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Spin effects induced by thermal perturbation in a normal metal/magnetic insulator system
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Using one of the methods of quantum nonequilibrium statistical physics, we have investigated the spin transport
transverse to the normal metal/ferromagnetic insulator interface in hybrid nanostructures. An approximation of
the effective parameters, when each of the interacting subsystems (electron spin, magnon, and phonon) is
characterized by its own effective temperature, has been considered. The generalized Bloch equations which
describe the spin-wave current propagation in the dielectric have been derived. Finally, two sides of the spin
transport “coin” have been revealed: the diffusive nature of the magnon motion and magnon relaxation processes,
responsible for the spin pumping, and the spin-torque effect.
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I. INTRODUCTION

One of the central issues of spintronics is the generation and
control of spin currents in solids. There are different methods
to implement the spin current: optical, magnetic, and using an
electric current. The latter is especially important for use in de-
vices [1] when spin-polarized charge carriers are injected from
a ferromagnetic material to a nonmagnetic material. At that,
in the nonmagnetic material at the spin diffusion length, spin
accumulation arises. With an external perturbation usually af-
fecting the kinetic degrees of freedom, the interaction between
translational (kinetic) and spin degrees of freedom plays the
main role in the formation of the spin response to the external
perturbation. Combined electric dipole resonance can serve as
an example of such an effect. In this case, the interaction of
conduction electrons and an alternating electric field results in
resonance at the Zeeman frequency [2]. Another example of
such a response is the spin Hall effect (SHE) [3,4] that is exhib-
ited as a spin current perpendicular to both the normal current
and the spin accumulation. There also exist mechanisms of
interaction with external fields whose energy is simultaneously
transferred to both electronic subsystems (kinetic and spin) [5].
It has been found that thermal perturbations may also cause
the spin effects to occur. The first effect that has opened a new
direction in spintronics, the influence of thermal perturbations
on spin effects, is the spin Seebeck effect (SSE) [6,7]. It has
turned out to be inherent in conducting crystals of Ni81Fe19.
Afterwards, the SSE could be observed in various materials
such as (Ga,Mn)As [7] semiconductors and metallic Co2MnSi
ferromagnets [8]. Besides, later the spin Nernst effect (or the
thermal spin Hall effect), the spin Peltier effect, and others
have been discovered [9–14]. As noted in the work [15], there
is much in common between the spin effects implemented
in an electric or an inhomogeneous temperature field. So,
in spintronics, studying the interaction between charge and
spin currents, the new direction appears—spin caloritron-
ics [16,17]. As far back as in the late 20th century, a few
theoretical aspects of these interactions were discussed [18].

Studying of the SSE in a nonconducting magnet in
the system of a nonmagnetic conductor/magnetic insulator
(N/F) LaY2Fe5O12 [19] has shown that this effect cannot be
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described by standard approaches with regard to a description
of thermoelectric effects [18]. As distinct from conducting
crystals where the transfer of the spin angular momentum
is due to band charge carriers, the spin Seebeck effect can
be realized in nonconducting magnetic materials through
the excitation of a localized spin system. In this case, the
excitations (magnons) underlying the spin-wave current cause
the transfer of the angular momentum. Thus, conducting
crystals and a nonconductive magnet differ from each other
in the type of spin current, namely, a spin-wave current. It
is a new type of spin current. The system of localized spin
can be deviated from its equilibrium state in various ways.
In the experiment [19], this has been achieved by passing
an electric current through the nonmagnetic conductor Pt,
which results in the spin accumulation and the spin current
in it. The interaction of the spin-polarized electrons with the
localized spins at the interface (N/F) is accompanied by the
creation (or annihilation) of magnons, which in turn gives
rise to a perturbation of the magnetic subsystem. Due to small
spin-wave damping, the spin-wave current propagates at much
greater distances than the electron spin current. This fact makes
the effect possible to apply in practice [20,21].

