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Recent measurements conducted over a large range of temperature and carrier density have found that
the Seebeck coefficient exhibits an approaching disorder-free transport feature in high-mobility conjugated
polymers [D. Venkateshvaran et al., Nature 515, 384 (2014)]. It is difficult for the current Seebeck coefficient
model to interpret the feature of the charge transport approaching disorder-free transport. We present a general
analytical model to describe the Seebeck effect for organic semiconductors based on the hopping transport and
percolation theory. The proposed model can well explain the Seebeck feature of the polymers with approaching
disorder-free transport, as well as that of the organic semiconductors with the general disorder. The simulated
results imply that the Seebeck coefficient in the organic semiconductors would happen to transfer from temperature
dependence to temperature independence with the decrease of the energetic disorder.
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I. INTRODUCTION

The charge transport mechanism is among the most often
discussed topics in the field of disordered systems, particularly
organic semiconductors. The central question is how carriers
transport themselves between spatially localized states. To
clearly understand the intrinsic nature of charge transport
in organic semiconductors, numerous researchers have per-
formed theoretical and experimental studies and concluded
that the charge carrier transport is generally characterized by
hopping between localized states of Gaussian or exponential
distribution of the density of states (DOS) [1–5]. For a long
time, one prevalent parameter of the charge transport in
organic semiconductors is the charge carrier mobility, which
provides a quantitative estimate for the performance of organic
semiconductor devices. A pioneering hopping transport model
describing the charge carrier mobility is the Gaussian disorder
model (GDM) suggested by Bässler [6]. Following the GDM,
numerous theoretical models in disordered organic semicon-
ductors have been established to further investigate the charge
transport property [7–9]. However, due to the use of a large
number of free parameters, the validity and accuracy of the
charge carrier mobility from these current models has been
questioned, in spite of good agreement between the simulated
results and experimental data [10]. On the other hand, with the
decrease of the device size accompanying the channel length
in transistors, the contact effect in the interface plays a great
role in the charge transport characteristics [11,12].

In order to overcome these deficiencies in the current
transport models, other key transport parameters, such as the
Seebeck coefficient, should be applied to promote a more cred-
ible and accurate transport process in organic semiconductor
devices. It is well known that the Seebeck coefficient not only
governs the efficiency of thermoelectric converters, but also
provides unique, complementary insight into the electronic
structure of functional material [13]. More importantly, the
Seebeck voltage is independent of the interfacial contact
[14]. Hence the Seebeck coefficient can veritably reveal the
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intrinsic characteristics of the charge carrier transport. In the
past decade, several models of Seebeck coefficient have been
proposed in organic semiconductors, based on the general
Seebeck coefficient expression [15–17], s = ∫(E−Ef )G(E)dE

qT ∫ G(E)dE
,

which is determined by the difference between Fermi level Ef

and the energy E. Here G(E) is the conductivity distribution
function, T is the temperature, and q is the charge of the carrier.
However, recent measurements conducted over a large range
of temperature and carrier density have found that in high-
mobility conjugated polymers the Seebeck coefficient exhibits
an approaching disorder-free transport (disorder-free transport
is defined as the energetic disorder relative to kBT associated
with transport) [18], at which the measurement of the Seebeck
coefficient was performed in field-effect transistors (FETs).
It is difficult for the current Seebeck coefficient expression
to describe the feature of the charge transport approaching
disorder-free transport. In addition, the authors attempted
to interpret this phenomenon in terms of the variable-range
hopping disorder model used in Ref. [19], but it broke down for
indacenodithiophene-co-benzothiadiazole (IDTBT). On the
other hand, the authors suggested a simpler, more consistent
interpretation of the three salient Seebeck features given by a
narrow-band model, which is applicable to all polymers [18].
However, the simulated results calculated by the narrow-band
model exhibit a low estimation of the Seebeck coefficient,
especially for poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)
thiophene) (PBTTT) and selenophene-based polymer semi-
conductor (PSeDPPBT).

