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We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic semiconductors in the presence of
spin-orbit interaction. Our goal is to explore the interplay or competition between the exchange sd coupling and the
spin-orbit interaction in both bulk and quantum-well systems. For bulk materials we concentrate on Zn1−xMnxSe
and take into account the Dresselhaus interaction, while for quantum wells we examine Hg1−x−yMnxCdyTe
systems with a strong Rashba coupling. Our calculations were performed with a recently developed formalism
which incorporates electronic correlations beyond mean-field theory originating from the exchange sd coupling.
For both bulk and quasi-two-dimensional systems we find that, by varying the system parameters within realistic
ranges, either of the two interactions can be chosen to play a dominant role or they can compete on an equal footing
with each other. The most notable effect of the spin-orbit interaction in both types of system is the appearance
of strong oscillations where the exchange sd coupling by itself causes only an exponential decay of the mean
electronic spin components. The mean-field approximation is also studied and an analytical interpretation is
given as to why it shows a strong suppression of the spin-orbit-induced dephasing of the spin component parallel
to the Mn magnetic field.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMSs) are multifunc-
tional materials that combine the outstanding electronic and
optical properties of semiconductors with highly controllable
magnetic properties [1,2]. With the prospect of spintronic
applications of DMSs in mind, much effort has focused
recently on the study of ultrafast spin dynamics and control
[3–9]. At the same time, spin-orbit interaction (SOI) effects
have been intensely studied in nonmagnetic bulk and nanos-
tructured semiconductors [10–15]. The interplay between the
exchange interaction characteristic of DMSs and the more
generic SOI can lead to new possibilities for applications and
basic research [16–21]. In particular, the spin-orbit torque
effect in DMSs has attracted much interest in recent years
[22–29].

In this article we explore this interplay theoretically by
studying the ultrafast spin dynamics of a nonequilibrium
electron distribution in the conduction band of II-VI Mn-doped
semiconductors. Our work is based on a microscopic density-
matrix theory that models on a quantum-kinetic level the
spin precession and the spin transfer between electrons in the
conduction band of such semiconductors and the manganese
electrons, and which accounts for exchange-induced correla-
tions beyond the mean-field level and considers the localized
character of the Mn spins [30]. This recently developed
formalism is quite general and can be computationally costly
to apply in some circumstances. For this reason, in the present
study we consider a particular situation which is nevertheless
experimentally relevant and theoretically interesting: the limit
of high Mn density compared to the electron density, which
is normally realized in photoexcitation experiments. In this
particular regime we can apply a simplified formalism which
captures the essential physics that is relevant here and which
greatly reduces the numerical effort [31].

The purpose of our study is to determine under which con-
ditions, if any, the spin-orbit-interaction mechanisms present
in semiconductors can become relevant or even dominant in
the picosecond-time-scale spin dynamics in DMSs. As will be
seen here, for both bulk and quasi-two-dimensional systems,
depending on the choice of material parameters and excitation
conditions, there can be a strong interplay or competition
between the two types of interaction. This rather unexplored
combined effect between exchange and SOI in DMS could
lead in principle to new forms of spin control suitable for
spintronic applications.

This article is organized as follows. In Sec. II A we present
the model Hamiltonian of the DMSs with spin-orbit interaction
and in Sec. II B we review the equations of motion that
describe the spin dynamics in the formalism adopted here.
In Secs. III and IV we present and discuss our results for
bulk Zn1−xMnxSe and for Hg1−x−yMnxCdyTe quantum wells,
respectively. Finally, we provide some concluding remarks.

II. QUANTUM-KINETIC FORMALISM

A. DMS Hamiltonian

The theoretical model of DMSs for our work includes the
exchange sd coupling between electrons in the conduction
band and d electrons of the doping Mn atoms and the SOI of
conduction-band electrons expressed in the envelope-function
approximation. The Hamiltonian has the form

H = H0 + Hsd + HSO, (1)

where H0 = ∑
i p2

i /2m∗, with conduction-band effective mass
m∗, and the Kondo-like Hamiltonian [30]

Hsd = Jsd

∑
iI

si · SI δ(ri − RI ) (2)

describes the coupling due to the exchange interaction between
the conduction-band electrons and the Mn electrons. The spin
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operator and position of the I th Mn atom (ith conduction-band
electron) are denoted as SI and RI (si and ri), respectively.
The coupling constant Jsd is negative here, corresponding to a
ferromagnetic coupling [32]. In the present work the negative
Landé factor of Mn will always be combined with the negative
sign of the coupling constant Jsd. In addition, all spin variables
will be considered dimensionless and the coupling constant
accordingly modified.

