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Commensurability resonances in two-dimensional magnetoelectric lateral superlattices
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Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic
modulation are prepared in Ga[Al]As heterostructures. The two-dimensional electron gases exposed to these
superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic
fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to
the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where
snake trajectories exist which are quasicommensurate with the antidot lattice. The diagonal magnetoresistivity
in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no
fine structure. The experimental results are interpreted with the help of numerical simulations based on the
semiclassical Kubo model.
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I. INTRODUCTION

Artificial lateral superlattices (LSLs) in two-dimensional
electron gases (2DEGs) [1–5] are of great interest for funda-
mental studies of the electron dynamics in periodic potentials.
Since it is very common that the artificial lattice constants place
the systems in the transition region between the quantum and
the classical regime, classical, semiclassical, as well as quan-
tum descriptions are all justifiable and enable studies of the
validity of these approaches including their limits. Besides the
Fermi wavelength λF and the electronic coherence length, the
elastic mean-free path is an important parameter as well, since
it defines the length scale below which interaction with the LSL
potential dominates over random scattering. Many different
variants of LSLs have been investigated in great depth. One-
dimensional electrostatic [1,2] and magnetic [6–8] lattices,
where the modulation extends along one spatial coordinate
and the structure is homogeneous along the second one, show
magnetoresistivity resonances that can be explained in terms of
guiding center drift resonances of the cyclotron motion within
a classical picture [9] or by miniband formation in a quantum
picture [2,10,11]. One-dimensional magnetoelectric hybrid
LSLs have been studied in some experiments as well, where
the strain imposed by the ferromagnetic or superconductive
electrodes used to define the magnetic LSL also generates an
electrostatic superlattice [12]. Two-dimensional LSLs, both
magnetic [7,13] and electrostatic [3–5], have been studied
thoroughly as well. Their classical dynamics corresponds to
a mixed phase space where chaotic and regular dynamics
coexist [14,15] and causes commensurability resonances that
are characteristic for the type of Bravais superlattice employed,
such as square [3–5], rectangular [16], or hexagonal [17,18].
Within a quantum picture, on the other hand, a fractal energy
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spectrum, also known as the Hofstadter butterfly [19,20],
is seen for weak electrostatic modulation amplitudes [21].
B-periodic oscillations on top of commensurability reso-
nances [16,18,22] can be explained within a semiclassical
approach by the Aharonov-Bohm [23]—or Altshuler-Aronov-
Spivak [24]—effect in terms of quantized motion along closed
trajectories defined by the LSL potential and the magnetic
field [25].

2DEGs with very high electron mobilities [26,27] have
recently been developed into mature systems. They enable the
preparation of LSLs with large lattice constants in the classical
ballistic regime and facilitate the definition of novel types of
LSLs with more complex unit cells. Here, the study of such a
hybrid LSL, composed of a a two-dimensional, square antidot
lattice and a one-dimensional magnetic array is reported. The
magnetic LSL consists of approximately Lorentzian shaped
peaks of alternating sign and thus has a vanishing average
magnetic field. Snake trajectories, i.e., trajectories formed
by the superposition of an oscillatory motion along the first
direction and a motion with nonvanishing average velocity
along the second direction [28], can become commensurate
with the antidot lattice, and magnetoresistivity resonances are
to be expected. Furthermore, for the magnetic modulation
amplitudes applied here, closed electronic orbits are absent.

After the sample preparation and the experimental setup
are introduced in Sec. II, the measurements are presented in
Sec. III and interpreted with the help of numerical simulations
in Sec. IV. The paper concludes with a summary and an outlook
in Sec. V.

