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Analytical method for determining quantum well exciton properties in a magnetic field
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We develop an analytical approximate method for determining the Bohr radii of Wannier-Mott excitons in
thin quantum wells under the influence of magnetic field perpendicular to the quantum well plane. Our hybrid
variational-perturbative method allows us to obtain simple closed formulas for exciton binding energies and
optical transition rates. We confirm the reliability of our method through exciton-polariton experiments realized
in a GaAs/AlAs microcavity with an 8 nm InxGa1−xAs quantum well and magnetic field strengths as high
as 14 T.
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I. INTRODUCTION

Excitons are important from the point of view of both
fundamental research and real life applications. The concept
of an exciton as a localized electronic excitation is an essential
part of modern physics of solids, and is widely used for
explanation of optical properties of many materials. Recently
the topic of strong coupling between photons and excitons,
which leads to the creation of a new quasiparticle called
the exciton-polariton [1], attracted much attention. Advances
in achieving degenerate gases of excitons [2] and exciton-
polaritons [3] opened up a new perspective for the field in
connection with physics of ultracold quantum systems. Studies
of excitons in magnetic field are important in the context of
possible applications for spinoptronics [4–6].

The important task of calculating basic properties of
excitons, including the binding energy and Bohr radius, can be
tackled by numerous methods. While the most successful ones
appear to make use of the variational method [7–17], schemes
based on perturbation theory [16,18,19], fractional dimension-
ality [15,20–22], or other sophisticated methods [14,19,23]
were used, as well as direct numerical calculations. Depending
on the desired accuracy, models may be based on the one-
band effective mass approximation, or include the effects of
valence-band mixing, subband mixing, band nonparabolicity
and anisotropy, or difference in dielectric constants in the
medium [11,17,24,25].

In this paper, we propose an analytical method for calcu-
lating the exciton Bohr radius, energy, and optical transitions
rates for excitons in quantum wells (QWs) in the presence of
magnetic field perpendicular to the QW plane. We restrict our
considerations to the simple one-band effective-mass Hamil-
tonian. Our hybrid variational-perturbative method allows us
to obtain simple closed formulas for these quantities valid
for a surprisingly wide range of magnetic field strengths.
Typically, these formulas require only one external parameter,
such as the exciton Bohr radius at zero magnetic field. To our
knowledge, so far no analytical results have been obtained for
the QW exciton problem beyond determining the quadratic
diamagnetic shift. As we demonstrate below, our method is
accurate far beyond this regime, up to magnetic fields of the
order of 10 T. We confirm the reliability of our method by
comparing its predictions to the results of exciton-polariton
experiments realized in a GaAs-InxGa1−xAs microcavity with

an 8 nm quantum well, where the exciton energy and oscillator
strength are retrieved from the momentum dispersion of the
upper and lower polariton branches.

II. MODEL

We consider Wannier-Mott excitons in a type-I semicon-
ductor quantum well. The magnetic field is applied in the
direction perpendicular to the quantum well. We assume tight
confinement in a thin quantum well, with the energy spacing
between subbands much larger than the energy of the electron
and hole motion in the quantum well plane. This allows
us to restrict our considerations to single electron and hole
subbands only. Furthermore, we neglect the effect mixing
of light and heavy holes [26] and apply the effective mass
approximation to the electron and hole bands. With the above
approximations the exciton can be treated as a hydrogen-like
structure in a homogeneous medium. For simplicity, we restrict
our considerations to the case of excitons with zero momentum
in the QW plane. We note that the presence of a magnetic field
can lead to a dramatic change of the exciton structure [27]
in the case of high exciton momentum. The effective exciton
Hamiltonian can be expressed as

Ĥ = Ĥex + Ĥh + Ĥe, (1)

where

Ĥν = − �
2
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where ρ is the distance between electron and hole in the
QW plane, Ve(h) is the electron (hole) confinement potential,

μ−1 = m−1
e + m−1

h , η−1 = m−1
e − m−1

h , L =
√

�

eB
, and Lz =

−i�(∂/∂θ ) is the operator of orbital angular momentum along
the axis z perpendicular to the QW plane. For simplicity we
assume that the confinement potentials are of the form

Vν(zν) =
{

0 for − d
2 < zν < d

2 ,

V 0
ν otherwise,

(3)
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PIOTR STȨPNICKI et al. PHYSICAL REVIEW B 91, 195302 (2015)

where V 0
ν and d are the QW depth and width, respectively.