For bulk materials, the SOI Hamiltonian HSO of zinc blende
semiconductors is the Dresselhaus Hamiltonian [33]

HD = γD

∑
i

[
σi,xki,x

(
k2
i,y − k2

i,z

) + cyclic perm.
]
, (3)

where σ is the vector of Pauli matrices and k is the
operator p/�. For quasi-two-dimensional systems, we consider
asymmetric quantum wells which display the Rashba SOI [34]

HR = αR

∑
i

(ki,yσi,x − ki,xσi,y). (4)

These effective spin-orbit couplings can be thought of as
interactions of a spin with k-dependent magnetic fields.

B. Equations of motion

In Refs. [30,31,35], the Heisenberg equations of motion
of the density matrix for DMSs without SOI were posed
and analyzed in terms of a correlation hierarchy which
includes averaging of the Mn-atom positions, thus rendering
the problem spatially homogeneous. In this work we follow
that formalism and extend it in a simple fashion in order to
study the effects of the SOI on the electronic spin degree of
freedom.

When the number of Mn atoms (NMn) is much larger than
the number of conduction-band electrons (Ne), i.e. in the
limit NMn � Ne, the quantum-kinetic equations established
in Ref. [30] can be significantly simplified. This assumption
can be easily fulfilled for intrinsic semiconductors in which
the Mn2+ ions are incorporated isoelectronically, as in the
case of II-VI semiconductors [36]. Unlike the situation
in, for example, III-V-based DMSs, where the Mn doping
results in a large number of holes, in isoelectronically doped
systems the density of free carriers is controlled solely by
the photoexcitation and thus can be kept much smaller than
the Mn density simply by using low laser intensities. Here we
consider electrons excited with typical narrowband laser pulses
with near-band-gap energies and low intensities. Employing
the approximation of low electron density as compared to the
Mn doping density, we have developed a simplified formalism
[31] based on the full model of Ref. [30], which allows

a numerically efficient handling of electronic correlations.
Here we adopt the low-electron-density limit and follow the
formalism of Ref. [31].

FIG. 1. (a) Schematic representation of the conduction band (CB)
and the spectrum of the circularly polarized Gaussian laser pulse that
excites electrons from the valence band to a Gaussian distribution of
spin-up electrons in the conduction band (centered at an energy EC

above the band edge and with standard deviation �). (b) The electron
spin and its components 〈s⊥

k 〉 and 〈s‖
k〉, perpendicular and parallel

to the Mn magnetic field (or equivalently angular frequency ωM),
respectively. Also represented is �k, the angular frequency associated
with the k-dependent spin-orbit effective magnetic field. The electron
spin precesses about ωM + �k.

In the regime NMn � Ne the Mn density matrix can be
considered stationary and we take the z axis along the mean
Mn magnetization 〈S〉. The assumption of a stationary Mn
density matrix has been numerically tested under conditions
comparable with our present case in Refs. [31,35,37,38]. We
introduce a precession frequency for the conduction-band
electrons in the effective magnetic field of the Mn atoms:

ωM = Jsd

�
nMnS, (5)

where nMn is the Mn density and S = |〈S〉|, with 0 � S � 5
2 .

We study the time evolution of the mean value of the spin
operator associated with the state with wave vector k,

〈sk〉 =
∑
σσ ′

sσσ ′ 〈c†σkcσ ′k〉 = (〈s⊥
k 〉,〈s‖

k〉), (6)

where 〈s⊥
k 〉 and 〈s‖

k〉 are the mean spin components perpendic-
ular and parallel to the mean Mn magnetization, respectively
[see Fig. 1(b)]. We take as system variables 〈s⊥

k 〉 and the
populations nσ

k = 〈c†σkcσk〉. The parallel mean spin can be
obtained from the latter as

〈s‖
k〉 = 1

2 (n↑
k − n

↓
k). (7)