II. SAMPLE PREPARATION AND EXPERIMENTAL SETUP

A GaAs/Al0.3Ga0.7As heterostructure with a 2DEG 90 nm
below the surface is used. After a brief illumination with
infrared light, the unpatterned 2DEG has a density of
3.6 × 1015 m−2 and a mean-free path of 88 μm at liquid
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FIG. 1. (Color online) (a) Scheme of the hybrid lateral superlat-
tice geometry. Circular holes (red circles) that form the antidots are
etched into the sample. Every second line of antidots is covered by a
Dy stripe of 1 μm width. The top view of the pattern is shown in the
uppermost part. In the middle, a cross section in the yz plane at x = 0 is
shown. The 2DEG is depleted underneath the etched regions. The Dy
stripes are magnetized in the y direction, as indicated by the arrows.
The corresponding electrostatic potential (possible strain effects are
neglected) and the perpendicular magnetic field Bz(y) are shown in
the lowermost part. (b) Sketch of the sample layout. Two identical
hybrid LSLs, (i) and (ii), are defined in an L-shaped Hall bar. The
two components of the hybrid LSL, namely the antidot lattice (iii)
and ferromagnetic stripes (iv) are defined separately, and the edge of
a Dy pad centered in a Hall cross (v) enables Hall magnetometry. The
coordinate system shows the crystallographic orientation of the Hall
bar. (c) ρxx of array (iii) as a function of a homogeneous perpendicular
magnetic field. Here, the peaks are labeled by the number of antidots
in one cyclotron orbit. (d) ρxx(By) of array (iv).

helium temperatures. The sample geometry is sketched in
Figs. 1(a) and 1(b). An L-shaped Hall bar, oriented parallel to
the natural GaAs cleavage directions, was prepared by optical
lithography. Three identical, square antidot lattices (lattice
constant a = 1.0 μm) were patterned on one Hall bar by
electron beam lithography and subsequent reactive ion etching.
Lithographic antidot diameters of dlith = 200 nm (sample A)
as well as dlith = 300 nm (sample B) were prepared on separate
Hall bars. As a consequence of a lateral depletion length
of 45 nm around the antidots, this corresponds to electronic
diameters of d ≈ 290 nm and d ≈ 390 nm, respectively, as
measured by the Aharonov-Bohm oscillation period observed
in large magnetic fields [29,30]. Since (a − d)/λF ≈ 17 for
sample A and ≈14 for sample B, these LSLs reside well
inside the classical regime. After the definition of the antidots,
Dy stripes of width a and a period of 2a were prepared
on top of two antidot lattices by electron beam lithography,

enabling measurements of all resistivity components in one
cool-down; see Fig. 1(b). The Dy stripes have a thickness of
h = 250 nm to ensure a strong fringe field when magnetized.
In sample A, they were deposited directly on the GaAs, while
in sample B, a homogeneous film of 5 nm Cr plus 5 nm Au
thickness was evaporated on top of the antidot lattice prior
to the Dy deposition. This allows us to estimate the role of
strain effects [7,31] possibly induced by the Dy stripes, which
are centered at the columns of antidots and aligned parallel to
the x direction. The lateral size of the superlattices is 100 μm
in longitudinal and 50 μm in transverse direction (100 × 25
unit cells). For control measurements, the Hall bar furthermore
contains a nominally identical magnetic stripe array without
the antidots underneath, and the edge of a Dy film in a Hall
cross for Hall magnetometry [32,33].

The samples were inserted in a 4He gas flow cryostat with
a variable temperature insert and a base temperature of 1.4 K.
The system is equipped with a magnet of 8 T maximum field
strength. The external magnetic field By was applied in the
y direction. It magnetizes the Dy stripes to a magnetization
of μ0M(By). The 2DEG responds predominantly to the z
component of the fringe field of the Dy stripes, and we
therefore neglect the influence of in-plane magnetic fields on
the 2DEG throughout this paper. The magnetic field profile
Bz(y) is indicated in the lowermost section of Fig. 1(a).
From the fringe field of a perfectly magnetized stripe, one
expects [34]

Bz(y,By) = μ0M(By)

4π

N−1∑
j=0

ln

(
A−

A+

)
,

(1)

A± =
[
y − a

(
2j ∓ 1

2

)]2 + z2
0[

y − a
(
2j ∓ 1

2

)]2 + (z0 + h)2
,

where z0 is the distance between the 2DEG and the bottom of
the Dy film, j is an integer, and N denotes the total number
of Dy stripes. This magnetic profile has peaks of alternat-
ing sign with amplitude Bmax

z (By) ≡ |Bz(y = [2j − 1
2 ]a,By)|.

