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Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium
molecular dynamics simulations
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The thermal boundary resistance of Si/Ge interfaces has been determined using approach-to-equilibrium
molecular dynamics simulations. Assuming a reciprocal linear dependence of the thermal boundary resistance,
a length-independent bulk thermal boundary resistance could be extracted from the calculation resulting in a
value of 3.76 × 10−9 m2 K/W for a sharp Si/Ge interface and thermal transport from Si to Ge. Introducing an
interface with finite thickness of 0.5 nm consisting of a SiGe alloy, the bulk thermal resistance slightly decreases
compared to the sharp Si/Ge interface. Further growth of the boundary leads to an increase in the bulk thermal
boundary resistance. When the heat flow is inverted (Ge to Si), the thermal boundary resistance is found to be
higher. From the differences in the thermal boundary resistance for different heat flow direction, a rectification
factor of the Si/Ge interface can be determined and is found to significantly decrease when the sharp interface is
moderated by introduction of a SiGe alloy in the boundary layer.
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I. INTRODUCTION

Thermoelectricity as alternative energy production has
gained increased interest in recent years and substantial
research has emerged to increase the figure of merit ZT of
thermoelectric materials [1–3]. The figure of merit describes
the efficiency of a thermoelectric material and depends on its
Seebeck coefficient and its electric and thermal conductivity.
A common approach to achieve a high ZT is by minimization
of the thermal conductivity of semiconducting materials while
preserving good detailed conduction properties [1,2,4,5].

Introduction of impurities to pristine bulk materials by
alloying has been shown to be a promising way to minimize the
material thermal conductivity κ . In fact, the thermal conduc-
tivity of SixGe1−x alloys is reduced remarkably compared to
their bulk counterparts already at very small impurity concen-
trations x [6–10]. Similar effects have been shown in Bi2Te3,
BixSb2−xTe3, and PbTe [1,2]. Scattering of short-wavelength
phonons on impurity atoms is responsible for the decrease
of κ while thermal transport by mid- and long-wavelength
phonons remains unperturbed by atomistic defects [2]. It is
therefore essential to suppress the propagation of phonons
with longer wavelength for achieving a further reduction of
κ . A possible way to realize this is by nanostructuring of the
material confirmed by several experimental and theoretical
studies.

Recently, introduction of nanoscopic holes in a SiGe bulk
alloy simulated by molecular dynamics has been shown
to drastically decrease the number of low-frequency (long-
wavelength) phonons resulting in a remarkable reduction of
the thermal conductivity in the SiGe alloy [11]. Furthermore,
a lower thermal conductivity in Si/Ge-based materials was
observed in either superlattices or nanowires and nanodots
depending on the dimension of the nanostructures [12]. Similar
results have been shown in experimental studies where the
thermal conductivity of bulk Si and bulk SiGe alloys was
reduced significantly when nanocrystalline structures have
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been generated by ball milling [8,13,14]. The decrease of
κ in such nanostructured materials results from increased
phonon scattering at the interfaces introduced by nanograins,
nanowires, or superperiodicity.

The effect of interfaces to thermal conductivity is denoted
as thermal boundary resistance (TBR), also known as Kapitza
resistance [15]. Yet, a complete understanding of the scattering
properties of the interface affecting the TBR and an accurate
prediction of such is still a matter of investigation. Several
models have been proposed for the determination of TBR such
as the diffuse and the acoustic mismatch model (DMM and
AMM, respectively) [16,17]. However, within these models
assumptions of the scattering processes are made a priori.
Phonon interface scattering, for example, is assumed to be
elastic in both methods. Furthermore, the DMM considers
only diffuse scattering, while in the AMM, diffuse scattering
is neglected and only specular scattering is assumed. The
TBR values obtained from these models are in general
lower than in experiments; for instance, in the example of
Si/SiO2 interfaces, experimental values range from 2×10−9 to
2×10−8 m2 K/W [18–20], while theory predicts a TBR of
2.4–3.5 ×10−9 m2 K/W [21].