Leaving aside for the moment the SOI, the time evolution of
these variables induced by H0 and the sd interaction is given
by [31]

∂

∂t
n

↑/↓
k

∣∣∣∣
sd

=
∑

k′

[
Re

(
Gωk

ωk′
)b‖

2

(
n

↑/↓
k′ − n

↑/↓
k

) + Re
(
Gωk±ωM

ωk′
)(

b±n
↓/↑
k′ − b∓n

↑/↓
k ∓ 2b0n

↑/↓
k n

↓/↑
k′

)]
, (8)

∂

∂t
〈s⊥

k 〉
∣∣∣∣
sd

= −
∑

k′

{[
Re

(
Gωk−ωM

ωk′
)(b+

2
− b0n

↑
k′

)
+ Re

(
Gωk+ωM

ωk′
)(b−

2
+ b0n

↓
k′

)]
〈s⊥

k 〉 + Re
(
Gωk

ωk′
)b‖

2
(〈s⊥

k′ 〉 + 〈s⊥
k 〉)

}

+
{

ωM −
∑

k′

[
Im

(
Gωk−ωM

ωk′
)(b+

2
− b0n

↑
k′

)
− Im

(
Gωk+ωM

ωk′
)(b−

2
+ b0n

↓
k′

)]}
〈S〉
S

× 〈s⊥
k 〉 . (9)
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The constants in Eqs. (8) and (9) depend only on the setting
of the Mn magnetization and are given by b± = 〈S⊥2〉 ± b0,
b0 = 〈S‖〉/2, b‖ = 〈S‖2〉, where S‖ = S · 〈S〉/S, and 〈S⊥2〉 =
〈S2 − S‖2〉/2. We also set ωk = Ek/� = �k2/2m∗.

The function Gωk
ωk′ can be interpreted as a memory function

and has the form

Gωk
ωk′ (t) = J 2

sd nMn

V �2

∫ 0

−t

dt ′ei(ωk′ −ωk)t ′

≈ J 2
sd nMn

V �2
πδ(ωk′ − ωk), (10)

where in the last step we neglected the imaginary part and the
finite memory, i.e., we applied a Markov limit which is a good
approximation for not too large values of J 2

sd and excitations
not too close to the band edge [38].

The spin-orbit Hamiltonians of Eqs. (3) and (4) introduce,
to a first approximation, an additional k-dependent spin
precession. If the contribution of a single electron with wave
vector k to the spin-orbit Hamiltonian is written in the form

HSO = �

2

̂k · σ , (11)

then the mentioned spin precession is described by the
Heisenberg equation of motion of the mean value of the spin
operator introduced in Eq. (6),

∂

∂t
〈sk〉

∣∣∣∣
SO

= 
k × 〈sk〉. (12)

Note that while 
̂k is an operator, we introduced 
k as the
corresponding regular vector where k is interpreted simply as
a wave vector and not as an operator as in Eqs. (3) and (4)
[see Fig. 1(b)]. In the present study we take into account the
influence of the spin-orbit interaction at this level, in order
to elucidate how this added k-dependent precession alters the
quantum spin dynamics in bulk and quasi-two-dimensional
DMSs.

III. BULK Zn1−xMnxSe

In this section we present results for ultrafast spin dy-
namics in bulk semiconductors. For concreteness we focus
on Zn1−xMnxSe which is currently one of the best studied
II-VI DMSs, and, as we will see, it can display an interesting
interplay between exchange and SOI. We first examine numeri-
cally and analytically the dephasing caused by the Dresselhaus
spin-orbit coupling and then we proceed to calculate and
analyze the full dynamics under the influence of both exchange
coupling and SOI.