The maximum magnetization of our Dy films is μ0M ≈ 2.7 T
for By > 5 T, corresponding to an upper limit of Bmax

z ≈
480 mT. The coercive magnetic field is Bc = 670 mT. The
resistivity components ρij (B) with i,jε{x,y} were determined
by applying an ac current of 100 nA with a frequency of
17.7 Hz from source S to drain D, see Fig. 1(b), and by
measuring the electrostatic potentials in the x and y directions
at voltage probes with a lock-in amplifier.

III. EXPERIMENTAL RESULTS

In Figs. 1(c) and 1(d), the magnetoresistivities of the LSL
components of sample A for the two hybrid LSL components,
namely the square antidot lattice (iii) and the array of magnetic
stripes (iv), respectively, are reproduced. The antidot lattice
reveals the well-known commensurability resonances with
resistivity maxima at perpendicular magnetic fields where the
cyclotron orbit is commensurate with one, two, four, or nine
enclosed antidots [3–5]. For Bz > 250 mT, Shubnikov–de
Haas oscillations set in. ρxx(By) of the Dy stripes shows
a peak centered at Bc and some weak features at larger
magnetizations. This type of magnetoresistivity of magnetic
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FIG. 2. (Color online) (a) Magnetoresistivities ρxx(By − Bc) of
the hybrid superlattices of samples A and B, shown for the up-sweeps
(increasing By). The inset shows the hysteretic behavior, exemplified
for sample A. The dashed lines indicate Bc. (b) Temperature
dependence of ρxx(By) for sample A, as observed in a different
cool-down. Only the down-sweep direction is shown for clarity. The
measurement of ρyy(By) for sample A is reproduced in (c).

stripe arrays in in-plane magnetic fields has been studied
theoretically [35], while to the best of our knowledge, experi-
ments have been reported only in related configurations [36].
Numerical simulations based on the classical Kubo formalism
(see below for details) give a weak, positive magnetoresistivity
without fine structure [30], as measured for |By | � 4 T. This
indicates that the peak at Bc is not an intrinsic classical property
of the magnetic profile itself, and we tentatively attribute it to
the frequently observed and still not fully understood negative
colossal magnetoresistance in high-mobility 2DEGs [37–39],
which is beyond our focus here, possibly in combination
with other effects such as weak localization. The strength
of this feature depends on the cool-down cycle. It should be
emphasized that ρxx of the 2DEG underneath the Dy array
is constant over the full scan range within ±0.8 �. For the
following, this contribution can therefore be neglected.

The diagonal magnetoresistivities ρxx(By) and ρyy(By) of
the hybrid LSLs are reproduced in Fig. 2, and we first focus on
ρxx(By) as observed on samples A and B (a). As By is detuned
away from Bc, a positive magnetoresistivity is observed.
As By is further increased, two peaks are seen, separated
by a pronounced minimum. Around By − Bc ≈ 600 mT, a
decrease of ρxx by roughly a factor of 2 is seen, followed by

a broad maximum that extends up to By − Bc ≈ 2 T. These
most prominent features appear in sample B at somewhat
larger magnetic fields than in sample A. Also, even though
the positive magnetoresistance is less pronounced in sample
A than in sample B, sample A shows clear additional finer
structures, some of which are also adumbrated in ρxx(By) of
sample B. These differences can be traced back to the Cr/Au
electrode present in sample B, as will be discussed below in
more detail. In the following, we focus on sample A. In the inset
of Fig. 2(a), the hysteretic behavior of ρxx(By) is reproduced.
The features observed in a single sweep are fairly symmetric
about Bc, while reflection of the up-sweep about By = 0
coincides very well with the down-sweep. This behavior
reflects the hysteretic magnetization of the Dy stripes which is
not perfectly antisymmetric about By = Bc (see below). These
magnetoresistivity features show a weak temperature depen-
dence, see Fig. 2(b), and the most pronounced ones remain
visible up to T ≈ 16 K. This suggests that they should be
interpretable within a classical picture. They are furthermore
superimposed on a slowly varying negative magnetoresistivity
that extends to |By − Bc| ≈ 1.6 T, after which it increases
slightly. This background depends somewhat on the cool-down
cycle. The strong positive magnetoresistivity in a narrow
interval around Bc is still clearly visible at 32 K, and behaves
similarly to that one observed in two-dimensional antidot
lattices; see also Fig. 1(c). It is due to a Bz-induced increase
in scattering at the antidots and is of no further interest
here.