Another possible way to predict TBR is based on molecular
dynamics (MD) simulations. Determination of the TBR
of Si/Ge interfaces using nonequilibrium MD simulations
resulted in a value of 1.26 ×10−9 m2 K/W at a process
temperature of 300 K [22]. In this study, the thermal boundary
resistance has been determined at a finite simulation cell
size of 20 nm, which can significantly affect the thermal
transport properties as has been shown for the length dependent
thermal conductivity of bulk materials [23–25]. A higher value
(2.72–3.17 ×10−9 m2 K/W) has been reported by Landry
et al., which was reasonably close to the TBR predicted by
DMM (2.4 ×10−9 m2 K/W) [26]. Moreover, nonequilibrium
MD simulations have recently been used to determine the TBR
in SiGe nanowires [27].

The TBR can be affected by the direction of the heat flux
as a result of the asymmetry in thermal conductivity of the
bulk materials Si and Ge, which is defined in the rectification
factor [28]. Depending on the mass and lattice mismatch, the
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rectification of a two segment bar can change significantly [28].
Therefore the quantification of rectification is also of great
interest in the characterization of the TBR of a certain material
pair.

Here, we have used approach-to-equilibrium MD (AEMD)
simulations to estimate the TBR of Si/Ge interfaces. First, we
have derived an expression for the length-independent TBR at
the theoretical limit of an infinite sample length (Sec. II B).
Based on this expression, the TBR of a sharp Si/Ge interface
has been evaluated for heat flux both from Si to Ge and
vice versa (Sec. III A). Furthermore, the effect of boundary
thickness has been investigated for a boundary thickness up to
2 nm (Sec. III B). Finally, the rectification of the interface has
been determined as a function of the boundary thickness by
comparison of the TBR for heat flux from Si to Ge and from
Ge to Si (Sec. III C).

II. METHODS

A. AEMD simulations

Molecular dynamics simulations have been performed
using the LAMMPS code [29]. Interatomic forces have been
described applying the Tersoff pair potential [30], which has
been shown to represent reasonably well the mechanical and
thermal properties of Si and Ge materials [10,31–34].

The overall thermal conductivity of the simulated systems
has been determined using the AEMD method. Originally, the
AEMD method was developed under the assumption that κ is
uniform in the direction of the heat transport. This is obviously
not the case for the systems investigated here. However, from
considerations of energy conservation, we can argue that heat
transport between two homogeneous systems, where κ is
stepwise uniform, can indeed be described with an overall
thermal conductance coefficient hc according to

q̇ = hc �T,

with hc = L1

κ1
+ R + L2

κ2
. (1)

Assuming such an overall, uniform thermal conductance
coefficient for the differential heat transport, the same proce-
dure and equations of the AEMD approach for homogeneous
systems can be applied for heat transport through interfaces
with stepwise uniform thermal conductivities, supporting the
use of the latter also for heterogeneous systems where an
overall constant thermal conductivity coefficient hc can be
applied. This assumption has been used previously for the
calculation of the thermal conductivity and boundary resis-
tance of Si/SiO2 interfaces [35]. Furthermore, we anticipate a
result extensively described in Sec. III A, namely, for a sharp
interface, AEMD results are in excellent agreement with other
theoretical predictions.