A. Dresselhaus-induced dephasing

As mentioned in Sec. II A, the spin-orbit interaction in the
envelope-function approximation plays the role of an effective
k-dependent magnetic field around which the electron spin
precesses. This spin precession in the case of an electron
gas leads to global spin dephasing and decay, which is at
the root of the D’yakonov-Perel spin-relaxation mechanism
[39]. As initial condition for the conduction-band electrons
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FIG. 2. (Color online) Dephasing after isotropic Gaussian exci-
tation of the spin-up band (standard deviation � = 3 meV) without
exchange sd coupling in an effective Dresselhaus spin-orbit magnetic
field with prefactor γD , specified in ps−1 nm3. Three of the curves
correspond to a Gaussian excitation centered at the band edge
(EC = 0), while the fourth, marked with (*), corresponds to a
displacement of the excitation to EC = 10 meV above the band edge.

we assume a Gaussian distribution caused by a pulsed optical
excitation, similar to the one illustrated in Fig. 1(a). For
the moment we consider a Gaussian distribution centered
at EC = 0 (the band edge) and later we will consider an
excitation centered at EC = 10 meV, always with standard
deviation � = 3 meV. We assume that the optical excitation
populates only the spin-up conduction-band states thanks to
its appropriate circular polarization. In Fig. 2 we plot the
spin polarization, 〈sz〉(t) = 2N−1

e

∑
k〈sk,z〉(t) (normalized to

1), of the initially spin-up electron population (the z axis
coincides with the main axis of the zinc blende lattice) in
the conduction band versus time for different values of the
Dresselhaus spin-orbit coupling constant γD .

The accepted standard value of γD/� = 13.3 ps−1 nm3

is included [10], and two artificially high values (40 and
100 ps−1 nm3) are added to explore the tendencies of the
decay behavior. We use for the conduction-band effective
mass of ZnSe the value m∗ = 0.134m0 [40], where m0 is
the bare electron mass. The expected dephasing and decay
mentioned above are clearly observed, with faster decay
obtained for increasing SOI coupling constant. Note that the
decay, however, is not exponential from the beginning, but
rather quadratic at short times. Another interesting feature is
that for an excitation 10 meV above the band edge the evolution
displays a nonmonotonic behavior. Below we shall indicate the
origin of this incipiently oscillatory behavior.

The long-time limit of the spin polarization seen in Fig. 2,
which corresponds to the equilibrium distribution caused by
the SOI effective field dephasing, is given by the value 1/3:

lim
t→∞〈sz〉(t) =: 〈seq〉 = 1

3 〈sz〉(t = 0). (13)

This equilibrium value can be understood analytically as
follows. The equation of motion for the spin under the SOI
effective magnetic field, ∂

∂t
〈sk〉|SO = 
k × 〈sk〉, can be cast in
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the matrix form ∂
∂t

〈sk〉|SO = Mk〈sk〉, where

Mk =
⎛
⎝ 0 −
k,z 
k,y


k,z 0 −
k,x

−
k,y 
k,x 0

⎞
⎠ , (14)

and has the formal solution

〈sk〉(t) = exp(Mkt) 〈sk〉(0). (15)

The Taylor expansion of the matrix exponential can be
simplified using that M3

k = −
2
k Mk and M4

k = −
2
k M

2
k,

with 
k = |�k|. One obtains

exp(Mkt) = 1 + sin(
kt)
Mk


k
+ [1 − cos(
kt)]

(
Mk


k

)2

.

(16)

The diagonal elements of this matrix are given by

exp(Mkt)|ii = 
2
k,i


2
k

+
(

1 − 
2
k,i


2
k

)
cos(
kt). (17)

Assuming that initially only the ith spin component is
nonzero, from Eqs. (15) and (17) we obtain 〈ski〉(t) =
exp(Mkt)|ii 〈ski〉(0). Thus, for large times t , this spin compo-
nent, averaged over the isotropically occupied k states, tends
to 〈si〉 = 
2

i /
2 = 1/3 since the effective field is isotropic
(the overbar denotes the average over k states).

Note again that in Fig. 2 the curve corresponding to the
excitation above the band edge displays a nonmonotonic
behavior which is the precursor of an oscillation that can be
seen under stronger SOI. These oscillations will be observed
later in the quantum-well situation, and originate from the
cosine term in Eq. (17), appropriately averaged over the
occupied k states.