A smooth increase of ρyy(By) is observed as By is driven
away from Bc. A sharp increase sets in for |By − Bc| ≈ 1.6 T
and stops for |By − Bc| ≈ 3.5 T; see Fig. 2(c). The shape
of ρyy(By) strongly resembles the one observed for single
magnetic barriers [34], as well as magnetic barriers in series
of alternating polarity [40]. Within a classical picture, the
increasing amplitude of Bz(y) reflects an increasing fraction
of the incident electrons that gets reflected at the magnetic
barrier. Above a threshold amplitude of Bz(y), electrons
can only pass the barrier via �E × �B drift at the edges of
the Hall bar, or by scattering events inside the magnetic
barrier [41]. These effects cause a saturation of ρyy at
large Bmax

z . Since our ferromagnetic array represents an
array of magnetic double barriers in series [40], ρyy(By)
can thus be qualitatively understood in terms of the
properties of magnetic double barriers with the antidots
acting as scatterers [30] and is not a unique signature
of the hybrid lattice. The onset of the sharp increase of
ρyy furthermore correlates with the end of the negative
magnetoresistivity in the x direction. Comparison of ρxx(By)
to ρyy(By) reveals that the transport at large magnetic fields is
highly anisotropic. For example, for |By − Bc| = 2.5 T, the
ratio ρyy/ρxx reaches a value of ≈230. This suggests that for
sufficiently large magnetization of the Dy stripes, the electrons
are guided along the x direction by the magnetic modulation,
while crossing the magnetic walls is highly unlikely.

The off-diagonal components of the magnetoresistivity
tensor were measured as well [30]. Since the average per-
pendicular magnetic field is zero, they vanish to a good ap-
proximation in the magnetic field range where the resonances
in ρxx(By) appear and are thus not very helpful for their
interpretation.
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IV. MODEL CALCULATION AND DISCUSSION

A coarse estimation, to be substantiated below, reveals
that for Bmax

z � 500 mT, Bz(y) is too weak to generate
closed cyclotron-type orbits. Therefore, the magnetoresistivity
resonances must originate from open trajectories. This situ-
ation is quite different in comparison to antidot lattices in
homogeneous magnetic fields where closed orbits, runaway
trajectories, and chaotic orbits coexist and all contribute
to the magnetoresistivity with a magnetic field-dependent
weight [42]. Open cycloid orbits are absent as well in the
interval where the resonances appear, and it is therefore
expected that snake trajectories play an important role, the
most obvious type of which is centered at the roots of Bz(y) and
runs along columns of antidots in the x direction. Since this is a
classical picture and moreover the most pronounced features of
the magnetoresistivity show a weak temperature dependence,
it appears plausible to model them using the classical Kubo
formalism. The code we use has been presented in detail
elsewhere [43] and is therefore only briefly sketched here. We
show the simulations for the parameters of sample A. Electrons
are injected at random locations inside a unit cell of the LSL.
They initially move in random directions with their Fermi
velocity of vF = 2.6 × 105 m/s. The incremental change of
the direction of motion by the inhomogeneous magnetic field
given by Eq. (1) is calculated with a step width of 2 nm,
and specular reflection at the antidots with d = 290 nm is
assumed. Furthermore, z0 = 90 nm is used, and we assume
that the antidot potential is hard wall, as justified by the large
a/d ratio. The simulations are carried out for zero temperature.
From the simulated diffusion tensor obtained via the Kubo
formula, the magnetoresistivity components are obtained via
the Einstein relation for a degenerate 2DEG.