An important role in the study of thermal perturbations
is played by a lattice (phonons). Indeed, an inhomogeneous
temperature field may cause a deviation of both the localized
spin subsystem (m) and the phonon subsystem (p) from
their equilibrium state. If the nonequilibrium state of each
subsystem is characterized by an effective temperature Ti, i =
m,p, the nonequilibrium state of the system as a whole
can be clearly described by a set of parameters Ti . The
difference in the effective temperatures of the subsystems
can lead to the realization of the effect—the transfer of
the angular momentum from the magnetic subsystem to the
lattice or to the electron spin subsystem [22,23] and vice
versa. Thermal perturbations are also responsible for the drag
effects, whose role is essential in a range of not-very-high
temperatures [24,25]. As the authors [26] believe, it is the
thermal perturbations which produce the observable anomaly
in the temperature dependence of the SSE.

The spin effects in nonconductive magnetic materials
under thermal perturbations were studied in several papers
[22,27–29]. In this case, the theoretical description largely
boiled down to the consideration of the evolution of the
localized moment subsystem. Given thermal fluctuations
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derived from the fluctuation-dissipative theorem, the authors of
the works mentioned above modeled the localized moments’
dynamics by the phenomenological Landau-Lifshitz-Gilbert
equation. As to the spin-density dynamics in a nonmagnetic
material, it is described by the Bloch equation with phe-
nomenological spin relaxation frequencies. A spin current
that was injected into the nonmagnetic material (N ) was
calculated as the average value of the rate of change of the
spin density in a nonmagnetic material. Spin-charge kinetics
in the systems (F/N), (F/N/F ) under a temperature gradient
was thoroughly covered in Ref. [30] in terms of a simple
phenomenological model and the simplest approximations.

The study of the spin-thermal effects requires a correct
description of the thermal perturbation. There are several
possible scenarios accounting for such perturbations. For
example, the reaction of weakly nonequilibrium systems on
a disturbance of the thermal type can be represented as a
Fourier transform of time correlation functions of appropriate
flux operators over the statistical equilibrium state of the
system [31]. The structure of admittances of such a type is
analogous to expressions for the transport coefficients arising
in the theory of equilibrium systems as the response to a
mechanical perturbation. These expressions can be represented
as an additional summand in the system’s Hamiltonian. That is
why the response to a thermal perturbation is often found using
indirect methods. Such cases require introducing fictitious
external forces identical to thermal perturbations exerted on
the system [32]. Response to the thermal perturbations can
also be calculated based on the Onsager hypothesis [33] about
of the nature of fluctuation damping, or by using the local
equilibrium distribution as an initial condition for the statistical
operator of the system to be found [34].

The response of weakly nonequilibrium systems to the
thermal perturbations can be universally constructed through
the method of the nonequilibrium statistical operator (NSO)
and its modifications [35]. The latter represent the NSO as
a functional of the local equilibrium distribution. The method
allows calculating the response of not only equilibrium but also
strongly nonequilibrium systems described in terms of rough-
ened macroscopic variables. Within this method, the kinetic
coefficients are expressed via the Fourier transform of time
correlation functions over the statistical distribution which
describes the unperturbed nonequilibrium process. Naturally,
in this case, electron scattering needs to be taken into account.

In the given paper, we consider the spin-thermal effects in a
normal conductor/magnetic insulator, using the NSO method
to describe thermal perturbations. The article is organized as
follows. The first part formulates the model at hand, represents
a Hamiltonian of the system, and introduces basic operators
and their microscopic equations of motion. The second part of
the work covers constructing both the nonequilibrium entropy
operator, including the thermal perturbations of the system,
and the NSO. The third section of the article focuses on an
analysis of macroscopic equations describing the spin-thermal
effects.

