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Magnetic, electrical, and thermodynamic properties of NpIr: Ambient and high-pressure
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H. C. Walker,1,2 K. A. McEwen,3 J.-C. Griveau,4 R. Eloirdi,4 P. Amador,4 P. Maldonado,5 P. M. Oppeneer,5 and E. Colineau4

1Deutsches-Elektronen Synchrotron DESY, 22607 Hamburg, Germany
2ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom

3London Centre for Nanotechnology, and Department of Physics and Astronomy, University College London,
17-19 Gordon Street, London WC1H 0AH, United Kingdom

4European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany
5Department of Physics and Astronomy, Uppsala University, P. O. Box 516, SE-75120 Uppsala, Sweden

(Received 25 March 2015; revised manuscript received 4 May 2015; published 27 May 2015)

We present bulk property measurements of NpIr, a newly synthesized member of the Np-Ir binary phase
diagram, which is isostructural to the noncentrosymmetric pressure-induced ferromagnetic superconductor
UIr. Magnetic susceptibility, electronic transport properties at ambient and high pressure, and heat capacity
measurements have been performed for temperatures T = 0.55–300 K in a range of magnetic fields up to 14 T
and under pressure up to 17.3 GPa. These reveal that NpIr is a moderately heavy fermion Kondo system with
strong antiferromagnetic interactions, but there is no evidence of any phase transition down to 0.55 K or at
the highest pressure achieved. Experimental results are compared with ab initio calculations of the electronic
band structure and lattice heat capacity. An extremely low lattice thermal conductivity is predicted for NpIr at
temperatures above 300 K.
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I. INTRODUCTION

The magnetic and electrical properties of the majority
of rare earth intermetallics are well explained using the
standard localized moment model of rare earth magnetism,
as expounded by Jensen and Mackintosh [1], owing to the
limited radial extent of the 4f wave functions. Whereas,
upon descending down the periodic table into the 5f actinide
series, the f -electron wave function becomes more extended.
Therefore, the 5f electrons have a character intermediate
between that of the localized 4f electrons and the itinerant 3d

electrons of the transition metals, which taken in conjunction
with the increased difficulties in handling such materials
results in a more limited understanding of magnetism in
the actinides. However, this also contributes to the fact that
actinide systems display a unique complexity, exhibiting
various interesting properties such as heavy fermion and
non-Fermi liquid behaviors [2], multipolar order [3–7], and
unconventional superconductivity [8–14].

UIr has recently been identified as a ferromagnetic quan-
tum critical point pressure-induced superconductor [15] and
belongs to two different, nonconventional subclasses of su-
perconductor: noncentrosymmetric superconductors such as
CePt3Si [16], and ferromagnetic superconductors such as
UGe2 [8]. It is thought that the absence of inversion symmetry
prohibits spin-triplet (p-wave) pairing, whilst ferromagnetism
prohibits spin-singlet (s-wave) pairing. Therefore UIr is
a particularly interesting system, significant for the study
of the interplay between magnetism and superconductivity
in strongly correlated electron systems. It is an itinerant
ferromagnet (TC = 46 K at ambient pressure), with an ordered
moment of only 0.6 μB/U atom [17]. However, at high
temperatures its behavior is better described in a localized
picture, with an effective moment of 3.57 μB (consistent
with either 5f 2 or 5f 3) obtained from a Curie-Weiss fit

to single crystal high temperature magnetic susceptibility
measurements (T = 300–800 K) [18].

Studies of isostructural transuranium compounds offer the
opportunity to investigate how physical properties evolve as a
function of 5f shell filling, with the possibility in the case of
NpIr of investigating the significance of the itinerant ferromag-
netism to the nature of the superconductivity. Here we report
on the synthesis and characterization of NpIr, an isostructural
analog of UIr, via magnetic susceptibility, resistivity, and heat
capacity measurements. The experiments reveal no magnetic
ordering or superconductivity down to 0.55 K, in contrast to
the development of ferromagnetic order in UIr at TC = 46 K,
and no evidence of pressure-induced superconductivity. Ab
initio calculations reveal the significance of the Hubbard
+U term for the description of the Np 5f electrons. The
calculated phonon dispersions, lattice heat capacity, and lattice
thermal conductivity are presented. The latter is found to be
exceptionally low in the high temperature regime.