Figure 3(a) shows the simulated magnetoresistivity ρxx as a
function of the maximum of the perpendicular magnetic field
Bmax

z ; see also Figs. 1(a) and 1(b).
As in the experiment, several features in ρxx are observed.

Close to Bmax
z = 0, a positive magnetoresistivity is present.

For Bmax
z < 250 mT, a series of resistivity minima at Bmax

z =
32 mT, 53 mT, and ≈110 mT is visible. A clear but weaker ad-
ditional minimum is visible at Bmax

z ≈ 170 mT. Above a sharp
decrease of ρxx at Bmax

z ≈ 260 mT, a broad minimum around
280 mT is present, followed by some weakly pronounced
maxima and minima. Finally, another sharp decrease of ρxx

around Bmax
z = 500 mT is observed. A direct comparison with

the measurements requires knowledge of the transformation
function μ0M(By). Conceptually, it can be determined by Hall
magnetometry of the stripe array on top of Hall crosses well
inside the diffusive regime. In the ballistic or quasiballistic
regime, the Hall voltage translates into the magnetization by
nontrivial correction factors [33,44], the detailed discussion
of which is beyond our scope here. Since such an estimation
would still assume perfect, monodomain magnetization of the
Dy stripes as well as a certain shape of the fringe field, some
uncertainty would remain. Therefore, in order to estimate
μ0M(By), we restricted ourselves to Hall magnetometry of
the edge of a Dy film, prepared in the same process step
as the magnetic lattice. The measured Hall voltage as a
function of By , reproduced in Fig. 3(b), shows a marked
peak where the average cyclotron diameter equals the width
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FIG. 3. (Color online) (a) ρxx(Bmax
z ) as simulated within the

Kubo model, plotted as a function of the maximum of Bz. The
period of the commensurate snake trajectories is indicated at the most
prominent resistivity minima. The experimental trace of sample A
has been scaled to Bz with the help of the magnetization trace, as
obtained from the Hall resistance of one Dy edge centered inside a
Hall cross (b). (c) Simulation results for ρyy(Bmax

z ) in comparison to
the scaled experimental data of sample A.

of the voltage probe. The decrease of the Hall voltage at
larger magnetic fields originates from ballistic effects [33]. The
asymmetry of the Hall voltage furthermore indicates that the
magnetization of the film is not perfect. Therefore, we compare
the measured data to the simulations by scaling it with an
approximated function μ0M(By), obtained numerically along
the lines of Ref. [33], where μ0M is roughly proportional to
By for |By − Bc| < 600 mT and depends only weakly on By

for larger applied magnetic fields. This analysis of the Hall
magnetometry indicates a saturation magnetization for the Dy
stripes of ≈2.7 T, and Bc = 670 mT can be read out directly.
The data measured at sample A in the up-sweep for By > Bc

in Fig. 2(a) are scaled accordingly and replotted in Fig. 3(a) as
a function of Bmax

z , which allows a more direct comparison to
the simulations.

Even though the simulated function ρxx(Bmax
z ) deviates

from the experimental trace in several aspects, the most
prominent features are reproduced qualitatively, namely the
positive magnetoresistivity around Bmax

z = 0, minima close to
Bmax

z = 53 mT, 110 mT, 170 mT, and 280 mT, the decrease
of ρxx at Bmax

z ≈ 260 mT, and some weakly pronounced
maxima and minima at larger magnetic fields. The sharp
decrease of of ρxx around Bmax

z = 500 mT is not observed
experimentally, most likely because our fringe fields are too
weak.
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The simulation of ρyy(Bmax
z ) is compared to the scaled

experimental data in Fig. 3(c). Very good agreement is found
for Bmax

z � 0.3 T, while the strong increase of the resistivity
around Bmax

z ≈ 0.4 T is reproduced as well, though shifted to
slightly higher magnetic fields. Further simulations [30] show
that the presence of the antidots does influence ρyy(Bmax

z )
to some extent, but the overall behavior is dominated by the
magnetic barriers and is not an effect of the hybrid superlattice.

