several meV or a few tens of meV
and the resulting degree of mixing between single-exciton and
biexciton states is on the order of 0.1, which suggests that this
contribution is not negligible.

In this paper, we present the calculations of the Coulomb
matrix elements between exciton (X) and biexciton (BX) states
within the multiband envelope function formalism based on the
states resulting from diagonalization of the eight-band k · p
Hamiltonian [28]. Mesoscopic and microscopic contributions
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FIG. 1. (Color online) Schematic depiction of multiple exciton
generation by impact ionization of a high-energy electron-hole pair.

to the inter-band Coulomb coupling are studied in detail by
generalizing the previous results [23] to the realistic model
of wave functions including the band mixing. The relatively
low computational cost of the k · p method allows us to find
coupled pairs of X-BX states in a very broad energy window
and to study the distribution of the magnitudes of the matrix
elements vs the energies of the coupled configurations in
order to build reliable statistics. We show that in many cases
the two contributions are of a similar order of magnitude,
so both need to be taken into account for reliable modeling.
Moreover, we analyze the statistics of the coupling magnitudes
relative to the energy distance between the two coupled
states which allows us to assess the contribution of remote
states to the X-BX state mixing. We confirm the findings
of the simplified model [23] and show that this contribution
decreases with energy distance, thus providing formal grounds
for restricting numerical computations to a finite energy
window.

The paper is organized as follows. In Sec. II, we define the
model. In Sec. III we discuss the derivation and computation of
the interband Coulomb matrix elements. In Sec. IV, the results
of our calculations are presented and discussed. Finally, Sec. V
concludes the paper.

II. MODEL

In this section, we describe the model of the nanocrystal
used for our calculations.

We consider a simple model of a nanostructure, defined
as an InAs sphere with an infinitely high potential barrier
at its boundary. The radius of the nanostructure is R =
2.5 nm. For the single-particle spectrum, we use the envelope
function formalism with a standard eight-band Luttinger-Kohn
Hamiltonian [28]. All the material parameters relevant to
the single-particle spectrum are taken from Ref. [29]. The
nanocrystal is assumed to be surrounded by air. We assume
the dielectric constant of InAs εs = 14.

The Coulomb energy in a spherical NC is composed of
the direct Coulomb interaction and the coupling via surface
polarization due to dielectric discontinuity between the NC

and the environment. The direct part is

Udirect(r,r ′) = e2

4πε0εs

1

|r − r ′| . (1)

The indirect part contains the two-particle term describing
mutual interaction of electrons via the polarization field,

U
(2)
pol(r,r ′) = − e2

4πε0εs

∑
k

χk

(rr ′)k

R2k+1
Pk

(
r · r ′

rr ′

)
, (2)

and the single-particle term

U
(1)
pol(r) = e2

2ε2

N∑
n=1

∞∑
k=0

αk

r2k

R2k+1
, (3)

which accounts for the self-energy contribution arising from
the interaction of a charge with its own polarization field [29].
Here Pk are Legendre polynomials and χk = (k + 1)(ε −
1)/(kεs + k + 1). In addition, interaction of the electrons with
the positive “jellium” background yields further single-particle
terms.

In view of the strong quantization of the energy levels in
a small nanostructure we neglect Coulomb correlations and
energy shifts for the few-particle configurations and include
only the interband Coulomb couplings that are the essence of
the present study.

III. CARRIER STATES AND MATRIX ELEMENTS

In this section, we present the systematic derivation of
the interband Coulomb matrix elements (that is, matrix
elements coupling single- and biexciton states) within the
eight-band envelope function approach. First, in Sec. III A, we
present the single-particle states that make up the few-particle
configurations. Then, in Sec. III B, we classify all the Coulomb
terms of this kind and identify those relevant to the actual
exciton-biexciton coupling. Finally, in Sec. III C, we derive
the matrix elements for the multiband wave functions.