II. THE HAMILTONIAN

Our model consists of a normal conductor (N ) and a
ferromagnetic insulator (F ). We hold that, in the first con-

ductor, the spin accumulation takes place. It can be obtained
and implemented in various ways, for example, by using
the spin Hall effect. The conduction electrons of the normal
metal are coupled with the localized spin subsystem of the
ferromagnetic insulator through exchange interaction. The
inelastic scattering of the electrons by the localized spins,
accompanied by magnon emission or absorption, alters the
electron spin orientation and unbalances the localized spin
system. Consider the magnon scattering mechanism by the
example of the magnon-phonon interaction. We assume the
ferromagnetic insulator to be in a nonuniform temperature
field. Let the system of conduction electrons in the normal
conductor consist of two subsystems: the kinetic and spin.
In this case, the first is characterized by an equilibrium
temperature T and the second (the spin subsystem) by a
temperature Ts . The symbol Tm designates a temperature of
the localized spin subsystem, and Tp a temperature of the
lattice (phonons).

The Hamiltonian of the system (N/F ) can be represented
as H = HN + HF + HL. Here

HN =
∫

dx [ Hk(x) + Hs(x) ],

Hk(x) =
∑

j

{
p2

j

2m
,δ(x − xj )

}
, (1)

Hs(x) = −�ωs

∑
j

sz
j δ(x − xj ).

The integration is over the volume occupied by (NM). sz
j

and p
γ

j = �k
γ

j are components of the spin and momentum
of the j th electron operators, respectively. ωs = gsμ0H/�

is the Zeeman precession frequency of free electrons in an
external magnetic field directed along the axis z. gs, μ0 are the
effective spectroscopic splitting factor for electrons and the
Bohr magneton, respectively, {A,B} = (AB + BA)/2, and

HF =
∫

dx [Hm(x) + Hms(x)] (2)

is the Hamiltonian of the localized spins subsystem. Hm(x)
is the energy density operator of the magnetic subsystem. It
involves a sum of the exchange (over the nearest neighbors)
HSS and Zeeman energy HS :

HSS = −J
∑
jδ

Sj Sj+δ, HS = −�ωm

∑
j

Sz
j , (3)

where J is the exchange integral, and ωm = gmμ0H/�. Hms(x)
is the energy density operator of interaction between the s and
m subsystems at the interface. Then

Hms = −J0

∑
j

∫
dx s(x) S(Rj ) δ(x − Rj ), (4)

where J0 is the exchange integral, S(Rj ) being the operator of
the localized spin with the coordinate Rj at the interface. The
integration in (2) is over the volume occupied (F ).

HL = Hp + Hpm is the lattice Hamiltonian,

Hp =
∑
q,λ

��q,λ c+
q,λ cq,λ,
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where c+
q,λ (cq,λ) is the phonon creation (annihilation) Bose

operator with wave vector q, the polarization vector λ, and
the phonon frequency �q,λ. Hpm is the operator of interaction
between the localized spins and phonons. The explicit form of
interaction Hpm, we present below:

HL =
∫

dx [Hp(x) + Hpm(x) ].

In the future, we are interested in the evolution of the
magnetic subsystem, so the scattering of conduction electrons
by phonons for simplicity are omitted from consideration.

III. THE ENTROPY OPERATOR

To analyze the kinetics of the spin-thermal effects, we
employ a scheme developed in the NSO method applied to the
case of a small deviation of the system from the equilibrium
Gibbs distribution ρ0 = exp{−S0}. The entropy S0 of the
equilibrium system with the Hamiltonian H can be written
as

S0 = �0 + β(Hk + Hs − μn) + β(Hm + Hp + Hms + Hmp),

where β−1 = T is the equilibrium temperature of the system.
In terms of average densities, to the nonequilibrium state of

the system there corresponds the entropy operator

S(t) = �(t) +
∫

dx

{
β

[
Hk(x) −

∑
α

μα(x,t)nα(x,t)

]

+βs(x,t)Hs(x,t) + β Hp(x,t)

+ βm(x,t)[Hm(x,t) + Hms(x,t) + Hpm(x,t)]

}

� S0 + δS(t), (5)

where �(t) is the Massieu-Planck functional; βs(x,t), βm(x,t)
are the local equilibrium values of the inverse temperature
of the (s), (m) subsystems, respectively. μα(x,t) is the local
equilibrium value of the chemical potential of electrons with
spin α = ↑,↓, and

nα(x) =
∑

j

δ
(
x − xα

j

)
is the operator of the particle number density with the spin
α. n(x) = n↑(x) + n↓(x).