We proceed by interpreting the magnetoresistivity features
in terms of the electron dynamics which determines the
components of the magnetoconductivity tensor [30]. The off-
diagonal elements σxy and σyx are approximately independent
of Bmax

z and of the order of 0.1 mS. σyy decreases from 18 mS
at Bmax

z = 0 to almost zero at Bmax
z ≈ 0.5 T. Only σxx shows

resonances as Bmax
z is changed. This implies that ρxx ≈ 1/σxx

and ρyy ≈ 1/σyy , while ρxy(By) ≈ σxy/(σxxσyy). The sharp
increase of ρxy (see Ref. [30]) and ρyy at Bmax

z = 0.5 T has
thus its origin in the strongly suppressed diagonal conductivity
in the y direction.

A deeper insight into the underlying electron dynamics can
be gained by looking at characteristic electron trajectories.
They can be identified with the help of Poincaré sections,
which illustrate the dynamics of the electrons by their
coordinates in a (i,vj ) cross section of the phase space (i = x,y

and vj ,j = x,y denote the position and velocity coordinates,
respectively). We start with a discussion of the minima of
ρxx at smaller magnetic fields, Bmax

z < 280 mT. Each dot
in Figs. 4(a)–4(e) represents the coordinates of an electron
passing with vx > 0 through one of the (y,vy) planes located
at x = ma, where m is an integer. The Poincaré section for
Bmax

z = 265 mT (a) shows a pronounced accumulation of the
electrons in a semicircle-like structure that extends over 85% of
possible vy components. This region hosts quasicommensurate
snake trajectories with a wavelength very close to 2a. They
run parallel to the magnetic stripes, as illustrated by the
sample trajectories shown in Fig. 4(f), and typically get
scattered at the antidots after less than 30 snake periods.
Likewise, the Poincaré sections for the minima of ρxx at
Bmax

z = 170 mT (b), 108 mT (c), and at 53 mT (d) reveal
that here, quasicommensurate snake trajectories of various
periodicity exist. They extend along the x direction, and their
weight decreases as the magnetic field is decreased, which
correlates with the magnitude of the corresponding resistivity
dips. Outside the resistivity minima, such an accumulation
of electrons in snake trajectories is not seen in the Poincaré
sections, as illustrated for Bmax

z = 240 mT in Fig. 4(e).
In addition, snake orbits exist which run at an angle �= 0

to the x direction, as exemplified in Fig. 4(f). In the Poincaré
sections, such trajectories form white regions, since the
electrons do not return to the column in which they start.
They can be found over the whole interval where resonances
are observed, and we do not find a correlation between their
weight in the Poincaré section and the magnetoresistivity.
We furthermore emphasize that, as anticipated above, closed
orbits are absent. It thus emerges that the minima of ρxx(By)
for Bmax

z � 280 mT correlate with the presence of quasicom-
mensurate snake trajectories that run parallel to the magnetic
stripes for many antidot periods, while snake trajectories
running in other directions do not show such a correlation.
Both the depletion and accumulation regions of the Poincaré
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FIG. 4. (Color online) Poincaré sections for various values of
Bmax

z (a)–(e). Some characteristic trajectories are shown in (f),
the initial conditions of which are indicated by full circles in the
corresponding Poincaré sections.

sections are embedded in an approximately homogeneously
filled background, which is due to electrons that move in
snake orbits as well, but experience frequent scattering at the
antidots. Typically, such trajectories complete no more that
two snake periods before they get scattered [30]. We note
that both the accumulation and the depletion regions contain
mostly not perfectly periodic trajectories and are thus chaotic
as well. Regular orbits should exist inside the accumulation
regions, but we have been unable to identify such points in
the Poincaré sections, which indicates that the regular regions
have a very small volume. The composition of the phase space
of this hybrid LSL is thus different to that of antidot lattices
where disjunct, extended regular and chaotic regions coexist.

It is remarkable that adjacent resistivity minima sometimes
correlate with accumulations of snake orbits of the same
periodicity. For example, the minima at Bmax

z = 170 mT and at
108 mT both correlate with the accumulation of snake trajecto-
ries with a period close to 4a. While the snake trajectories that
belong to the pronounced minimum of ρxx at 108 mT remain
commensurate over a relatively large interval of magnetic
fields and initial conditions, those found at the weak minimum
at 170 mT, like the two shown in (f) with their location
indicated in the Poincaré section in (b), are more fragile.