A. Single-particle states

Each electron and hole state is characterized by the total
angular momentum j , the projection of the total momentum
−j � m � j , the spatial inversion parity, and an additional
quantum number n labeling the subsequent wave functions
with the same j , m, and parity. We write the wave functions
in the eight-band envelope approximation in the form

�±
γ (r,s) =

∑
λ

ϕγλ(r)uλ(r,s), (4)

where r is position, s denotes the spin projection, γ stands
for the set of quantum numbers (jmn), ± refers to the parity,
ϕγλ(r) is the envelope function, and uλ(r,s) is the lattice-
periodic Bloch part. Here, λ denotes the subband within the
eight-band k · p expansion: two subbands in the conduction
band and six subbands in the valence band (heavy hole, light
hole, and spin-orbit split subbands).

In the numerical calculations, the envelope functions are
further expanded into the basis functions composed of Bessel
functions jl for the radial part and spherical harmonics Ylm for
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the angular dependence,

ϕγλ(r) =
∑
nlm

c
(γ λ)
nlm Nnljl

(
r

R
Xln

)
Ylm(θ,ϕ)

≡
∑

ν

c(γ λ)
ν ψν(r). (5)

Here, ν represents the three quantum numbers, nlm, and
Nnl = √

2/|jl+1(Xln)|. The summation in Eq. (5) is over l =
j ± 1/2 or l = j ± 3/2 depending on the subband λ [28]. The
coefficients c

(γ λ)
ν are found from numerical diagonalization of

the eight-band k · p Hamiltonian [28] with a cutoff for n at
nmax = 100. The allowed optical transitions result from the
standard dipole selection rules with their relative magnitude
dependent on the overlap of the envelope functions. In
particular, the optical transitions are only allowed between
conduction and valence band states with the same parity.

B. Interband Coulomb coupling

In this section, we formally derive the general matrix
elements between single-exciton and biexciton states (without
any reference to the particular model of wave functions). We
provide physical interpretation for the whole variety of these
terms and indicate (on the grounds of the particular energetic
relations for the case of interest) those relevant to the actual
exciton-biexciton coupling.

In the ground state (g.s.) of a NC (to be denoted |g.s.〉),
the valence band is fully occupied, while the conduction band
is empty. Here, by valence (conduction) band we understand
the single-particle eigenstates resulting from the k · p diago-
nalization with energies below (above) the fundamental band
gap (as opposed to the original bands of a bulk crystal at
k = 0). For the sake of more clarity in our derivations, the
general index γ in the expansion Eq. (4) will be replaced by
β and α for the valence and conduction band states, respec-
tively. The corresponding creation (annihilation) operators are

a†
α (aα) and a

†
β (aβ) in the conduction and valence bands,

respectively. We denote the X and BX configurations by
|αβ〉 = a†

αaβ |g.s.〉 and |α1α2β1β2〉 = a†
α1

a†
α2

aβ1aβ2 |g.s.〉.
The single-particle terms of the Hamiltonian (that arise

from electron-ion interaction and the polarization self-energy)
have the form

H (1) =
∑
γ γ ′

V
(1)
γ γ ′a

†
γ aγ ′ , (6)

where V
(1)
γ γ ′ = ∑

s

∫
d3r��

γ (r,s)U (1)(r)�γ ′(r,s). Here U (1)(r)
denotes all the single-particle terms in the Coulomb interac-
tion. The only nonzero contribution to the X-BX coupling is

〈α1α2β1β2|H (1)|αβ〉
=

∑
α′β ′

V
(1)
α′β ′ 〈g.s.|a†

β2a
†
β1aα2aα1a

†
β ′aα′a†

αaβ |g.s.〉

= −Vα1β1δα2αδβ2β + Vα1β2δα2αδβ1β

+Vα2β1δα1αδβ2β − Vα2β2δα1αδβ1β. (7)

All these terms describe scattering processes in which a new
electron-hole pair is created without changing the states of
the originally existing particles. Such processes are obviously
strongly off-resonant and will be disregarded.