In this work, we present a general analytical model to
describe the Seebeck effect for organic semiconductors based
on the hopping transport and percolation theory. The proposed
model can well interpret the Seebeck feature of the polymers
with approaching disorder-free transport, as well as that of the
organic semiconductors with the general disorder.

II. THEORY MODEL

Our starting point is the following general definition for
Seebeck coefficient S. In semiconductors, charges carry heat
from one place to another. The heat Q carried by the charges
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FIG. 1. (Color online) (a) Schematic diagram of carrier transport
in hopping space with the density of states, and (b) the corresponding
percolation current in disordered organic semiconductor.

contributing to the electrical current I is given as Q = I × �,
where � is the Peltier coefficient which represents how much
heat is carried per unit charge. The Seebeck coefficient is
then related through the Kelvin-Onsager relation to the Peltier
coefficient as [20,21]

S = �

T
. (1)

The charge transport in disordered organic semiconductors
can be widely described by hopping and percolation theories.
Under a percolation model, a random-resistor network con-
necting each molecular site is often used in the hopping system.
Figure 1 shows the schematic diagram of the charge transport
in a hopping system and the corresponding percolation current
through the polymer matrix for the carrier to travel through.

A percolation theory to calculate Peltier coefficient � based
on hopping transport has been developed in the literature
[22,23]. In this theory, � is identified with the average site
energy on percolation cluster and can be written as

� =
∫

EiP (Ei) dEi, (2)

where P (Ei) is the probability that a site of energy Ei is on the
current-carrying percolation cluster and was further given by

P (Ei) = g(Ei)P1(Zm|Ei)

∫Em

−Em
g(Ei)P1(Zm|Ei)dEi

, (3)

where g(Ei) is the density of states per unit volume, Em is
the maximum site energy, and P1(Zm|Ei) is the probability
that the second smallest resistance emanating from a site with
energy Ei is not larger than the maximum resistance on the
percolation cluster, Zm. The expression of the probability
P1(Zm|Ei) is written as

P1(Zm|Ei) = 1 − exp[−P (Zm|Ei)][1 + P (Zm|Ei)], (4)

where P (Zm|Ei) is the bond density, which means the
average value of resistance of Zm or less connected
to a site energy Ei . To calculate the Peltier coefficient
(or Seebeck coefficient), an expression for P (Zm|Ei) is
essential.

According to the percolation theory, the disordered organic
semiconductor system is viewed as a random-resistor network
[see Fig. 1(b)]. To determine the total conductivity in a
disordered system, the first step is to take a reference
conductance H and remove all conductive pathways between
sites i and j with Hij < H . The conductance between sites i

and j is given by Hij ∝ exp(−Sij ) with [24]

Sij = 2αRij + |Ei − Ef | + |Ej − Ef | + |Ei − Ej |
2kBT

, (5)

where Rij is the hopping distance, α is the inverse localized
length, and Ef is the Fermi level.

The density of bonds P (Zm|Ei) then can be written as

P (Zm|Ei) =
∫

4πR2
ij g(Ei)g(Ej )dRijdEidEjθ (Sc − Sij ).

(6)

If the density of participating sites is Ps , the critical
parameter Sc is found by solving the equation

P (Zm|Ei) = BcPs = Bc

∫
g(E)dEθ (SckBT − |E − Ef |).

(7)

Based on the numerical studies for a three-dimensional
amorphous system, the formation of an infinite cluster corre-
sponds to Bc = 2.8 [24–26].

By connecting Eqs. (5)–(7), the bond density can be
formulated as

P (Zm|Ei)

= 4π

3(2α)3

⎧⎨
⎩

∫ εi

εf
(Sc−εj+εf )3g(εj )dεj+

∫ Sc+εf

εi
(Sc − εj + εf )3g(εj )dεj + ∫ εf

εi−Sc
(Sc − εi + εj )3g(εj )dεj , εi > εf∫ εf

εi
(Sc+εi−εf )3g(εj )dεj+

∫ εi

εf −Sc
(Sc + εi − εf )3g(εj )dεj + ∫ εi+Sc

εf
(Sc − εj + εi)3g(εj )dεj , εi < εf

⎫⎬
⎭ . (8)

Here ε is the normalized energy as ε = E
kBT

. This expression has been split into two regimes of εi > εf and εi < εf , which are
corresponding to the contributions of εi above or below the Fermi level to P (Zm|Ei) and therefore the Seebeck coefficient S,
respectively. Above the Fermi level, carriers in shallow states will move by hopping to other shallow states. While below the
Fermi level, carriers in deep states will move by thermal excitation to shallower states.