II. METHODS

Polycrystalline samples of NpIr were synthesized at the
Institute for Transuranium Elements (ITU) by arc melting
stoichiometric amounts of Np (99.9%) and Ir (99.98%) metals
under a high purity argon atmosphere (Ar: 6N) in a water
cooled copper hearth using a zirconium getter. The sample
was remelted five times to obtain a good homogeneity and the
weight loss was 0.5%. The as-cast sample was embedded in
a tantalum foil and encapsulated in a quartz tube under high
vacuum, and then annealed at 873 K for three weeks. X-ray
powder diffraction analysis of the samples was performed
on a D8 Advance diffractometer with a Bragg-Brentano
configuration, equipped with a Cu x-ray tube (40 kV, 40 mA),
a Ge monochromator (111), and a Lynx Eye linear position
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TABLE I. Refined atomic parameters for NpIr (space group P 21)
at room temperature, with Rwp = 10.52 and GoF = 2.14.

Atom Wyckoff x y z Occ

Np1 2a 0.13759 0.00000 0.12635 1
Np2 2a 0.62272 −0.00257 0.63025 1
Np3 2a 0.87689 0.71522 0.38225 1
Np4 2a 0.39253 0.71821 0.87415 1
Ir1 2a 0.10633 0.26729 0.10832 1
Ir2 2a 0.62036 0.25888 0.62317 1
Ir3 2a −0.12913 0.44782 0.37114 1
Ir4 2a 0.35812 0.45145 0.85769 1

sensitive detector. The powder pattern was recorded at room
temperature in step scan mode over a 2θ range of 10–120◦, with
a step size of 0.013◦ and a count time of 4 s per step. NpIr was
indeed found to be isostructural to UIr, the x-ray diffraction
pattern being fitted with a monoclinic structure described by
the P 21 space group, with lattice parameters a = 5.5832(6) Å,
b = 10.7368(9) Å, c = 5.5848(6) Å, and β = 95.708(5)◦ (see
Table I for refined atomic parameters). Figure 1 shows the
quality of the refinement. At the lowest 2θ angles there is a
broad peak arising from the necessary encapsulation of the
sample, but the other features of the data are reproduced by
the refined structure.

Magnetic susceptibility and isothermal magnetization mea-
surements were performed using a Quantum Design MPMS-7
Squid magnetometer on a 89.9 mg NpIr sample over a
temperature range of 2–300 K, in magnetic fields up to 7 T.

The ambient pressure electrical resistivity, magnetoresis-
tivity, and Hall effect have been measured in the temperature
range 1.8–300 K, and in magnetic fields up to 14 T, using
a Quantum Design PPMS-14T setup, by means of a four
DC probe technique voltage measurement. An NpIr sample
of size ∼1.5 × 0.4 × 0.2 mm3 was polished on two parallel
faces to determine better the form factor. Electrical contacts

FIG. 1. (Color online) Rietveld refinement (solid red line) of
room temperature x-ray powder diffraction data for NpIr (◦) annealed
at 873 K. The difference between the calculated and experimental
points is shown by the black line which has been offset by
−2000 cts/4s for clarity. The vertical tick marks correspond to the
Bragg peak positions for the NpIr P 21 structure shown in the inset.

between the sample surfaces and the 50 μm silver wires were
ensured by using silver epoxy (Dupont 4929). Finally, each
mounted sample was then encapsulated with Stycast epoxy
(1266). For electrical resistivity measurements, the current I

was applied in the polished plane. For the magnetoresistivity,
I was parallel to the voltage direction and parallel to the
applied magnetic field B. In the Hall configuration, the voltage
VH was measured perpendicular to the current I and the
applied magnetic field B. The Hall resistance (RH ) has been
determined by measuring VH under fields alternating between
+14 and −14 T. The magnetic field response VH (B) at fixed
temperatures has been measured to confirm results obtained
when ramping in temperature. For all measurements I = 5 mA
was used.

The high-pressure resistance measurements were per-
formed by a four-probe DC method in a Bridgman-type
clamped pressure cell, with a solid pressure-transmitting
medium (steatite). Electrical contacts were made with 25 μm
diameter platinum wires lightly pressed onto the sample.
Before each measurement the cell was loaded and clamped at
room temperature. The exact pressure inside the pressure cell
was determined later by using the pressure dependence of the
superconducting transition temperature of lead as a manometer
[19]. Measurements were performed on a ∼50 μg sample of
size ∼20 × 50 × 500 μm3 in the temperature range 1.8–300 K
up to 17.3 GPa.