Using the AEMD method, the simulation cells are firstly
divided into two regions with comparable length in the
direction of thermal transport. One of these two compartments
is equilibrated at high temperature (Th = 400 K), the other
compartment at low temperature (Tc = 200 K) using velocity
rescaling. This creates an initial steplike function of the
temperature along the sample length in z direction [25]. Next,
the evolution of the average temperature in the hot (Th) and

RI

dILGe LSi

Lz

FIG. 1. (Color online) Schematic representation of a Ge/Si inter-
face [in the (001) crystallographic plane] with boundary thickness
dI . The lattice spacing in in-plane direction (orthogonal to thermal
transport) of Si has been adopted from the equilibrium lattice spacing
of Ge (aGe,0 = 5.6567 Å). The out-of-plane lattice spacing of Si has
been calculated from the elastic constants (aSi,⊥ = 5.1913 Å).

cold (Tc) reservoir has been recorded during a transient regime
towards equilibrium of microcanonical evolution. Based on
Fourier’s theorem of thermal transport and the given steplike
initial temperature profile, the evolution of the temperature
gradient (�T = Th − Tc) follows:

�T (t) =
∞∑

n=1

Cne
−α2

nκ̄t , (2)

where κ̄ = κ
ρcv

is the thermal diffusivity with the density ρ of
the material and its specific heat cv . This expression is fitted
to the temperature gradient obtained from the simulations to
determine κ . More details on the methodology can be found
elsewhere [10,25,36].

1. Creation of Si/Ge interfaces

A schematic image of a Si/Ge simulation cell is represented
in Fig. 1. The Si/Ge crystals are oriented with the crystal-
lographic (001) plane orthogonal to the heat flux (in-plane
direction). To account for periodic boundary conditions, the
in-plane lattice spacing has to be equal for both Ge and
Si sections. Motivated by experimental studies [37], where
SiGe alloys have been grown on pure Ge, we have imitated
growth of Si on crystalline Ge where the equilibrium lattice
parameter of Ge (aGe,0) has been adopted for the in-plane
lattice spacing of Si. The out-of-plane lattice parameter of Si
(aSi,⊥) has been determined from the elastic properties of Si
according to

aSi
⊥ = aSi

[
1 − 2

(
C12

C11

)Si (
aGe,0

aSi,0
− 1

)]
(3)

with C11 and C12 of 142.54 and 75.38 GPa, respectively,
resulting in aSi,⊥ = 5.1913 Å. The elastic constants C11 and
C12 applying the Tersoff potential have been determined from
the second derivatives of the total energy with respect to
deformation. Pseudomorphic Si samples with these properties
will be referred to as p-Si in the following.

In samples with a finite interface thickness dI , several
atomic layers of a SixGe1−x alloy have been added in the
interfacial region. The Si concentration x in the finite interfaces
has been gradually increased every two atomic layers from the
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pristine Ge section to the pure p-Si section. The interfacial
spacing has been determined equivalent to p-Si based on
Eq. (3) and has been adapted for each Si concentration x.
An interface thickness 0.5, 1, and 2 nm has been simulated,
corresponding to a total of four, eight and 16 atomic layers,
respectively.

B. Determination of thermal boundary resistance

The overall thermal conductivity κall of a heterogeneous
system, such as the heterostructure shown in Fig. 1, respec-
tively, its thermal resistance (Rall = Lz

κall
), can be described as a

connection of series of resistances. For the systems calculated
here (1), this can be expressed according to

Rall = Lz

κall
= LGe

κGe(LGe)
+ LSi

κp-Si(Lp-Si)
+ 2RI , (4)

where Lz, LGe, and LSi are the total simulation cell length and
the length of the crystalline Ge and the pseudomorphic Si part,
respectively (see Fig. 1). κGe and κp-Si represent the thermal
conductivities of crystalline Ge and p-Si at their cell length
LGe and LSi, respectively. The thermal boundary resistance
RI enters in the equation twice due to the periodic boundary
conditions of the simulation cell.