The operator δS(t) = ∫
dxδS(x,t) describes the system

deviation from its equilibrium state:

δS(t) = �

∫
dx

{
δβs(x,t)Hs(x) − β

∑
α

δμα(x,t) nα(x)

+ δβm(x,t)[Hm(x) + Hms(x) + Hpm(x)]

}
,

�A = A − 〈A〉0, 〈. . .〉0 = Sp (. . . ρ0),

〈. . .〉t = Sp ( . . . ρ(t)), ρq(t) = exp{−S(t)},
δμα(x,t) = μα(x,t) − μ, δβi(x,t) = βi(x,t) − β, (6)

where (i = s,m). The quantities δμα(x,t),δβm(x,t) have the
meaning of nonequilibrium additions to the chemical potential

μ and deviations of the magnetic subsystem temperature from
the equilibrium temperature β−1 = T .

In the linear approximation the deviation from the equilib-
rium, the NSO (or the density matrix) ρ(t) can be written as
follows [35]:

ρ(t) = ρq(t) +
∫ 0

−∞
dt1 eεt1

∫ 1

0
dτ ρτ

0 Ṡ(t + t1,t1)ρ−τ
0 ρ0. (7)

Here ρq(t) is the quasiequilibrium statistical operator, Ṡ(t)
being the entropy production operator:

Ṡ(t) = δṠ(t) = ∂S(t)

∂t
+ 1

i�
[S(t),H ].

A further algorithm for constructing the operator ρ(t) reduces
to finding the entropy production operator. Commuting the
operators nα(x),Hs(x) with the Hamiltonian H, we find the
operator equations of motion,

ṅα(x) = −∇ Inα (x) + ṅα
(ms)(x), (8)

Ḣs(x) = −∇ IHs
(x) + Ḣs(ms)(x). (9)

Here Inα (x) = 1
m

∑
j {pj ,δ(x − xα

j )} is the flux density of
particles with spin α. ṅα

(ms)(x) determines the rate of change
of the number of electrons with spin α due to the spin-flip
electron scattering by the (m) subsystem.

Similarly, IHs
(x) = −�ωs

1
m

∑
j,α sz

j {pj ,δ(x − xα
j )} deter-

mines the flux density of the Zeeman energy. Ḣs(sm)(x) is the
rate of change of the electron (s)-subsystem local energy due
to their interaction with magnons (m):

Ȧλ(γ )(x) = (i�)−1[Aλ(x) ,Hγ ]. (10)

Revealing the spin index explicitly, we write the expression
for the spin current density Js(x):

Js(x) = {ṅ↑(x) − ṅ↓(x)}
2

= −∇ Isz (x) + ṡz
(ms)(x),

Isz (x) = [I↑
s (x) − I↓

s (x)]/2, (11)

ṡz
(ms)(x) = [ṅ↑

(ms)(x) − ṅ
↓
(ms)(x)]/2.

From the expression (11) it follows that Js(x) contains two
parts: collisionless Isz (x) and collisional ṡz

(ms)(x). The former
is due to the flux of particles with different spin orientations;
the latter is determined by the spin-flip scattering.

Let us turn to the consideration of the magnetic subsystem.
Using the method of Holstein-Primakov [36], the Hamiltonian
of localized spins subsystem can be rewritten with spin-wave
(magnon) variables (using the operators creation b+

k and
annihilation bk). Expressed in terms of the magnon operators,
the Zeeman and exchange interactions are of the form

HS = −�ωdNS + �ωd

∑
k

b+
k bk, (12)

HSS � −JNzS2 +
∑

k

2JzS(1 − γk)b+
k bk,

(13)
γk = (1/z)

∑
δ

exp{ik δ}.