Heat capacity measurements on a 5.6 mg sample of NpIr
were performed over the temperature range T = 2–250 K, and
on a 0.9 mg sample down to 0.55 K, via the standard relaxation
calorimetry method using a Quantum Design PPMS-9 with
the 3He refrigeration insert, after the samples had been
coated in Stycast. The data have been corrected for the
addenda and the stycast. Self-heating effects in neptunium
make it difficult to reach lower temperatures. No isostructural
phonon blank exists, so instead, in order to best estimate the
phonon contribution, we have followed two strategies. First,
we have synthesized orthorhombic ThIr (space group Cmcm)
and cubic LuIr (Pm3̄m), verified their structures and phase
purities using x-ray powder diffraction, and measured their
heat capacities using the same relaxation method. Second, we
have calculated ab initio the phonon spectrum of NpIr and the
lattice contribution to the heat capacity.

III. RESULTS AND DISCUSSION

A. Magnetic susceptibility

The magnetic susceptibility data for NpIr, shown in
Fig. 2(a), reveal no indication of any magnetic transition above
T = 2 K. There is no difference in the results for zero-field
cooling and in-field cooling. Between 50 and 300 K the inverse
susceptibility may be modeled by a Curie-Weiss law, see the
inset to Fig. 2(a), to obtain a Curie-Weiss temperature of
−104 ± 1 K, and an effective paramagnetic moment of 3.01 ±
0.02 μB/Np. Starting with the Curie-Weiss temperature, such
a large negative value is indicative of strong antiferromagnetic
interactions. Intriguingly, this is of a similar magnitude to the
−300 K obtained from high temperature measurements on
UIr [18], but in that case, in spite of the antiferromagnetic
interactions, it undergoes a ferromagnetic phase transition,
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FIG. 2. (Color online) (a) Magnetic susceptibility of NpIr mea-
sured with μ0H = 1 T. The inset shows a Curie-Weiss fit to the
inverse susceptibility. (b) Isothermal magnetization of NpIr measured
at T = 2,10, and 40 K.

highlighting that these compounds sit at the interface between
antiferromagnetic and ferromagnetic order. Next we consider
the value for the effective paramagnetic moment, which is
inconsistent with either a 5f 3 or a 5f 4 configuration in
both the Russell-Saunders (3.62 μB/Np and 2.68 μB/Np)
and the intermediate coupling schemes (3.68 μB/Np and
2.76 μB/Np [20]), and suggests, therefore, that possibly the
5f electrons are not fully localized. If alternatively the fit to
the inverse susceptibility is only made above T = 250 K, then
a Curie-Weiss temperature of −155 ± 5 K and an effective
paramagnetic moment of 3.20 ± 0.02 μB/Np are obtained,
still inconsistent with a localized moment picture. Such results
are not wholly dissimilar to those for UIr, for which a localized
behavior was only observed at high temperatures (T > 300 K)
[18]. Regrettably, it was not possible to measure the magnetic
susceptibility above room temperature using our experimental
setup. However, as might be expected given the standard
trend towards increasingly localized electrons on spanning
the actinide series, NpIr is perhaps more localized at low
temperatures than UIr, as demonstrated by the difference in
the effective moments, obtained by making a Curie-Weiss
fit to the inverse susceptibility over the temperature range
T = 50–100 K, of 1.67 μB/U [17] and 2.96 ± 0.01 μB/Np
for polycrystalline UIr and NpIr, respectively.

Figure 2(b) presents the isothermal magnetization data for
T = 2,10, and 40 K. These reveal no saturation for magnetic
fields up to 7 T, and no evidence of magnetic hysteresis.