Now we can substitute Eqs. (2)–(4) and (8) into Eq. (1) and obtain the final result of the Seebeck coefficient.
As mentioned above, because the experimental results of the Seebeck coefficient from Ref. [18] were measured by using

FETs, we now proceed to calculate the Seebeck coefficient in organic FETs by introducing the carrier density specifically. In
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bulk material, the carrier density n is related to the density of states and the Fermi-Dirac distribution function in the form

n =
∫

g(E)

1 + exp
(E−Ef

kBT

)dE, (9)

where g(E) is the density of states which is assumed to be the Gaussian distribution in this work, g(E) = Nt√
2πσ0

exp(− E2

2σ 2
0

); Nt

is the number of states per unit volume; and σ0 = σ/kBT indicates the width of the density of states (DOS).
In a FET, however, the distribution of carrier density is not uniform, which decreases with the distance from the semiconductor-

insulator interface. In this situation, the carrier density corresponding to the Fermi level is controlled by gate voltage Vg through
Gauss’s Law as [27]

Vg − Vth − ϕs = 1

Ci

√
2qεs

∫ ϕs

0

∫ ∞

−∞

g(E)

1 + exp[(E − Ef )/kBT ]
dEdϕ, (10)

where Ef = Ef 0 + qϕ with Ef 0 denoting the Fermi level as
Vg = 0, Vth is the threshold voltage defined as the gate bias at
the onset of accumulation, εs is the dielectric constant of the
semiconductor, and ϕs is the surface potential. By combining
Eqs. (1) and (9) with (10), we can obtain the gate voltage–
dependent Seebeck coefficient.

III. RESULTS AND DISCUSSION

Firstly, we compare the simulation results with the experi-
mental data of the Seebeck coefficient measured by using FET
from three kinds of conjugated polymers, i.e., IDTBT, PBTTT,
and PSeDPPBT [18]. Figure 2 shows the carrier density
dependence of the Seebeck coefficient with the comparison
between the calculation and experimental data for different
conjugated polymers. One can see that the proposed model can
reasonably reproduce the experimental data under the whole
range of carrier density for the polymers with a disorder-free
or a large energetic disorder. Here we use the same density of
thermally accessible sites as those in Ref. [18], i.e., Nt = 7.4 ×
1020 cm3 (IDTBT), Nt = 8.9 × 1020 cm3 (PBTTT), and Nt =
2 × 1020 cm3 (PSeDPPBT). Other fitting parameters are the
typical value for the conjugated polymers, for example, εs = 3,
εf 0 = −40 kBT , Ci = 1 × 10−4 F/m2, α−1 = 0.1 nm (for
IDTBT and PBTTT), and α−1 = 0.22 nm (for PSeDPPBT).
Otherwise, the energetic disorder σ = 1.2, 3.5, and 5 kBT

are used for IDTBT, PBTTT, and PSeDPPBT, respectively.

FIG. 2. (Color online) Carrier density dependence of Seebeck
coefficient for different materials at room temperature. Symbols and
solid lines are experimental and simulated results, respectively.

Please note that the energetic disorder of σ = 1.2 kB T for
IDTBT approaches disorder free. According to the result of
Ref. [18], IDTBT is disorder free, and the energetic disorder
is significantly lower in IDTBT than that in PBTTT and
PSeDPPBT. Thus our results are well consistent with that of
the literature [18].