For the two-particle terms (the two-particle part of the
electron-electron interaction) the Hamiltonian can be written
as

H (2) = 1

2

∑
γ1γ2γ3γ4

V (2)
γ1γ2γ3γ4

a†
γ1

a†
γ2

aγ3aγ4 , (8)

where

Vγ1γ2γ3γ4 =
∑
s,s ′

∫
d3r

∫
d3r ′��

γ1
(r,s)��

γ2
(r ′,s ′)

×U (2)(r,r ′)�γ3 (r ′,s ′)�γ4 (r,s), (9)

and U (2)(r,r ′) represents all the two-particle terms of the
Coulomb interaction. Hence, the matrix elements are

〈α1α2β1β2|H (2)|αβ〉 = 1

2

∑
γ1γ2γ3γ4

V (2)
γ1γ2γ3γ4

〈g.s.|a†
β2

a
†
β1

aα2aα1a
†
γ1

a†
γ2

aγ3aγ4a
†
αaβ |g.s.〉. (10)

There are four assignments of the indices γ1γ2γ3γ4 to the valence (v) and conduction (c) bands that lead to nonzero matrix
elements: (A) vcvv, (B) cvvv, (C) ccvc, and (D) cccv.

For these assignments the matrix elements are

〈α1α2β1β2|H (2)|αβ〉A
= 〈α1α2β1β2|H (2)|αβ〉B=1

2

∑
β ′

[−Vβ ′α1β1β ′δββ2δαα2+Vβ ′α2β1β ′δββ2δαα1+Vβ ′α1β2β ′δαα2δββ1 − Vβ ′α2β2β ′δα1αδββ1

]

+ 1

2

∑
β ′

[
Vβ ′α1β ′β1δββ2δαα2 − Vβ ′α1β ′β2δββ1δαα2 − Vβ ′α2β ′β1δββ2δαα1 + Vβα2ββ2δββ1δαα1

]

+ 1

2

[
Vβα1β1β2δαα2 − Vβα2β1β2δαα1 − Vβα1β2β1δαα2 + Vβα2β2β1δαα1

]
(11)

and

〈α1α2β1β2|H (2)|αβ〉C = 〈α1α2β1β2|H (2)|αβ〉D = 1
2

[−Vα1α2β1αδββ2 + Vα2α1β1αδββ2 + Vα1α2β2αδββ1 − Vα2α1β2αδββ1

]
, (12)

where we used the symmetry Vγ1γ2γ3γ4 = Vγ2γ1γ4γ3 .
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The first two lines in the contributions A and B contain the
direct and exchange interactions with all the other electrons
in the NC. For instance, the first term in Eq. (11) describes a
direct Coulomb process in which an electron in the valence
band state β1 scatters off all the electrons in the valence
band and makes a transition to a conduction band state α1.
The following three terms account for the same process but
with the initial state β2 and final state α2. These direct terms
cancel the electron-ion interactions in the leading order (on
the mesoscopic scale). Similarly, the four terms in the second
line of Eq. (11) describe exchange scattering of valence
band electrons off all the other electrons with a transition
to the conduction band. These exchange terms are not so
straightforward to treat as the direct ones. However, all the
terms containing two Kronecker deltas like δααi

δββj
, couple the

two-particle state |αβ〉 to a four-particle state with two particles
(electron and hole) in the same state; like |αα2,ββ2〉. These
two states differ considerably by energy (two particles do not
change their states but a new e-h pair is created), hence these

terms describe strongly off-resonant couplings and can be
neglected. The last lines in the contributions A and B describe
scattering processes in which one electron is a spectator, while
a hole changes its state and induces the generation of the
second e-h pair. Since the hole energies are typically smaller,
these processes are of relatively little importance. Therefore,
for the further calculations, we are left with the (identical)
terms C and D that describe scattering processes in which an
electron makes an intraband transition and transfer its energy
to an interband excitation that produces another e-h pair.

C. Matrix elements

In this section we calculate the matrix elements for the
explicit model of wave functions defined in Sec. III A. This is
done by expressing the result in terms of standard (envelope-
function) Coulomb integrals and the single-band interband
matrix elements found previously [23].