1. The thermal conductivity κ(L) of Ge and Si

Following Eq. (4), the length-dependent thermal conductiv-
ities of the pure systems κGe and κp-Si have to be known for the
determination of Rall. This has been done using the standard
AEMD approach for a homogeneous system [25,36,38] as
described above. Therefore the sample length of these systems
has been varied from 100 nm (200a0) to ∼1 μm (2000a0).
The behavior of 1/κ to 1/Lz has been approximated by a
linear function 1

κ
= 1

κ∞
(1 + λ

Lz
), where κ∞ is the bulk thermal

conductivity and λ can be defined as characteristic length of
the phonon transport. The linear approximation is a common
way to describe the dependency of κ on the sample length
and is approved for systems where phonon properties are
approximated well by an average value [23,24]. It has been
shown to give reasonable estimations of the bulk thermal
conductivity in Si/Ge systems [23,38,39].

The length-dependent thermal conductivity of crystalline
Ge, Si, and pseudomorphic Si is shown in Fig. 2 with bulk
thermal conductivities estimated to be 93.3, 233.4, and 204.3
W/mK, respectively (Table I). The strain applied on the
pseudomorphic Si as a result of the nonequilibrium in-plane
lattice spacing thus reduces the thermal conductivity of the
crystalline Si by 12.4%.

2. Overall thermal conductivity

The overall thermal conductivity is a summation of several
phonon transport effects [Eq. (4)]. Accordingly, the assump-
tion of average phonon properties as in the case of the pure Ge
and Si materials is unfounded. To account for the nonlinear
effects in κall, the Taylor expansion of 1/κ to 1/Lz has been
extended to the second-order term:

1

κall
= 1

κall,∞

(
1 + λall

Lz

+ μall

L2
z

)
. (5)
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FIG. 2. (Color online) Inverse of the thermal conductivity 1/κ as
a function of the inverse sample length 1/Lz of crystalline Ge (c-Ge,
diamonds), crystalline Si (c-Si, triangles up), and pseudomorphic
Si (p-Si, triangles down). The bulk thermal conductivity κ∞ of
these materials has been approximated based on a linear relationship
between 1/κ and 1/Lz. It resulted in 93.3, 233.4, and 204.3 W/mK
for c-Ge, c-Si, and p-Si, respectively.

In fact, a linear approximation results in a negative bulk
thermal conductivity κall,∞, whereas the fitted second order
function approximates the calculated values of κall perfectly as
shown in Fig. 3 for sharp interfaces.

3. TBR estimation

In order to estimate the thermal boundary resistance the
effects of a finite simulation cell have to be eliminated.
Therefore Eq. (4) is rewritten as

1

κall
= αGe

κGe(LGe)
+ αSi

κp-Si(Lp-Si)
+ 2

RI

Lz

, (6)

where the length of the Ge and Si part is expressed with respect
to the total cell length as αGe = LGe

Lz
and αSi = LSi

Lz
, respectively.

At infinite sample size (Lz → ∞), the length-dependent
κall, κGe, and κp-Si converge to their bulk thermal conductivities
κall,∞, κGe,∞, and κp-Si,∞, respectively, and the last term RI

Lz
of

Eq. (6) vanishes. With these assumptions, the bulk thermal
conductivities are related according to Eq. (7):

1

κall,∞
= αGe

κGe,∞
+ αSi

κp-Si,∞
. (7)

With the linear approximation of 1/κ(1/L) in c-Ge and
p-Si and the quadratic behavior of 1/κall(1/L) for the overall
thermal conductivity [Eq. (5)], Equation (4) can be rewritten

TABLE I. Optimized parameters κ∞ and λ, describing the length-
dependent thermal conductivity [ 1

κ
= 1

κ∞ (1 + λ

Lz
)] of crystalline Ge

(c-Ge), Si (c-Si), and pseudomorphic Si (p-Si).