B. Resistivity

The electrical resistivity of an annealed polycrystalline
sample of NpIr is shown in Fig. 3(a). Interestingly, the room
temperature absolute resistivity of NpIr is ρ = 122 μ� cm,
which is comparable to the 80 μ� cm reported for the best
quality UIr crystals [21]. With decreasing temperature, we
observe the presence of a very broad maximum centered
at Tmax ∼ 150 K, reminiscent of that observed in several
neptunium-based systems such as NpCoGa5 [22] and NpPd3
[23], which is indicative of a Kondo-type behavior. Below
50 K coherence sets in and the resistivity collapses to only
1.95 μ� cm at T = 1.8 K. Below 6 K [see inset to Fig. 3(a)],
the strong curvature can be modeled by a Fermi liquid
behavior: ρ = ρ0 + AFLT 2, with ρ0 = 1.42 ± 0.02 μ� cm
and AFL = 0.209 ± 0.001 μ� cm K−1. This gives a residual
resistivity ratio ρRT /ρ0 ∼ 90, which approaches the value of
230 reported for the highest quality single crystal UIr [21].
Over the temperature range T = 5–20 K, the data can be mod-
eled by a non-Fermi liquid law: ρ = ρ0 + A5/3T

5/3 with ρ0 =
0.92 ± 0.07 μ� cm and A5/3 = 0.412 ± 0.001 μ� cm K−1.
Such a variation in the temperature dependence with temper-
ature interval may indicate different spin fluctuation regimes
within NpIr.

Figure 3(b) shows the longitudinal magnetoresistivity of
NpIr at 14 T over the temperature range T = 1.8 − 50 K,
which is similar in shape to that of UAl2 below 20 K [24]. For
all temperatures up to 50 K the magnetoresistive contribution
is positive and, at T = 1.8 K, large relative to the resistivity
(∼140%). There is no clear evidence of any anomaly down
to this temperature that might be associated with a magnetic
phase transition. The field dependence of the isothermal
magnetoresistivity for a range of different temperatures is
shown in the inset to Fig. 3(b). For all temperatures mea-
sured (T = 1.8,3,5, and 50 K), the magnetoresistivity varied
quadratically as a function of the magnetic field.

Figure 3(c) presents the Hall coefficient (RH ) for T =
1.8–75 K for NpIr. RH is slightly enhanced approaching 10 ×
10−10 m3 C−1 at 50 K, which is nevertheless rather similar
to values for metallic systems, e.g., Cu: 0.5 × 10−10 m3 C−1.
Upon decreasing the temperature, RH decreases almost lin-
early, changing sign at 25 K, before reaching a minimum
at 7 K, below which RH starts to increase again. As RH

is the result of the combination of the electron and hole
contributions with different carrier velocities and relaxation
times, our data suggest that the nature and the mobility of the
carriers are changing drastically with temperature. The Hall
coefficient is composed of two terms: RH = R0 + RS , where
R0 is the ordinary Hall coefficient, and RS is the extraordinary
or anomalous Hall coefficient. Following Ref. [25] we replace
RS by a term dependent on the magnetic susceptibility to give

RH (T ) = R0 + R1χ
∗(T ), (1)

where the first term R0 describes the Hall effect due to
the Lorentz motion of the carriers and/or residual skew
scattering by defects and impurities, while the second term
comes from skew scattering by Kondo impurities. In this
formula χ∗ is the reduced susceptibility, approximated by
χ (T )/C, where C is the Curie-Weiss constant obtained from
the fits to the inverse susceptibility above. Assuming R0 and
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FIG. 3. (Color online) (a) Electrical resistivity of NpIr, with inset showing fits to a Fermi liquid (solid red line) and non-Fermi liquid
(dashed green line) model at low temperatures. (b) Isofield magnetoresistance of NpIr at 14 T, with inset showing the field dependence of the
isothermal magnetoresistance for T = 1.8 K (o), 3 K (�), 5 K (�), and 50 K (�). (c) Hall effect measurements of NpIr, with inset showing fit
to RH (T ) = R0 + R1χ

∗(T ).

R1 are independent of the temperature, plotting RH (T ) as
a function of χ∗(T ), as shown in the inset to Fig. 3(c),
gives R0 = +7.19 ± 0.02 × 10−9 m3 C−1, indicating that the
ordinary Hall effect is dominated by the hole contribution.
A simple one-band model then provides an estimation of
8.69 ± 0.03 × 1026 m−3 for the concentration of free holes,
giving an upper limit for the actual carrier concentration in
NpIr in the normal state. This may then be converted into a
rough estimate of 0.05 for the number of free holes per formula
unit at high temperature.