B. Interplay between exchange and Dresselhaus interactions

Having verified the dephasing caused by the k-dependent
Dresselhaus effective magnetic field, we now wish to study the
interplay between the exchange sd (sd) and Dresselhaus (D)
couplings. The material parameters of Zn1−xMnxSe related
to the Mn doping used in our simulations are as follows.
The exchange coupling constant of Zn1−xMnxSe is N0α =
260 meV [41], where N0 is the number of unit cells per unit
volume, and α = Jsd in our notation. The lattice constant of
ZnSe is 0.569 nm, the volume of the primitive unit cell is
0.0455 nm3; thus N0 = 22 nm−3, and then Jsd ≈ 12 meV nm3.
We assume a relatively low percentage of Mn doping of 0.3%
which gives a Mn density of 6.6 × 10−2 nm−3. The density of
photoexcited electrons is assumed to be 5 × 10−5 nm−3, i.e.,
three orders of magnitude lower than the Mn density.

We first consider a Gaussian distribution for the conduction-
band electrons centered at the band edge, and take an average
Mn magnetization of S = 0.5. The Mn magnetization can
be simply tuned by applying an external magnetic field in
the desired direction and waiting for the Mn spin to reach
its thermal equilibrium. Thus, we envision an experiment
where the magnetic field is turned off before the pump
laser pulse arrives. Note that the Mn spin-lattice relaxation
time is of the order of 0.1 μs [42], which suffices to carry
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FIG. 3. (Color online) Influence of the Dresselhaus spin-orbit
coupling (D) on the spin dynamics in bulk Zn1−xMnxSe with ex-
change sd coupling (sd) for an initially Gaussian electron occupation
centered at the band edge with standard deviation � = 3 meV and
initial spin polarization rotated 45◦ with respect to the z axis. The Mn
concentration is xMn = 0.3% and the net Mn magnetization S = 0.5.
Red solid lines correspond to the full calculation (sd + D) and green
dotted lines to the calculation leaving out the Dresselhaus coupling
(only sd).

out the ensuing optical excitation experiment studied here
under almost constant Mn magnetization. Figure 3 shows
the time evolution of the parallel, 〈sz〉(t), and perpendicular,
|〈s⊥〉(t)| = 2N−1

e | ∑k〈s⊥
k 〉(t)|, mean spin components. From

now on we use only the realistic value γD/� = 13.3 ps−1 nm3

for the Dresselhaus constant and for concreteness we take
the initial spin polarization rotated 45◦ with respect to the
z axis. The specific choice for this angle is not very relevant,
but it is important to set it to a value different from zero
in order to have spin precession about the Mn field. Since the
Dresselhaus Hamiltonian is cubic in the wave vector, we expect
it to have a relatively weak effect, as compared to the exchange
coupling, on electrons populating low-energy states around
the band edge, and Fig. 3 confirms this expectation. Indeed,
we see that for the parallel spin component the presence
of the Dresselhaus coupling does not modify the dynamics
noticeably [the red solid line (sd + D) and the green dots (only
sd) are superimposed]. For the perpendicular components
there is a noticeable difference, but the two curves are still
qualitatively similar. We have checked that if the Mn concen-
tration and/or the Mn magnetization are increased the effect
of the spin-orbit coupling becomes rapidly negligible also
for the perpendicular spin component. Roughly speaking, the
exchange sd coupling can be thought of as causing two main
effects: a spin precession about the mean Mn magnetization
and spin transfer between conduction-band and Mn electrons.
On the other hand, as seen above, the Dresselhaus spin-orbit
Hamiltonian, by providing a k-dependent effective magnetic
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FIG. 4. (Color online) Influence of the Dresselhaus spin-orbit
coupling (D) on the spin dynamics in bulk Zn1−xMnxSe with ex-
change sd coupling (sd) for an initially Gaussian electron occupation
centered at EC = 10 meV above the band edge with standard
deviation � = 3 meV and initial spin polarization rotated 45◦ with
respect to the z axis. The Mn concentration is xMn = 0.3% and the
net Mn magnetization S = 0.1. Red solid lines, full calculation with
sd + D interactions; green long-dashed lines, only sd; blue short-
dashed line: only D; pink dotted lines, mean-field approximation
with sd + D.

field, induces a global dephasing in the electron population.
The decay seen in both spin components in Fig. 3 is thus a
result of both exchange-induced spin transfer and spin-orbit
dephasing, but the former dominates the dynamics for the
chosen set of parameters.