κ∞
(

W
mK

)
λ (nm)

c-Gi 93.3 ± 3.5 430 ± 24.4
c-Si 233.4 ± 13.4 742 ± 72.4
p-Si 204.3 ± 20.6 855 ± 108
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FIG. 3. (Color online) Total thermal conductivity κall as a func-
tion of the sample size Lz of Si/Ge interfaces with a sharp interface.
Thermal transport has been simulated from Si to Ge (diamonds) and
vice versa (circles). The behavior of κ to Lz has been approximated
with a 2nd order polynomial function [Eq. (5)] (dashed line).

as follows:

RI = 1

2

(
C1 × Lz + C2 + C3 × 1

Lz

)
,

where C1 = 1

κall,∞
− αGe

κGe,∞
− αSi

κp-Si,∞
,

C2 = λall

κall,∞
− λGe

κGe,∞
− λp-Si

κp-Si,∞
,

C3 = μall

κall,∞
. (8)

As a result, the thermal boundary resistance [applying
Eq. (7)] simplifies to

RI = 1

2

(
C2 + C3 × 1

Lz

)
= RI,∞

(
1 + λI

Lz

)
, (9)

where RI,∞ is the converged TBR at bulk conditions (Lz →
∞) and λI is the characteristic phonon length of the interface.
To determine the parameters of RI (Lz), RI has been calculated
at each data point from the overall thermal conductivity κall

[Eq. (5)] and previously determined length-dependent κ of the
pristine Ge and p-Si materials. The obtained values have then
been fitted to Eq. (9).

III. RESULTS AND DISCUSSION

A. TBR at sharp interface

In Fig. 4, the calculated AEMD values of RI as a function
of the simulation cell length Lz together with their fits by
Eq. (9) are shown for Si/Ge interfaces with various boundary
thickness dI where thermal transport has been simulated from
Si to Ge.

The bulk TBR RI,∞ of a sharp interface has been calculated
to be 3.76×10−9 m2 K/W (Table II). Several theoretical meth-
ods have been used in a previous study for the estimation of the
TBR [26]. Among others, nonequilibrium molecular dynamics
simulations have been used where the thermal resistance is
calculated from the temperature gradient across the interface.
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FIG. 4. (Color online) Thermal boundary resistance RI as a
function of the sample size Lz. The behavior of RI to Lz follows
a linear reciprocal trend RI = RI,∞(1 + λI

Lz
).

Using this approach, the thermal boundary resistance at 300 K
resulted in 3.1×10−9 m2 K/W. Despite the differences in
the applied methods in ours and the previous work (which
include a different lattice spacing, a different pair potential
and a different approach to calculate RI ), this is in very good
agreement with our results. Furthermore, the value obtained
from both MD-based methods are in reasonable agreement
with the TBR calculated from the theoretical, Laundauer-like
expressions for phonon scattering (3.0×10−9 m2 K/W) and
the results using the DMM (2.4×10−9 m2 K/W) [26] where
approximations of the nature of phonon scattering (such as
elastic scattering) have to be applied. The AEMD method
used here thus provides a robust approach to reliably estimate
the TBR without the necessity of approximations for phonon
scattering and verifies the applicability of a mean thermal
conductivity which is assumed to be uniform in the direction
of the heat transport.

When the heat flow is inverted, i.e., the Ge region is
initially equilibrated at Th = 400 K and p-Si at Tc = 200 K, the
thermal boundary resistance increases to 5.78×10−9 m2 K/W
(Table II). Similar results have been shown previously for the

TABLE II. Optimized parameters RI,∞ and λI according to
Eq. (9) for thermal transport from Si to Ge and vice versa for Si/Ge
interfaces with different boundary thickness dI .

Si → Ge

dI (nm) RI,∞
(

m2 K
GW

)
λI (nm)

0 3.76 ± 0.17 167.2 ± 13.6
0.5 3.66 ± 0.12 78.1 ± 6.4
1 4.38 ± 0.17 58.9 ± 7.5
2 7.18 ± 0.21 26.6 ± 4.5

Ge → Si

dI (nm) RI,∞
(

m2 K
GW

)
λI (nm)

0 5.78 ± 0.28 115.6 ± 11.8
0.5 4.66 ± 0.12 76.3 ± 5.0
1 5.70 ± 0.08 53.7 ± 2.4
2 8.34 ± 0.25 27.8 ± 4.7
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heat transport in SiGe nanowires [27]. Using nonequilibrium
MD simulations, the heat transport has been shown to be higher
for a heat flow direction from Si to Ge than vice versa.