Carrier density dependence of the Seebeck coefficient for
the different temperatures is plotted for PBTTT and IDTBT in
Fig. 3. The input parameters are the same as those in Fig. 2. It is
found that the Seebeck coefficient shows the same decreasing
trend with temperature for IDTBT, which implies it is the tem-
perature independent, whereas the Seebeck coefficient shows
the variable decreasing trend with temperature for PBTTT;
that is, at low temperature the carrier density dependence is
stronger than that at higher temperature. As mentioned above,
the energetic disorder in IDTBT is significantly lower than
that in PBTTT. Therefore, the temperature-independent feature
of the Seebeck coefficient should be induced by the smaller
energetic disorder. The simulation results agree well with the
experimental data for IDTBT and PBTTT.

Many researchers have reported that the Seebeck coefficient
has the temperature-independent property for the organic
semiconductors with disorder free (IDTBT) or single crystals
(pentacene and rubrene) [15,18]. To better understand the
temperature-independent feature of the Seebeck coefficient,
we then discuss the effect of energetic disorder and temperature
on the Seebeck coefficient. Figure 4(a) shows the energetic
disorder dependence of the Seebeck coefficient at 200 and
300 K. One can see that the Seebeck coefficient shows

FIG. 3. (Color online) Temperature dependence of Seebeck co-
efficient for PBTTT and IDTBT. Symbols and solid lines are
experimental and simulated results, respectively.
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FIG. 4. (Color online) (a) Energetic disorder dependence of See-
beck coefficient at 200 and 300 K, and (b) temperature dependence
of Seebeck coefficient for different energetic disorder.

strong energetic disorder dependence. This dependence under
the larger energetic disorder will enhance with decreasing
the temperature. For the smaller energetic disorder, such as
σ/kB T < 1, this dependence is similar for different temper-
atures. Temperature dependence of the Seebeck coefficient
for different energetic disorders is plotted in Fig. 4(b). The
observed results clearly show that the temperature dependence
enhances with increasing energetic disorder.

Generally, carriers in deep states will move by thermal
excitation to shallower states, while carriers in shallow states
will move by hopping to other shallow states. If the carrier
is initially generated randomly within the DOS, it tends to
relax towards tail states; the typical rate at which carriers
hop away from a state is much smaller for deeper initial
energy. Otherwise, the Seebeck coefficient is dominated by
the entropy of mixing associated with adding a carrier into
the density of states, which is determined by the density of
thermally accessible transport states [18,28,29]. Therefore,
for the smaller energetic disorder, the density of thermally
accessible transport states will remarkably decrease. As a
result, the Seebeck coefficient shows the temperature indepen-
dence. Figure 5 clearly shows the contribution to the Seebeck
coefficient of carriers above the Fermi level (shallow state) and
below the Fermi level (deeper state), respectively. Here S(E<Ef )

and S(E>Ef ) denote the contributions of carriers below or above
the Fermi level, respectively. The overall Seebeck coefficient
is calculated as S = S(E>Ef ) − S(E<Ef ). One can see that the
Seebeck coefficient from the contribution of carriers below
the Fermi level reduces remarkably with the decrease of the
energetic disorder. Thus the Seebeck coefficient is attributed to
the carriers in shallow states by hopping to other shallow states

FIG. 5. (Color online) Contribution to the overall Seebeck co-
efficient of carriers below S(E<Ef ) or above S(E>Ef ) Fermi level
as a function of carrier density at σ/kB T = 3.5 (a) and energetic
disorder (b). The input parameters are Nt = 5 × 1020 cm3, α−1 =
0.15 nm, T = 300 K. The other parameters are the same as those in
Fig. 2.

and will imply the temperature independence for the smaller
energetic disorder.

IV. CONCLUSION

A general analytical model is proposed to describe the
Seebeck effect for organic semiconductors based on the
hopping transport and percolation theory. The proposed
model can well interpret the Seebeck feature of the polymer
with approaching disorder-free transport, as well as that of
the organic semiconductors with the general disorder. The
simulation results display that the feature of the Seebeck
coefficient would transfer from temperature dependence to
temperature independence, which is induced by the smaller
energetic disorder. The simulation results agree well with the
experimental data for IDTBT and PBTTT.
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