For Bmax
z > 280 mT, the simulation shows a series of

weakly pronounced features that end with a strong decrease
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FIG. 5. (Color online) (a) Poincaré section for Bmax
z = 375 mT.

(b) Some typical trajectories at Bmax
z = 375 mT with initial conditions

as indicated by full circles in (a), and a cycloid trajectory for Bmax
z =

650 mT.

of ρxx at Bmax
z ≈ 500 mT. Qualitatively similar features are

observed experimentally for sample A and can be only guessed
for sample B. In this interval, the Poincaré sections show
a rich pattern of accumulation regions, together with a few
depleted areas; see Fig. 5(a). This pattern evolves smoothly as
a function of Bmax

z without changing its qualitative appearance.
The snake trajectories in this interval have a period close to 2a

and show only a few oscillations before they get scattered.
We also find occasional trajectory segments of skipping
orbits; see Fig. 5(b). Thus, the magnetoresistivity features in
the interval 280 mT < Bmax

z < 500 mT do not correlate in a
straightforward way with characteristic trajectories.

The limit of large magnetic fields is characterized by
Bmax

z ≈ 500 mT. It is not experimentally accessible in our
samples. The simulations suggest that the decrease of ρxx

originates from the formation of cycloid trajectories which
drift along the magnetic field peaks. An example of such
a trajectory is shown in Fig. 5(b). For Bmax

z > 520 mT,
cycloid orbits exist that never hit an antidot. Therefore, highly
conductive channels in the x direction are formed.

We conclude this section by discussing possible reasons
for the differences observed between sample A and sample B,
as well as for the deviations between the simulations and the
experiments. The most prominent features in sample B appear
at higher magnetic fields than their respective counterparts in
sample A. With the support of the corresponding numerical
simulations, this can be traced back to the larger distance
of the Dy stripes to the 2DEG due to the Cr/Au layer in
between, which makes a higher magnetization necessary to
achieve a fringe field of the same magnitude at the depth
of the 2DEG. Also, the less prominent features observed at
sample A are suppressed in sample B. This may be due to
the larger antidot diameters in sample B which are known to
smear out commensurability resonances [3]. Also, gating of
high-mobility heterostructures can decrease the mobility [27].

The simulated amplitudes of the commensurability oscilla-
tions are furthermore stronger than the measured ones. We
attribute this partly to the deviations of the real magnetic
field profile Bz(y) from the simulated one, which is to be
expected from the asymmetric magnetization characteristics
of the Dy film. Deviations from the assumed hard-wall
potential may deform the trajectories, thereby weakening the
resonances. Another possible reason is piezoelectric effects

due to strain imposed by the Dy stripes, which could modulate
the electron density and the mobility for our crystallographic
orientation of the Hall bars. This effect has been reported
in the literature to get attenuated by depositing the stripes
on top of a homogeneous metallic layer [7]. Therefore, by
comparing the measurements of sample A with those of sample
B, we conclude that if strain effects were relevant, they would
generate additional fine structure rather than smearing it out.
To further elucidate this issue, we have performed numerical
simulations as described above, with an additional electrostatic
potential of a cosine shape in the y direction with the period of
the magnetic stripes and a rather strong amplitude of 1 meV, in
accordance with typical values found in the literature [31,45].
Somewhat surprisingly, we do not find significant deviations
of the resistivity from the unmodulated case (not shown) and
therefore conclude that the magnetic field gradient dominates
over electrostatic effects in the regime where the resonances
are observed. Strain effects thus do not play a prominent role.
Also, the simulation neglects finite-size effects. For example,
a magnetic barrier close to the Hall bar edges induces �E × �B
drift, and electron scattering at the Hall bar edges may provide
additional conductance channels. Finally, at the large in-plane
magnetic fields present in our implementation, magnetic mass
effects can deform the snake trajectories to a small extent [46].