The increase by ∼50% can be explained by the different
thermal conductivities of the pristine Ge and p-Si materials.
Silicon has a higher thermal conductivity than Ge. Accord-
ingly, the inflow of heat from the p-Si region to the interface is
facilitated over its outflow through the Ge region, which leads
to a higher heat pressure at the Si/Ge interface. A higher heat
pressure in this sense is comparable to a higher temperature
of the system. This is comparable to previous results where
the TBR has been shown to decrease with increasing process
temperature from 300 to 1000 K [39].

B. Effect of interface thickness on TBR

The morphology of the Si/Ge interface has been varied by
changing its thickness dI in the range 0 nm � dI � 2 nm.
At a finite thickness, the interface has been constructed of
a SixGe1−x alloy in which the Si concentration x has been
increased gradually from the Ge region to the Si region as
described in Sec. II A1.

Switching from a vanishingly thin interface (dI = 0 nm)
to a finite thickness of 0.5 nm results in a slight decrease
(�RI = 0.1 × 10−9 m2 K/W, see Fig. 5 and Table II) of the
TBR in the case of thermal transport from p-Si to Ge. This
effect is more pronounced when the heat flow is inverted
(�RI = 1.12 × 10−9 m2 K/W). The introduction of an
interface with finite thickness reduces the lattice and mass
mismatch between the pure materials and the SiGe alloy. As
a result, the TBR is reduced.

Further boundary growth, however, results in a steady
increase of the thermal boundary resistance. For thermal
transport from p-Si to Ge, it raises up to 7.18 ×10−9 m2 K/W
at a boundary thickness of 2 nm (Table II). This is in agreement
with previous results of the TBR in SiGe nanowires calculated
by nonequilibrium MD simulations showing TBR to increase
when the Si/Ge interfaces thickness increases from abrupt to
5 and 15 nm [27]. When the heat flow direction is inverted,
it reaches 8.34 ×10−9 m2 K/W. The increase in TBR with

Ge Si
hot cold heat 

flux

Ge Si
hotcold heat 

flux

2

4

6

8

10

0 0.5 1 1.5 2

FIG. 5. (Color online) Bulk thermal boundary resistance RI,∞ as
a function of the interfacial thickness dI for thermal transport from
Si to Ge (diamonds) and from Ge to Si (circles).

increasing thickness can be explained by increased phonon
scattering inside the boundary layer. For a sufficiently large
boundary, this effect dominates the reduced lattice and mass
mismatch and the TBR exceeds the value of the sharp interface.
In the case of thermal transport from Si to Ge, this is already
the case at dI = 1 nm, while for heat flow from Ge to Si, it is
observed at dI = 2 nm.

The characteristic phonon length λI [Eq. (9)], on the other
hand, is hardly affected by the heat flow direction. Except for
the sharp interface, λI (d) is within 10% for both directions of
the heat flow (Table II). It decreases monotonously from 78.1
(76.3) to 26.6 (27.8) nm with increasing boundary thickness
from 0.5 to 2 nm for a heat flow from p-Si to Ge (Ge to p-Si).
The characteristic length does not directly correspond to any
phonon property, however, it gives an indication. Here, its de-
crease with increasing boundary thickness can be regarded as
a decrease in the phonon mean free path, presumably resulting
from enhanced phonon scattering inside the boundary layer.