Since the Hamiltonian (2) cannot be solved analytically
even in the absence of the magnetic field, a large number
of approximate methods have been developed in the past to
determine the energy levels and other properties of excitons.
Among these, the variational approach appears to be most
successful in terms of accuracy and simplicity, although its
reliability depends on the somewhat arbitrary choice of the
variational ansatz.

Moreover, in most practical cases even the approximate
variational problem has to be tackled by numerical methods.
In the following we show that if the Bohr radius or the energy of
the exciton in the absence of magnetic field is known (e.g., from
other numerical calculations or experimental measurements),
the exciton properties in the presence of magnetic field can
be determined by much simpler means. This includes, in the
lowest level of approximation, a simple analytical formula that
gives accurate results in a very wide range of magnetic field
strengths.

III. METHOD

A. Variational approximation

In the case of tight confinement the wave function of the
electron-hole system can be separated in directions perpendic-
ular and parallel to the quantum well plane. In the case of a 1s

exciton we apply a variational ansatz in the form [7]

ψ(ρ,ze,zh) =
√

2

π

1

a
e−ρ/aUe(ze)Uh(zh), (4)

where a is the exciton Bohr radius and Ue, Uh are the subband
electron and hole wave functions. We note that the method
can be easily generalized to the case of higher hydrogen-like
exciton states. Evaluating the expectation value of the above
Hamiltonian (2) with the ansatz (4) and differentiating with
respect to a gives an equation that corresponds to the energy
minimum

1 − 3

8

( a

L

)4
= 8μ

�2

∫ ∞

0
ρ

(
1 − ρ

a

)
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where V (ρ) is given by

V (ρ) = e2

4πεε0

∫∫
dzedzh
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e U 2

h√
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. (6)

Therefore finding the approximate ground state of the Hamil-
tonian is equivalent to solving Eq. (5).

Up to now we have followed the standard variational
procedure. Solving Eq. (5) requires fixing the perpendicular
wave functions Ue, Uh, determining the effective Coulomb
potential V (ρ), and solving the integral equation given by (5)
by numerical means.

B. Expansion

The general idea of simplifying the problem of solving
Eq. (5) is to approximate its right-hand side by a polynomial
of a degree smaller than 4 (so that we obtain an exactly
solvable polynomial equation) in the variable a. The expansion
of the right-hand side can be done in many different ways, and

here we present the one that appears to provide the greatest
accuracy.

The idea is realized in several steps. First, we change the
integral variable to x = ρ/a on the right-hand side of Eq. (5)
which allows us to eliminate a from the integral everywhere
except V (ax). Let a0 be the solution to the Eq. (5) at zero
magnetic field, a(0) = a0. We now write the effective potential
as V (ρ) = V (ax) = V (a,x) and expand it in the variable a at
the point a = a0. We reformulate Eq. (5) to obtain
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The above expansion requires several comments to explain
its physical meaning. The main approximation of our method
consists in neglecting most of the terms in the series, retaining
only the first one or two. It is important to note that this
approximation is not simply equivalent to neglecting higher
order effects of the magnetic field, since the right-hand
side contains only terms that are related to the Coulomb
potential. This will become more apparent later, when we
show that the accuracy of the method extends far beyond
determining the quadratic diamagnetic shift. On the other hand,
the approximation is not equivalent to treating the Coulomb
potential as a perturbation. In fact, the effect of V (ρ) is
fully accounted for in the limit of vanishing magnetic field
when a = a0. The idea behind the above expansion is that by
introducing the variable x that scales together with the exciton
radius we take into account that the wave function shrinks in
the presence of magnetic field. This leads to the change of the
effective Coulomb potential in the rescaled variable x. It is
this change of the effective potential that is taken into account
perturbatively in Eq. (7).