The matrix elements are written as in Eq. (9). Upon
substitution of Eq. (4) in Eq. (9) one has

Vγ1γ2γ3γ4 =
∑

λ1λ2λ3λ4

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ3)
ν3

c(γ4λ4)
ν4

∑
RR′

∑
ss ′

∫
d3ζ

∫
d3ζ ′

×ψ�
ν1

(R)u�
λ1

(ζ ,s)ψ�
ν2

(R′)u�
λ2

(ζ ′,s ′)U (2)(R + ζ ,R′ + ζ ′)ψν3 (R′)uλ3 (ζ ′,s ′)ψν4 (R)uλ4 (ζ ,s),

where we have followed the standard procedure of replacing the spatial integrals by summation over unit cells (R) and integration
over a single unit cell (ζ ). In view of the orthogonality of Bloch functions,∑

s

∫
d3ζu�

λ(ζ ,s)uλ′(ζ ,s) = δλλ′v,

where v is the volume of the unit cell, two essentially different cases appear depending on the bands involved. If λ1 = λ4 and
λ2 = λ3, then in the leading order one can set U (2)(R + ζ ,R′ + ζ ′) = U (2)(R,R′). The corresponding contribution to the matrix
element is

V (0)
γ1γ2γ3γ4

=
∑
λ1λ2

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ2)
ν3

c(γ4λ1)
ν4

∑
RR′

ψ�
ν1

(R)ψ�
ν2

(R′)U (2)(R,R′)ψν3 (R′)ψν4 (R)

×
∑

s

∫
d3ζu�

λ1
(ζ ,s)uλ1 (ζ ,s)

∑
s ′

∫
d3ζ ′u�

λ2
(ζ ′,s ′)uλ2 (ζ ′,s ′).

Using Eq. (13), and returning to integration according to v
∑

R → ∫
d3R, one finds

V (0)
γ1γ2γ3γ4

=
∑
λ1λ2

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ2)
ν3

c(γ4λ1)
ν4

h(0)
ν1ν2ν3ν4

,

where

h(0)
ν1ν2ν3ν4

=
∫

d3R

∫
d3R′ψ�

ν1
(R)ψ�

ν2
(R′)U (2)(R,R′)ψν3 (R′)ψν4 (R). (13)

If λ1 = λ4 but λ2 	= λ3, then the previously calculated contribution vanishes due to orthogonality of Bloch functions. In
this case, we expand

U (2)(R + ζ ,R′ + ζ ′) ≈ U (2)(R,R′) + ∇R′U (2)(R,R′) · ζ ′.

The corresponding contribution to the matrix element is then

V (1a)
γ1γ2γ3γ4

=
∑

λ1λ2λ3

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ3)
ν3

c(γ4λ1)
ν4

×
∑
RR′

ψ�
ν1

(R)ψ�
ν2

(R′)∇R′U (2)(R,R′)ψν3 (R′)ψν4 (R)
∑

s

∫
d3ζu�

λ1
(ζ ,s)uλ1 (ζ ,s)

∑
s ′

∫
d3ζ ′u�

λ2
(ζ ′,s ′)ζ ′uλ3 (ζ ′,s ′)

=
∑

λ1λ2λ3

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ3)
ν3

c(γ4λ1)
ν4

h(λ1λ2λ3λ1)
ν1ν2ν3ν4

,
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where replacing summation over unit cells by integration as previously,

h(λ1λ2λ3λ1)
ν1ν2ν3ν4

=
∫

d3R

∫
d3R′ψ�

ν1
(R)ψ�

ν2
(R′)rλ2λ3 · ∇R′U (2)(R,R′)ψν3 (R′)ψν4 (R) (14)

and

rλ2λ3 = 1

V

∑
s

∫
d3ζ ′u�

λ2
(ζ ′,s ′)ζ ′uλ3 (ζ ′,s ′).