This raises the question of whether a parameter regime
can be reached experimentally in which the dephasing caused
by the spin-orbit effective field has a considerable influence
on or even dominates the spin dynamics. As mentioned
above, shifting the optical excitation away from the band
edge to higher k values should enhance the effect of the
SOI on the spin dynamics. Furthermore, the influence of
the exchange sd coupling can be reduced by lowering both
the Mn concentration and/or the average Mn magnetization.
Thus, in Fig. 4 we show the time evolution of the parallel
and perpendicular spin components as in Fig. 3, but centering
the Gaussian occupation 10 meV above the band edge and
reducing the Mn magnetization to S = 0.1. The Mn doping
is kept at xMn = 0.3% as before, and for the conduction-band
electrons we choose again an initial spin orientation rotated 45◦
away from the z axis. In the parallel spin component there is
now a noticeable difference between the full calculation (sd +
D) (red solid line) and the sd-only case (green long-dashed
line). A qualitatively new feature is that the combination of
sd and Dresselhaus couplings now produces not only a decay

but also oscillations, revealing a combined spin precession.
In the perpendicular component the spin-orbit coupling has
now an enormous effect, greatly accelerating the decay and
causing superimposed oscillations. The oscillations seen in
Fig. 4 have a frequency close to the precession frequency
associated with the mean Mn magnetic field (ωM = ωMẑ),
ωM = 0.124 Thz (period TM = 50.7 ps). We come back to this
issue after discussing the mean-field approximation which we
now introduce.

It is interesting to elucidate whether a similar spin dynamics
would also be obtained in a simpler scenario combining the
Dresselhaus SOI with a constant magnetic field of appropriate
strength. (This type of problem has been studied recently
from the point of view of impurity entanglement [43] and
spin relaxation [44].) We can readily answer this question by
intentionally leaving the correlation terms out of the equations
of motion [keeping in the right-hand side of Eq. (9) only the
first term of the second line] thus reverting to a mean-field ap-
proximation, which for a given Mn magnetization is equivalent
to adding a constant magnetic field. The result is given by the
pink dotted lines in Fig. 4. For the perpendicular component
we see that the mean-field calculation resembles the full one,
although there is a clearly distinguishable difference between
them. On the other hand, both results are far away from the
sd-only result, and we have to conclude that in this sense
the mean-field approximation does capture an important part
of the interplay between the exchange and spin-orbit couplings.
For the parallel component the mean-field approximation
radically modifies the dynamics. We see here that when the
sd correlations are removed the spin-orbit dephasing is not
capable by itself of inducing a decay in the presence of the spin
precession about the Mn magnetization. In other words, the
longitudinal component does not decay since its Dresselhaus
dephasing is in a sense prevented by the “naked” (without
exchange-induced correlations) precession about the Mn
magnetization. To confirm this point we show in Fig. 4 the spin
dynamics with only the Dresselhaus SOI (no sd coupling) with
blue dotted lines. These curves show the strong decay induced
by spin-orbit dephasing in the absence of both the spin preces-
sion and the spin transfer caused by the exchange coupling.

The origin and frequency of the oscillations mentioned
above, which appear when both interactions are present, and
in both the full and mean-field calculations, can be interpreted
with the help of Eq. (17). For a given k state the precession
frequency is now 
 ≡ 
k + ωMz. In the limit ωM � 
k we
can assume that 
z ≈ 
 ≈ ωM, and using Eqs. (15) and
(17) we obtain 〈sz〉(t) = 〈sz〉(0). This argument applies to
every k state and thus can be extended to the whole electron
population. Then, the precession about the spin-orbit effective
magnetic field of the longitudinal component is suppressed
by the dominant precession about the Mn magnetic field, a
feature that can be seen clearly in the mean-field result of
Fig. 4. If the spin-orbit angular frequency is not completely
neglected we obtain oscillations in the parallel component
with frequency |
k + ωM| and small amplitude proportional
to 1 − (
k,z + ωM)2/|
k + ωM|2, as seen in Fig. 4. We have
verified that increasing the Dresselhaus coupling increases the
amplitude of the oscillations (not shown here). Oscillations of
the same frequency are also present in the perpendicular spin
component.
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IV. Hg1−x− yMnxCd yTe QUANTUM WELLS

We now turn to the study of the influence of the spin-
orbit coupling in II-VI semiconductor quantum wells. In this
case the SOI that we consider is the Rashba coupling (R),
which is present when the quantum-well confinement lacks
inversion symmetry. As explained in the Introduction, the role
of the spin-orbit coupling is conceptually similar in bulk and
in quantum wells, since in both cases it can be thought of
as a k-dependent Zeeman Hamiltonian which induces global
dephasing in an electron gas. However, quantum wells offer
greater flexibility to control the SOI and also display high
electron mobilities in high-quality modulation-doped samples.
High mobilities amount to longer momentum-scattering times
and therefore to more coherent quantum dynamics.