The D0,D1 integrals can be written as

D0 = e2

4πεε0

∫ ∞

0
dx

∫
R2

dzedzhx(1 − x)e−2x

× U 2
e U 2

h√
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, (8)
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× U 2
e U 2

h

[(xa0)2 + (ze − zh)2]
3
2

dx dzedzh. (9)

After computing the D0 and D1 integrals for given functions
Ue, Uh one obtains a fourth-order polynomial in a which
describes the behavior of a(B). Taking into account that a0

satisfies Eq. (5) for L = ∞ the value for D0 can be obtained
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FIG. 1. (Color online) Bohr radius a of the exciton versus mag-
netic field strength for an InGaAs quantum well. anum corresponds
to exact numerical solution of Eq. (5), a1st to the approximation
including both D0 and D1 terms in Eq. (7), and a0th is the zeroth-order
approximation including the D0 term only, Eq. (11). The subband
functions Ue, Uh were chosen to be the solutions of the 1D finite
potential barrier problem.
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Numerical checks for a realistic GaAs quantum well exciton
indicate that the linear approximation, including both D0 and
D1 terms, gave almost perfect results for a realistic example
of a thin quantum well with a tight exciton confinement; see
Fig. 1. In this calculation, we used cosine functions for the
lowest subband electron and hole wave functions Ue(ze) and
Uh(zh). However, any form of subband wave functions can be
easily incorporated in the calculation. We stress that computing
the coefficients D0 and D1 is much simpler than solving the
integral variational equation (5).

Moreover, we found that the approximation including the
D0 term only gives also very accurate results for Bohr radius
a. In this case, a simple analytical formula can be given for
a(B):

a(B) = a0
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The formula (11) applies to any material and confinement
potential, but the confinement must be tight enough for the
ansatz (4) to be correct. The only needed parameter is the
exciton radius at zero magnetic field, a0.

We performed calculations for B as high as 15 T to compare
formula (11) and the exact numerical solution of (5). For all
considered cases the quantitative agreement between these
solutions was very good.

C. Exciton energies and optical transition rates

The approximate formula for the exciton Bohr radius a

dependence on the magnetic field allows for calculation of the
exciton energy and optical transition rates. One may easily

find an analytical formula for exciton energy using Eq. (5) and
expansion of V (ax). Using the formula (11) for a one obtains
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where
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In the above formulas we included the first-order derivatives of
V , which give a much more important contribution than in the
Bohr radius equation (7). At the same time, inclusion of these
terms in above energy formula does not lead to significant
complication of the calculation.

The change of the exciton size influences also the exciton
transition dipole moment and consequently the optical exciton
creation rates. In the case of an experiment performed in a
microcavity, this rate is proportional to the splitting of lower
and upper polariton lines [1,28]. In the case of Wannier-Mott
excitons the exciton transition rate is, with a high degree of
accuracy, proportional to the norm of the exciton wave function
for zero relative electron-hole coordinate [29], |ψ(ρ = 0)|.
The approximate expression for the increase of exciton Rabi
splitting in magnetic field is then
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, (14)

where 
0 and a0 are the Rabi splitting and exciton radius at
zero magnetic field.

IV. NUMERICAL AND EXPERIMENTAL TESTS

The accuracy and reliability of the method was tested
through direct comparison with both the numerical solutions
of the full variational problem (5) and with experimental
measurements of the energy and Rabi splitting of exciton-
polaritons in a semiconductor microcavity containing an 8 nm
single In0.04Ga0.96As quantum well (QW). The QW was placed
in the GaAs λ microcavity between two GaAs/AlAs distributed
Bragg reflectors. The vacuum-field Rabi splitting 
 at zero
magnetic field was approximately 3.5 meV. The sample was
placed in a helium bath cryostat and in the magnet bore
providing magnetic field up to 14 T perpendicular to the
sample plane. The photoluminescence (PL) was excited by
a continuous wave laser with the energy above the band gap
of the material (1.72 eV). The PL signal was propagating free
in space to our detection setup which allowed us to collect
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FIG. 2. (Color online) Photoluminescence spectra of exciton-polaritons at magnetic fields 0, 2, 4, 6, 8, 10, 12, and 14 T. The lower (LP)
and upper (UP) polariton branches are marked (dashed lines) together with fitted bare excitonic (red solid line) and photonic (blue dashed)
resonances. The color PL intensity scale is from white (low intensity) to black (high intensity). The respective images are not in the same
intensity scale. The total intensity is decreasing in magnetic field [31].