Here N is the number of localized moments, with the spin
S,z the number of the nearest neighbors. b+

k bk are the
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creation and annihilation operators for magnons with the wave
vector k. For |k δ| 	 1, we have z(1 − γk) ≈ (1/2)

∑
δ(k δ)2,

i.e., ωk = JS
∑

δ(k δ)2. For body-centered and face-centered
cubic lattices with a lattice constant equal to a, we have ωk =
2JS(ka)2. In other words, the contribution of the exchange
interaction for the magnon frequency has the same form as the
de Broglie dispersion law for free particles of mass m∗:

ωk = �

2m∗ k2, m∗ = 1

2JSa2
.

Thus, regarding the magnon gas as free, we arrive at

Hm =
∑

k

�ωkb
+
k bk.

This expression can be interpreted as the sum of the energies of
the quasiparticles-ferromagnons having the quasimomentum
�k with their own effective mass m∗ and the magnetic
moment [37].

The Hamiltonian of the magnon-phonon interaction can
be found by considering the possibility of displacement of
the magnetic ions from their equilibrium positions. In the
linear order in the displacement the Hamiltonian of a magnon-
phonon interaction can be represented as [28,38]

Hmp =
∑
q,p

Cp,q (c+
−q + cq) b+

p+q bp. (14)

Here

Cp,q ∼ C(�ωp)

vp

√
�νq

2NF Mi

, (15)

where C is the dimensionless magnon-phonon coupling
constant, NF is the number of lattice sites in the domain,
Mi is the ion mass, and νq = vpq is the phonon energy for the
phonon velocity vp.

The exchange interaction (4) includes both the elastic
electron scattering by the localized spins and the inelastic scat-
tering process, with the former preserving the spin orientation
and the latter happening with the electron spin-flip and the
creation or annihilation for magnons. Using the creation and
annihilation operators for electrons and magnons, we rewrite
the inelastic part of the exchange interaction in the form

Hms = −J ∗ ∑
k,k′,q

{b+
q a+

k↑ ak′↓ + bq a+
k′↓ ak↑} δk′,k+q, (16)

where a+
kα (akα) are the creation (annihilation) operators for

electrons with a certain spin value α = ↑,↓. The inelastic
part of the exchange interaction (Hms) leads to the angular
momentum transfer between electrons of the normal metal and
magnons of the ferromagnetic insulator. Obviously, nonequi-
librium of one of the subsystems (electronic or magnon)
makes the magnon/spin current via the interface. At the same
time, the total angular momentum conservation law provides
the boundary condition for the current at the metal-insulator
interface: the continuity of the spin current.

Thus, the equation of motion for the magnetic subsystem
can be written as

Ḣm(x) = −∇ IHm
(x) + Ḣm(ms)(x) + Ḣm(mp)(x). (17)

Here IHm
(x) = −�ωm ISz (x) is the flux density of the magnon

energy in the (m) subsystem. The remaining summands on
the right-hand side of the equation are responsible for the
magnon-phonon scattering processes. Finally, the equation of
motion for the lattice subsystem has the form

Ḣp(x) = −∇ IHp
(x) + Ḣp(mp)(x). (18)

Using the operator equations of motion, we can construct
an expression for the entropy production operator Ṡ(t) in a
linear approximation over gradients of spatial inhomogeneities
of temperature and chemical potential [39], integrating by
parts the summands containing the divergence of fluxes.
Having discarded the surface integrals, we write the entropy
production operator in the form

Ṡ(t) = �

∫
dx

{
−β

∑
α

[
Inα (x)∇μα(x,t) + δμα(x,t)ṅα

(ms)(x)
]

+IHm
(x)∇βm(x,t) + [βs(x,t) − βm(x,t)]Ḣs(ms)(x)

+ [βm(x,t) − β]Ḣm(pm)(x)

}
. (19)

By revealing the spin index in the first two summands on the
right-hand side of the formula (19), we get∑

α

Inα (x)∇μα(x,t) = Isz (x) ∇ μs(x,t), (20)

∑
α

δμα(x,t)ṅα
(ms)(x) = μs(x,t)ṡz

(ms)(x)

= −μs(x,t)Ṡz
(ms)(x). (21)

Here μs = μ↑ − μ↓. It is obvious that the expression (21)
provides the boundary conditions for the collisional part of the
spin current at the interface. The expressions (20), (11) imply
that the heterogeneity in the spin accumulation distribution
governs the collisionless part of the spin current.