In line with the bulk studies discussed above, we first
tested the spin dynamics in Zn1−xMnxSe quantum wells.
For realistic parameters for this material, it turned out that
the Rashba coupling was too weak to modify the dynamics
driven by the exchange sd coupling. The root of this difficulty
seems to be the large band gap (about 2.8 eV) of ZnSe,
which results in a small Rashba coupling constant. Thus
for the quantum-well calculations we looked for a family
of materials with stronger and more controllable Rashba
interaction. Hg1−xMnxTe is a good candidate since the energy
gap Eg of this ternary compound depends strongly on the
Mn concentration [45], going to zero at x � 6.5%, while its
spin-orbit valence-band splitting � is insensitive to it [46]. This
interesting combination leads to flexible spin-orbit properties,
which are generally controlled by the ratio �/Eg . By choosing
a Mn concentration slightly above 6.5% we can select a very
low energy gap, which leads in turn to a strong Rashba coupling
[47]. However, this lower limit for the Mn concentration is still
too high and leads again to a completely dominant exchange
interaction even for as low a Mn magnetization as S = 0.01
(with sd-coupling-induced spin relaxation times below 5 ps).
This drawback can be overcome by considering instead the
compound Hg1−x−yMnxCdyTe in which the nonmagnetic Cd
atoms replace some of the Mn dopants. This change maintains
the gap tunability via the doping fraction x + y giving full
flexibility regarding the concentration of magnetic ions [46].
The Rashba coupling constant can be calculated with the
expression [16,47]

αR = �
2

2m∗
�

Eg

2Eg + �

(Eg + �)(3Eg + 2�)

Vqw

d
. (18)

We work with the effective mass of HgTe m∗ = 0.093 m0

[40], and take the spin-orbit valence-band splitting as
� = 1.08 eV [48]. Assuming Eg = 300 meV, a quantum-
well width d = 200 Å, and a potential energy drop of
Vqw = 50 meV across the quantum well, we obtain αR =
4.87 meV nm (αR/� = 7.4 ps−1nm). Note that for ZnSe one
obtains αR = 0.015 meV nm (αR/� = 0.023 ps−1 nm), a very
low value which leads to negligible spin-orbit effects, as
mentioned before. For the exchange sd coupling constant
of HgMnTe we take N0α = 400 meV [49], and the lattice
constant of 0.645 nm leads to Jsd = 26.8 meV nm3. We keep
the previous Mn concentration of x = 0.3%.

In Fig. 5 we show the time evolution of the parallel and
perpendicular spin components for quantum wells, where now
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FIG. 5. (Color online) Influence of the Rashba spin-orbit cou-
pling (R) on the spin dynamics in a Hg1−x−yMnxCdyTe quantum
well with exchange sd coupling (sd) for an initially Gaussian electron
occupation centered 10 meV above the band edge with standard
deviation of 3 meV and initial spin polarization rotated 45◦ with
respect to the z axis. The Mn concentration is xMn = 0.3% and the
net Mn magnetization S = 0.1. Red solid lines, full calculation with
sd + R; green long-dashed lines, only sd; blue short-dashed lines,
only R; pink dotted lines, mean-field approximation with sd + R.

the parallel component corresponds to the growth direction
of the quantum well (z axis). The Gaussian occupation is
centered 10 meV above the band edge and we consider a
Mn magnetization of S = 0.1. The initial spin orientation is
rotated 45◦ away from the z axis.