In a similar way, if λ2 = λ3 and λ1 	= λ4, then

V (1b)
γ1γ2γ3γ4

=
∑

λ1λ2λ4

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ2)
ν3

c(γ4λ4)
ν4

h(λ1λ2λ2λ4)
ν1ν2ν3ν4

,

where

h(λ1λ2λ2λ4)
ν1ν2ν3ν4

= h(λ2λ1λ1λ3)
ν2ν1ν4ν3

. (15)

The terms with λ1 	= λ4 and λ2 	= λ3 contribute only in the second order in the expansion of the Coulomb potential, and hence
are formally on the order of (a/R)2 and will not be considered here. Thus, finally, one finds

Vγ1γ2γ3γ4 =
∑

λ1λ2λ3λ4

∑
ν1ν2ν3ν4

c�(γ1λ1)
ν1

c�(γ2λ2)
ν2

c(γ3λ3)
ν3

c(γ4λ4)
ν4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h(0)
ν1ν2ν3ν4

if λ1 = λ4 and λ2 = λ3

h(λ1λ2λ3λ1)
ν1ν2ν3ν4

if λ1 = λ4 and λ2 	= λ3

h(λ2λ1λ4λ2)
ν2ν1ν4ν3

if λ1 	= λ4 and λ2 = λ3

0 if λ1 	= λ4 and λ2 	= λ3,

which includes terms up to the first order in the expansion
of the Coulomb potential. In this way, we have reduced the
calculation of interband Coulomb matrix elements between
the X and BX states with eight-band wave functions to
single-subband terms given by Eqs. (13) and (15). The
former only involve the envelope functions that describe the
carrier states on the mesoscopic level and can be calculated
in a standard way. The latter depend on the microscopic,
atomic-scale structure via the interband matrix element of the
position vector rλλ′ , which is proportional to the interband
dipole moment (involved in the optical selection rules).
These microscopic terms for the basis states used here have
been calculated in Ref. [23]. Note that in the single-band
approximation, when the states above and below the gap
are assumed to be composed purely of the bulk conduction
and valence band states, respectively, the mesoscopic term
vanishes due to Bloch function orthogonality. In general, due
to band mixing in a strongly confining nanostructure, both the
mesoscopic and microscopic contributions can be nonzero.

IV. RESULTS

In this section, we present results of calculations performed
within the eight-band model presented above. We focus
on the comparison between the typical magnitudes of the
microscopic and mesoscopic contributions of the interband
Coulomb couplings and on the general statistical distribution
of the coupling strengths between optically active (bright) X
states and BX states vs the energy difference between the two
coupled states. In view of the enormous number of exciton
and, in particular, biexciton states, the statistics of interband
Coulomb couplings to be presented here are obtained by
randomly selecting states from a broad energy range (using
a uniform distribution over the set of quantum numbers).

In order to characterize the typical X-BX Coulomb coupling
strengths and the distribution of the relative energies of coupled
X-BX pairs, in Fig. 2 we present the magnitudes of these
couplings vs the energy distance between the coupled states.
The presented results are based on about 50 000 randomly
selected combinations of X and BX states with the energy
less than 5 eV out of which 11 000 show nonzero coupling,
which is still only a tiny fraction of the total number of
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100
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 0  1  2  3  4  5
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) | (
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(b)

10-8
10-7
10-6
10-4
10-3
10-2
100
101

|V
(0

) | (
m
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)

(a)

FIG. 2. The absolute value of the mesoscopic (a) and microscopic
(b) contributions to the Coulomb coupling matrix elements between
the X and BX states vs the energy distance between these states for a
sample of 11 000 coupled X-BX pairs.
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FIG. 3. Comparison of the magnitudes of micro- and mesoscopic
contributions to the interband Coulomb coupling. Each point corre-
sponds to one coupled X-BX pair from a sample of 11 000 and its
position represents the magnitudes of the two contributions to the
coupling.

possible X-BX combinations. Each point corresponds to a
single BX state coupled to an X state and its position shows
the magnitude of the Coulomb matrix element between these
two states and the absolute value of the energy difference
between these states. The analysis is performed separately for
the mesoscopic and microscopic contributions to the Coulomb
matrix elements, V (0) and V (1), shown in Figs. 2(a) and 2(b),
respectively. As can be seen in Fig. 2, the overall number of
coupled pairs grows with increasing energy difference. This is
due to a rapid increase of the density of states of both X and
BX states at higher energies. Typical orders of magnitude for
the X-BX coupling are up to several meV. Although we have
found a small number of stronger couplings, about 100 meV,
they only appear between energetically very distant states.
Apart from this upper bound on the magnitudes of the matrix
elements, Fig. 2 indicates that matrix elements with values
below 10−6 meV are unusual, which agrees with the earlier
atomistic results for another material system [24].