Before proceeding to constructing the equations for the
averages, we show that the entropy production operator
Ṡ(t) can be represented both through the spin accumulation
μs(x,t) and through the spin temperature βs(x,t). For this
purpose, we find a linear relationship between the deviations of
thermodynamic coordinates and thermodynamic forces from
their equilibrium values. In this approximation, it is sufficient
to put ρ(t) ∼ ρq(t) and expand the quasiequilibrium operator
ρq(t) = exp{−S(t)} in powers of δS(t). Then we come up with
the result

δ〈Hs(x)〉t = −
∫

dx′
{

δβs(x′,t)(Hs(x),Hs(x′))0

−β
∑

α

δμα(x′,t)(Hs(x),nα(x′))0

}
,

δ〈n(x)〉t = −
∫

dx′ {δβs(x′,t)(n(x),Hs(x′))0

−β
∑

α

δμα(x′,t)(n(x),nα(x′))0

}
, (22)
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where

δ〈A〉t = 〈A〉t − 〈A〉0,

(A,B)0 =
∫ 1

0
dλSp

{
Aρλ

0 �B ρ1−λ
0

}
.

Going over to the Fourier components of the spatial coordi-
nates,

A(x) =
∫

dq
(2π )3

A(q) eiq x, A(q) =
∫

dxA(x) e−iq x,

and taking into account that 〈n〉t = 〈n〉0, we obtain

βμs(q,t) = δβs(q,t)
(n(q),Hs(−q))0

(n(q),n(−q))0
. (23)

Equation (23) defines the relationship between the spin temper-
ature Ts and the spin accumulation μs . In the long-wavelength
limit q = 0 and the steady state, we obtain

μs = −(�ωs/2) (1 − T/TS). (24)

Substituting the expression (23) into the equation for
δ〈Hs(x)〉t , we get

δ〈Hs(q)〉t = −δβs(q,t) (�ωs)
2 Czz(q),

(25)

Czz(q) = (sz(q),sz(−q))0 − (n(q),sz(−q))2
0

(n(q),n(−q))0
.

The desired relationship between the correlation function Czz

and the differential paramagnetic susceptibility χs [40] of the
electron gas is given by

χs = ∂

∂H
gsμb〈sz〉t = β(gsμb)2 Czz. (26)

IV. MACROSCOPIC EQUATIONS

Let us construct the equations for the averages, which have
the meaning of local conservation laws of the average energy
density for the (s) and (m) subsystems and of the particle
number density. Inserting the entropy production operator
into the expression for the NSO (7), we average the operator
equation (11) for the spin current 〈Js(x)〉t = (d/dt)〈sz(x)〉t .
Then we arrive at

〈Js(x)〉t =
∫

dx′{Dγ
sz sz (x,x′)β ∇γ μs(x′) + [βm(x′) − βs(x′)]

× �ωs Lz
z,(ms)(x,x′) − β μs(x′) Lz

z,(ms)(x,x′)
}
,

(27)

where

Lz
z,(ms)(x,x′) =

∫ 0

−∞
dt ′ eεt ′ (ṡz

(ms)(x) , ṡz
(ms)(x

′,t ′)
)

0,

(28)

D
γ
sz sz (x,x′) =

∫ 0

−∞
dt ′ eεt ′

∑
λ

∇λ
(
I λ
sz (x),I γ

sz (x′,t ′)
)

0.