Figure 5 shows that while the sd-only curve (green long-
dashed line) follows the usual exponential decay, the full
dynamics with sd + R displays clear oscillations in both
components. We have verified that the amplitude of these
oscillations increases with increasing Rashba coefficient,
which in turn is obtained by lowering the energy gap. The
pink dotted lines in Fig. 5 show the mean-field approximation
results with both sd and R interactions. Here the decay seen
in the perpendicular component is due to the Rashba-induced
dephasing since exchange correlations are absent. The parallel
component maintains an approximately constant mean value
in agreement with the analysis done in the previous section,
and shows a slight decrease of the oscillation amplitude due
to the dephasing induced by the Rashba SOI. We verified
that this amplitude reduction is accelerated by increasing the
Rashba coupling constant. The blue short-dashed lines show
the evolution of the spin with only the Rashba interaction
present (no sd). Here we see the full-fledged oscillations
that had been anticipated in the discussion of Fig. 2. These
oscillations are the collective result of the individual spin
precessions about the effective k-dependent Rashba magnetic
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field. There appears to be no analytical expression or simple
interpretation for the frequency of these oscillations at present.
This frequency depends on many factors such as the Rashba
coefficient, the electron density, and the electronic distribution
(which in our simulations is determined by the mean value
and the standard deviation of the initial Gaussian population).
We have checked numerically that there is a roughly linear
dependence of this frequency on the Rashba coefficient for an
excitation 10 meV above the band edge.

It is unexpected and noteworthy that, in the quantum-well
case, the addition of the spin-orbit interaction to the DMS
produces strong oscillations while at the same time leaves
fairly unchanged the decay rate for our parameters, as can be
seen in Fig. 5 (“only sd” versus “sd + R” curves). Finally,
we point out that the main qualitative difference between the
results shown in Fig. 4 for bulk and Fig. 5 for a quantum well is
that, for the perpendicular spin component in the quantum well,
the sd-only curve stays near the full result and the mean-field
curve moves strongly away, while the opposite behavior occurs
in bulk.

V. CONCLUSION

We studied theoretically the combined effects of the
exchange sd coupling and the spin-orbit interaction in II-
VI diluted magnetic semiconductors, both in bulk and in
quantum wells. Although our results can be considered
generally valid in zinc blende semiconductor systems, we
focused on particular materials that show clearly the interplay
between the two mechanisms: Zn1−xMnxSe for bulk and
Hg1−x−yMnxCdyTe for quantum wells. In our calculations we
employed a recently developed formalism which incorporates
electronic correlations originating from the exchange sd
coupling. The main conclusion of our study is that for both
bulk and quasi-two-dimensional systems there can be a strong
interplay or competition between the two types of interaction,
leading to experimentally detectable signatures (for example
in time-resolved Faraday and Kerr rotation experiments) of
the spin-orbit interaction in DMSs. In bulk we find that the

spin components parallel and perpendicular to the net Mn
magnetization have rather different responses to the presence
of the spin-orbit (Dresselhaus) interaction, the latter being
much more affected by it. Indeed, coherent oscillations—with
a frequency reflecting the precession around a combination of
the Mn magnetization and the Dresselhaus field—develop as
a consequence of the interplay between the two interactions,
which are completely absent when the exchange interaction
dominates. In addition, the decay rate is greatly enhanced
for the perpendicular component by the presence of the
Dresselhaus interaction in the studied regime. Regarding
quantum wells, we find that the exchange interaction tends
to be more dominant over the spin-orbit interaction (Rashba
coupling in this case), which led us to consider a family of
materials with large valence-band-splitting spin-orbit constant
and tunable energy gap. For these DMS materials we obtained
again a strong effect of the spin-orbit interaction, manifesting
itself in the occurrence of oscillations which are not seen
when the exchange interaction acts alone. Remarkably, even
though the combination of exchange and spin-orbit interaction
leads to clearly visible oscillations, the decay of the spin
polarization is practically unaffected by the presence of the
Rashba interaction. These signatures should be detectable
experimentally in pump-and-probe experiments. Finally, for
both bulk and quantum wells we find that in the mean-field
approximation treatment of the exchange interaction there is
a strong suppression of the spin-orbit-induced dephasing of
the spin component parallel to the Mn magnetic field. The
studied interplay between the spin-orbit interaction and the
exchange coupling could improve spin control and thereby
facilitate potential spintronic applications of DMSs.
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