the exciton-polariton dispersion (energy vs in-plane polariton
momentum). The details of the sample structure can be found
in Ref. [30] and the experimental setup together with detailed
description of the performed experiment in Ref. [31]. We detect
the PL in a continuous sweep of magnetic field from 0 to
14 T. Figure 2 illustrates photoluminescence spectra for a few
values of magnetic field strength. We observe lower and upper
polariton branches. Fitting the simple model of two coupled
oscillators [1] to the experimental data we can obtain the
energy of the excitonic and photonic bare resonances (marked
directly in Fig. 2) and the value of the Rabi splitting 
. This
allows to obtain unprecedented precision on the variations of
the exciton energy and oscillator strength.

In Fig. 1 we show the exciton Bohr radius as predicted
by the exact numerical solution of Eq. (5) and by our
analytical approximation in the cases when only one or
two terms were kept in the expansion (7). The parameters
of the quantum well correspond to the sample used in the
experiment described above. The only external parameter
in the calculations was the value of exciton radius at zero
magnetic field, a0. The agreement between the numerical
results and the approximation with both D0 and D1 terms
included is almost perfect. When only the D0 term is included,
the analytical formula (11) provides also a very accurate
prediction, with no more than a few percent discrepancy up
to magnetic field strength of 15 T. It is important to note
that the accuracy is significantly better than in the case of
standard perturbation method including only quadratic terms
in the magnetic field strength (or quadratic diamagnetic shift),
which deviate from the correct dependence already for fields
higher than 4 T. Our approximation works well for a broad
range of magnetic fields because its accuracy depends on the
variation of the value a(B) rather that on the variation of B.

In Figs. 3 and 4 we compare the predictions of our model
to the energy and exciton radius obtained from experimental

measurements described above. The energy of the 1s heavy
hole (1sHH) exciton ground state, shown in Fig. 3, is recovered
with a very high accuracy up to the regime of relatively strong
magnetic field (14 T). Here again we used only the single
external parameter a0. It is evident that the accuracy of the
simple analytical formula (12) extends far beyond predicting
the strength of the quadratic diamagnetic shift. The spin term
is neglected as its influence is very small. The dependence of
the polariton Rabi splitting is shown in Fig. 4, with another
parameter 
0. The accuracy of the analytical prediction is also
very good up to the fields of around 10 T. The discrepancy
at B ≈ 1–2 T is due to the influence of the 2sHH exciton
resonance which disturbs the shape of the polariton branches.
At magnetic fields stronger than 10 T the accuracy is gradually
lost, which can be also observed in the slight deviation of the
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FIG. 3. (Color online) Comparison of the exciton energy for
InGaAs quantum well from the experiment (solid line) and the
predictions of the analytical formula (12) (dashed line).
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FIG. 4. (Color online) Comparison of the exciton-polariton Rabi
splitting for InGaAs quantum well from the experiment (solid line)
and the predictions of the analytical formula (14) (dashed line).

exciton energy in Fig. 3. Nevertheless, the ability to predict
the exciton energies and transition rates extends to surprisingly
high values of the magnetic field strength.

V. CONCLUSIONS

In conclusion, we developed an analytical approximate
method for determining the Bohr radii of Wannier-Mott
excitons in thin quantum wells under the influence of magnetic
field perpendicular to the quantum well plane. Our hybrid
variational-perturbative method allows us to obtain simple
closed formulas for exciton binding energies and optical
transition rates. We confirm the reliability of our method
in exciton-polariton experiments realized in a GaAs/AlAs
microcavity with an 8 nm InxGa1−xAs quantum well and
magnetic field strengths as high as 14 T.
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