C. Rectification

Thermal rectification can be understood in analogy to an
electrical diode. A material is defined as a thermal rectifier if
the magnitude of the heat flow is different when inverting the
heat flow direction [28]. Several expressions have been used
recently to specify the thermal rectification. Most commonly it
is defined as the difference of the magnitude of backward and
forward heat flow divided by the smaller one [27,28,40,41].
Within the AEMD framework, the magnitude of the heat flow
is not directly calculated. However, assuming temperature
independent thermal conductivities of the pure Ge and Si
materials, justified here by a narrow �T , the heat flow in one
or the other direction depends only on the thermal boundary
resistance [Eq. (1)]. Following this, we define the rectification
factor fRect of the TBR as the difference between the thermal
resistance of backward (Ge to Si, Rb) and forward (Si to
Ge, Rf ) heat flow divided by the one of forward heat flow
[Eq. (10)]:

fRect = Rb − Rf

Rf

. (10)
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 0  0.5  1  1.5  2

f R
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t [
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FIG. 6. Rectification fRect of the bulk thermal boundary resistance
of Si/Ge interfaces as a function of the interfacial thickness dI . It has
been calculated according to Eq. (10).
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Thermal rectification fRect as calculated here includes only
the contribution of the TBR to the heat flow but neglects the
effect of temperature dependent heat transport in the crystalline
segments. The rectification of the TBR remarkably drops
from 0.53 to 0.27 when the sharp boundary between Si and
Ge is smoothed to a boundary layer with finite thickness of
0.5 nm (Fig. 6). Further increase of the boundary thickness
had only little effect on the thermal rectification. This is in
agreement with what has been shown previously for thermal
rectification of a two-segment device. Rectification in such a
device is increased when the asymmetry and mismatch of the
different materials in the two segments is more pronounced.
The introduction of a boundary layer with finite thickness
consisting of a SixGe1−x alloy reduces the asymmetry and the
mismatch between the materials that are directly connected,
thus resulting in a decrease of the rectification factor.

IV. CONCLUSIONS

Approach-to-equilibrium molecular dynamics (AEMD)
simulations have been applied to determine the thermal
boundary resistance (TBR) of Si/Ge interfaces. The overall
thermal conductivity has been described by a connection
of series of several resistances, including the resistance of
the interface. Its dependence on the sample length has been
described by a reciprocal quadratic behavior to account for
nonlinear effects. With this assumption the length dependent
TBR could be expressed by a reciprocal linear function
which converges to a bulk TBR for infinitely large simulation
cells. The bulk TBR for thermal transport from Si to Ge
at 300 K resulted in 3.76 × 10−9 m2 K/W in agreement
with previous calculations using nonequilibrium molecular
dynamics simulations.

The effect of the interface morphology on the bulk TBR
has been evaluated focusing on the variation of the interfacial

thickness. The interface, consisting of a SixGe1−x alloy, has
been increased from a sharp interface to one with a thickness
of 2 nm. TBR is found to slightly decrease when switching
from a sharp interface to an interface with finite thickness
(dI = 0.5 nm). This can be explained by reduced mismatch
and asymmetry between the pure Si and Ge and the interface
consisting of a SiGe alloy. Further increase of the interface
thickness, however, leads to enhanced phonon scattering and
results again in an increase of the TBR.

Furthermore, the effect of heat flux inversion has been
investigated simulating thermal transport from Ge to Si. In
this case, thermal boundary resistance has been found to be
higher than for thermal transport from Si to Ge, independent
of the thermal boundary thickness. From these results, the
rectification of the Si/Ge interface has been determined. It is
most pronounced when the interface is infinitely sharp and
decreases significantly when the interface is smoothed over a
finite thickness.

These results give insight into the thermal transport prop-
erties of Si/Ge interfaces, indicating a notable influence of
the composition and morphology of the interface on the
thermal boundary resistance. At a certain boundary thickness
phonon scattering dominates over the effects of reduced mass
mismatch at the interface, leading to an increase of the
thermal boundary resistance which even exceeds the value at
a sharp interface. It is thus suggested that reduction of thermal
conductivity is more effective at extended interfaces with a
certain thickness.
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