Here A denotes time averaging, βi(x,t + t ′) = βi(x),(i =
s,m); μ(x,t + t ′) = μ(x).

We have derived the generalized Bloch equation that
describes the motion of the spin magnetization density—the
spin diffusion and relaxation processes. The first summand

on the right-hand side of the equation reflects the former
process; the second summand is responsible for the latter
caused by the electron-magnetic impurity interaction at the
interface. In doing so, we have made an allowance for the
effects of temporal and spatial dispersion of the spin diffusion
tensor and spin relaxation frequency. It should be pointed out
that the resulting expressions for the transport coefficients
Lz

z,(ms)(x,x′),Dγ
sz sz (x,x′) are suitable for both classical and

quantizing magnetic fields and free from assumptions about
the nature of the spectrum, the the kind of statistics, etc. Similar
expressions for the spin relaxation frequency are also inherent
in the theory describing the spin-lattice relaxation of a nonequi-
librium spin system with magnetic resonance saturation [40].

Averaging the operator equation (17), we have

〈Ḣm(x)〉t = −∇ 〈IHm
(x)〉t + 〈Ḣm(ms)(x)〉t + 〈Ḣm(mp)(x)〉t .

(29)

Or averaging time

〈Ḣm(x)〉t =
∫

dx′
{∑

γ

D
γ

HmHm
(x,x′)∇γ βm(x′)

−β μs(x′)/(�ωm) Lm
m,(ms)(x,x′)

+ [βm(x′) − βs(x′)] (ωs/ωm) Lm
m,(ms)(x,x′)

+ [βm(x′) − β] Lm
m(mp)(x,x′)

}
, (30)

where

Lm
m(ml)(x,x′) =

∫ 0

−∞
dt ′ eεt ′ (Ḣm(ml)(x) , Ḣm(ml)(x′,t ′))0, (31)

D
γ

HmHm
(x,x′) =

∫ 0

−∞
dt ′ eεt ′

∑
λ

∇λ
(
I λ
Hm

(x),I γ

Hm
(x′,t ′)

)
0.

(32)

The first term on the right-hand side of Eq. (29) is the energy
density change in the magnon subsystem due to the temper-
ature gradient, which in turn leads to the magnon flux. As in
the case of the spin electron subsystem, this term describes
the magnon diffusion. The second and third terms of the
expression (29) are responsible for the impact of the electronic
(spin) and lattice (phonon) subsystems on the magnon energy
change through their interaction. The role of the spin electron
subsystem reduces to the generation and annihilation of the
magnons by the inelastic spin-flip electron scattering at the
normal metal/ferrodielectric interface. According to (24), this
contribution is proportional to the spin accumulation μs . The
phonon subsystem proves to affect the magnon energy change
in a twofold manner. On the one hand, the magnon-phonon
scattering processes make themselves felt in the energy
relaxation behavior of the magnon subsystem; on the other
hand, the phonon subsystem often acts as a “heating” of the
heat/charge transfer processes by means of drag effects [24]. It
should be emphasized that the booster role can also be studied
by the NSO method. The energy transfer efficiency between
the phonon and magnon subsystems depends on temperatures
of the appropriate subsystems and the degree of their mutual
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interaction. As can easily be seen from (30), a nonzero
contribution to the spin-wave current is the consequence of
the difference in the temperatures of the above subsystems.
Equation (30) implies that, depending upon its direction, the
magnon flux produced by a temperature gradient can give rise
to the angular momentum transfer from the magnon system
to the electron system. Besides, the heat fluxes contribute
to the emergence both of the thermally induced spin-torque
effect [41–43] and of the spin-torque effect generated by
magnons [44,45].