V. SUMMARY AND CONCLUSIONS

Hybrid magnetoelectric lateral superlattices composed of a
two-dimensional antidot array and a one-dimensional mag-
netic modulation have been defined in high-mobility two-
dimensional electron gases and studied by transport experi-
ments in a configuration with vanishing average perpendicular
magnetic field. Despite the absence of closed trajectories,
pronounced classical magnetoresistivity resonances have been
observed. The magnetoresistivity minima correlate with the
accumulation of electrons in snake trajectories, as observed in
Poincaré sections, that are quasicommensurate with the antidot
lattice and oriented along the direction in which the magnetic
field is homogeneous. Snake trajectories running in other
directions are present as well, but their appearance does not
correlate with the resistivity minima. The Poincaré sections do
not show extended regular islands. We hope that these results
will trigger quantum simulations of this system which should
be able to interpret the magnetoresistivity resonances on a more
fundamental level. The longitudinal magnetoresistivity is fur-
thermore strongly anisotropic, with resistivity ratios above 200
for large magnetic fields. To a good approximation, however,
the magnetoresistance in the direction perpendicular to the
magnetic stripes can be understood as a resistance of magnetic
barriers in series and does not reveal superlattice-specific
properties. Further experiments may comprise the application
of additional homogeneous perpendicular magnetic fields, a
more detailed study of ρyy , the interaction of the electrons in
snake trajectories with resonant electromagnetic radiation, or
magnetic mass effects.
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G. Borghs, Europhys. Lett. 58, 569 (2002).
[14] R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. Lett.

68, 1367 (1992).
[15] R. Fleischmann, T. Geisel, and R. Ketzmerick, Europhys. Lett.

25, 219 (1994).
[16] R. Schuster, K. Ensslin, J. P. Kotthaus, M. Holland, and C.

Stanley, Phys. Rev. B 47, 6843 (1993).
[17] D. Weiss, K. Richter, E. Vasiadou, and G. Lütjering, Surf. Sci.

305, 408 (1994).
[18] F. Nihey, S. W. Hwang, and K. Nakamura, Phys. Rev. B 51,

4649 (1995).
[19] D. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[20] D. Pfannkuche and R. R. Gerhardts, Phys. Rev. B 46, 12606

(1992).
[21] M. C. Geisler, J. H. Smet, V. Umansky, K. von Klitzing, B.

Naundorf, R. Ketzmerick, and H. Schweizer, Phys. Rev. Lett.
92, 256801 (2004).

[22] D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer,
K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118
(1993).

[23] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[24] B. L. Altshuler, A. G. Aronov, and B. Z. Spivak, Pis’ma Zh.

Eksp. Teor. Fiz. 33, 101 (1981) [,JETP Lett. 33, 94 (1981)].
[25] K. Richter, Europhys. Lett. 29, 7 (1995).

[26] V. Umansky, R. de Picciotto, and M. Heiblum, Appl. Phys. Lett.
71, 683 (1997).

[27] C. Roessler, T. Feil, P. Mensch, T. Ihn, K. Ensslin, D. Schuh,
and W. Wegscheider, New J. Phys. 12, 043007 (2010).

[28] A. Nogaret, J. Phys. Condens. Matter 22, 253201 (2010).
[29] Y. Iye, M. Ueki, A. Endo, and S. Katsumoto, J. Phys. Soc. Jpn.

73, 3370 (2004).
[30] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.91.195303 for additional magnetoresistivity
measurements and for numerical simulations of the magneto-
conductivity tensor elements.

[31] P. H. Beton, E. S. Alves, P. C. Main, L. Eaves, M. W. Dellow, M.
Henini, O. H. Hughes, S. P. Beaumont, and C. D. W. Wilkinson,
Phys. Rev. B 42, 9229 (1990).

[32] M. Johnson, B. R. Bennett, M. J. Yang, M. M. Miller, and B. V.
Shanabrook, Appl. Phys. Lett. 71, 974 (1997).

[33] M. Cerchez and T. Heinzel, Appl. Phys. Lett. 98, 232111
(2011).
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