From Fig. 2 it is clear that the microscopic and mesoscopic
contributions to the Coulomb coupling tend to be roughly of
the same order of magnitude. This is confirmed in Fig. 3,
where the magnitudes of the contributions to the Coulomb
coupling for the same number of combinations as in Fig. 2 are
compared. In the vast majority of coupled X-BX configurations
both contributions are nonzero, which results from identical
selection rules for these two couplings (the fractions of cases
with only V (0) or only V (1) nonzero are about 0.2% and 4%,
respectively). As we can see, although the ratio of the two
contributions in individual cases can vary over ten orders of
magnitude (roughly from 10−5 to 105), in most cases they are
almost of the same order of magnitude.

The same property can be seen when one looks at the
histogram showing the number of state combinations as a
function of log |V (1)/V (0)| (Fig. 4). Here we used a larger
sample of 200 000 X-BX pairs out of which over 40 000 were
coupled. The bimodal form of the distribution reflects the two
groups of points visible in Fig. 4, corresponding to the cases
where the two contributions are of similar magnitude and those
where the microscopic contribution dominates by about two
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FIG. 4. (Color online) Normalized distribution of the relative
magnitudes of the micro- and mesoscopic couplings based on a
sample of about 40 000 coupled X-BX pairs.

orders of magnitude. The origin of this special distribution
remains unclear.

As discussed in Ref. [23], the distribution of the ratio of the
coupling magnitude V = V (0) + V (1) to the energy separation
between the coupled states �E is of major importance for
the convergence of numerical procedures: Since q = |V/�E|
determines (via perturbation theory) the admixture of a
biexciton state to the optically active single-exciton state, the
distribution of this quantity must be integrable at q → 0 in
order for the computations to be convergent with respect to
the width of the energy window in which the states have been
found (which is always limited by the available computational
resources). Statistics based on a simplistic model of carrier
states yielded a q−2 dependence as q → 0, which provides
a bound for the contribution of remote states (in view of the
bounded values of the coupling magnitudes) and thus assures
convergence [23]. The results presented in Fig. 5 (based on
the sample as in Fig. 4) confirm that the same q−2 form of the
distribution is found in the present, more realistic model, as
shown by the solid line in Fig. 5(b).

V. CONCLUSIONS

We have presented a method for calculating Coulomb
matrix elements between exciton and biexciton states in a
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FIG. 5. (Color online) Histogram of the values of the ratio q =
|(V (0) + V (1))/�E| for a sample of about 40 000 coupled X-BX pairs
in linear (a) and logarithmic (b) scale. The solid line in (b) shows a
q−2 dependence.
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spherical semiconductor nanoparticle within the multiband
envelope function formalism based on the carrier states
resulting from diagonalization of the eight-band k · p Hamil-
tonian. We have shown that this coupling includes two
contributions of different form: The mesoscopic one relies on
the usual interband Coulomb matrix elements that contribute
to interband couplings via band mixing. The microscopic
contribution involves Coulomb matrix elements at the level
of Bloch functions and does not vanish even if band mixing is
neglected.

The relatively low computational cost of the k · p method
allowed us to build statistics of the coupling values over
∼105 X-BX pairs in a broad energy window relevant, e.g., to
photoelectric cell operation. We have shown that the relative
magnitude of these two contributions over a large statistical

sample of X-BX pairs has a bimodal distribution with either
both contributions equal or the microscopic one dominating
roughly by two orders of magnitude.

We have also shown within our multiband model that
the ratio of the coupling magnitude to the energy separation
between the coupled states follows a power-law distribution,
the exponent of which guarantees convergence of numerical
calculations with respect to the width of the energy window to
which such a computation must always be limited.
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