V. CONCLUSIONS

Using one of the methods of quantum nonequilibrium
statistical physics (NSO), we investigated the spin transport in
hybrid nanostructures: normal metal/ferromagnetic insulator.
An approximation of the effective parameters, when each of the
interacting subsystems (electron spins, magnons, phonons) is
characterized by its effective temperatures was considered. We
constructed macroscopic equations for the spin current caused
by both the unbalanced spin subsystem and an inhomogeneous
temperature field in the ferromagnetic insulator. We derived
the generalized Bloch equations which describe the spin and
spin-wave current propagation in the system. At that, these
allow for both the diffusive nature of the magnon motion
and the magnon relaxation processes responsible for the spin
pumping and the spin-torque effect.
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APPENDIX A

Let us give the results coming from the expressions for the
spin diffusion tensor (28), including the temporal and spatial
dispersion, and find their relationship with the conductivity
tensor components. The correlation functions of the fluxes in
formula (28) involve the Fourier components of the isothermal
Green’s functions:

GAB(t) = θ (−t) eεt (A,B(t))0 =
∫ +∞

−∞

dω

2π
eiωt GBA(ω).

(A1)

Differentiating (A1) over t , we obtain the chain of equations(
∂

∂t
− ε − iω0

)
G = −δ(t)(B,A)0 + G1,(

∂

∂t
− ε − iω0

)
G1 = −δ(t)(B,Ȧ)0 − G2,

. . . . . . . . . , (A2)

G(t) = GAB(t), G1(t) = θ (−t) eεt (A, Ḃ(t))0.

G2(t) = θ (−t) eεt (Ȧ, Ḃ(t))0.

Here Ȧ = (i�)−1[A,HV ], where HV is the scatterer Hamilto-
nian. The formal solution of the chain is

GAB(ω) = [MAB(ω) + ε − i(ω − ω0)]−1(A,B)0, (A3)

where M(ω) = G1 G−1 is the mass operator for the Green’s
function.

Let us consider the frequency dispersion by the example
of the longitudinal spin diffusion coefficient. Restricting
ourselves to the Born approximation of the interaction with
the lattice in the expression for the mass operator, we have

Dzz
zz = 1

Czz

(
I z
sz ,I

z
sz

)
0

νzz
zz (ω) − iω

. (A4)

Calculating the correlation functions (A,B)0, we come up with

(
I z
sz ,I

z
sz

)
0 = n/2m, Czz = n

8

F−1/2(μ/T )

F1/2(μ/T )
,

where Fm(x) are the Fermi integrals. The expression νzz
zz

coincides exactly with the formula for the relaxation frequency
νp of the electron momentum [46]. Thus, the longitudinal spin
diffusion coefficient is given by

Dzz
zz = D0

νp

νp − iω
, D0 = 2T

νp

F−1/2(μ/T )

F1/2(μ/T )
. (A5)

The components of the spin diffusion tensor can be expressed
in terms of the components of the conductivity tensor σik(q,ω),
which in our notation is

σγk(q) = e2

T

∫ 0

−∞
dte(ε−iω)t

(
I

γ

N (q),I k
N (−q,t)

)
. (A6)

Simple calculations show that

Dzz
ik (q,ω) = T

4e2 Czz(q)
σik(q,ω).

APPENDIX B

The calculation of the correlation function is as follows:

R =
∫ 0

−∞
eεt1dt1 (Ḣm(mp),Ḣm(mp))

=
∫ 0

−∞
eεt1dt1

∫ 1

0
dλSp(Ḣm(mp)Ḣm(mp)(T )ρ0)

T = i�βλ + t1. (B1)

The commutator Ḣm(mp) is

Ḣm(mp) = 1

i�

∑
pq

Cp,q (ωp+q − ωp) (c+
−q + cq) b+

p+qbp.

(B2)

By substituting (B2) in the correlation function and averaging
operators, we obtain

R = 2π

�

∑
pq

Cp,q Cp+q,q (ωp+q − ωp)2

× fp+q (1 − fp){ nq δ(εp+q − εp + E−q)

+ (1 + nq) δ(εp+q − εp − Eq) }, (B3)

where fp,nq are the distribution functions of phonons and
magnons:

fp = 1

eβεp − 1
, nq = 1

eβEq − 1
.
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