The global shape of the electrical resistivity of NpIr does
not change drastically under pressure up to 12 GPa (Fig. 4).
However, with increasing pressures up to ∼12 GPa, the maxi-
mum around 150 K, seen in Fig. 3(a), becomes less apparent,
but the onset of coherence below this temperature remains.
Above ∼12 GPa, the resistivity evolves more smoothly with
temperature with a shift of the scattering to higher temperature.
At low temperature the resistance can be fitted according to
ρ = ρ0 + aT n, where the exponent stays essentially constant
∼1.33 ± 0.15 until above 13 GPa, where it fluctuates, as shown
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FIG. 4. (Color online) (a) Electrical resistance of NpIr measured
as a function of temperature for a selection of applied pressures.
(b) Comparison of normalized residual resistance data for NpIr
for pressures between 0.16 GPa and 17.65 GPa. (c) Temperature
exponent extracted from low temperature fits to the resistance of
R = AT n + R0.

in Fig. 4(c). No hint of a superconducting transition is detected
down to 1.8 K for any pressure below 17 GPa.

One possible explanation for the observed absence of
ferromagnetism in NpIr above 1.8 K may be inferred from
a comparison of the forms of the resistance curves of
UIr and NpIr. At ambient pressure, the resistivity of NpIr
[Fig. 3(a)] resembles the resistivity of UIr under pressures
greater than 2 GPa [21], which appear to be unfavorable
conditions for ferromagnetism in UIr. The requirements for the
appearance of superconductivity in UIr are extremely drastic,
and strongly dependent on the pressure transmitting medium
[21], but our measurements on NpIr were performed under
similar hydrostatic conditions. The superconducting transition
temperature of UIr is lower than our accessible temperature
range, so it is possible that NpIr may still superconduct at
temperatures below 1.8 K, but the lack of a ferromagnetic
state, which seems to be a prerequisite for nonconventional
superconductivity in UIr, potentially makes this less likely.

C. Heat capacity

As shown in Fig. 5, the heat capacity of NpIr varies
smoothly between 2 K and 270 K, with no anomalies which
might be associated with any phase transition. When a straight
line fit is made to CP /T versus T 2 for T � 7 K, as in
the inset to Fig. 5, we obtain γ = 175 ± 1 mJK−2 mol−1

for the electronic heat capacity and a Debye temperature
	D = 145.7 ± 0.5 K. The electronic heat capacity of NpIr is
considerably greater than that for UIr (γ = 49 mJK−2 mol−1,
Ref. [26]), and is indicative of strong electronic correlations.
Combining the value of γ with the coefficient AFL for the
quadratic term in the low temperature resistivity obtained
in Sec. III B, gives a Kadowaki-Woods ratio [27] AFL/γ 2 =
0.68 ± 0.01 × 10−5 μ� cmK2 mol2 mJ−2, implying that NpIr
is a moderately heavy fermion material, which would be
consistent with hybridization causing an effective param-
agnetic moment below the free ion value. Such a value
for the Kadowaki-Woods ratio is comparable with that for
UAl2 (0.89 × 10−5 μ� cmK2 mol2 mJ−2) [27], in which the
low temperature specific heat is well expressed in terms
of spin fluctuations that prevent any magnetic order above
1 K. However, the paramagnon upturn present in UAl2 data
is absent in that for NpIr. USn3 also displays a similar
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FIG. 5. (Color online) Heat capacity of NpIr, ThIr, and LuIr, with
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heat capacity, and the ab initio calculated lattice specific heat as a
solid black line.

value of AFL/γ 2 = 0.78 × 10−5 μ� cmK2 mol2 mJ−2 [27],
with a very similar specific heat value, γ = 172 mJK−2 mol−1

(Ref. [28]) and despite the lack of a paramagnon upturn in
the low temperature heat capacity, is also classified as a spin
fluctuator system.

Figure 5 also compares the heat capacity of NpIr with that of
LuIr and ThIr, in an attempt to estimate the lattice contribution.
Regrettably, neither ThIr nor LuIr, crystallizing in the Cmcm

and Pm3̄m space groups, respectively, are isostructural with
NpIr. However, we have chosen to use the data for ThIr as
a phonon blank, since its molar mass is very similar to that
of NpIr, and its Debye temperature (	D = 176.6 ± 0.3 K) is
closer than that of LuIr (	D = 254.7 ± 0.4 K). Furthermore it
agrees better with the ab initio calculated (see Sec. IV) phonon
heat capacity of NpIr (shown as the black solid line). Hence
we estimate the total electronic (5f + conduction electron)
contribution to the heat capacity of NpIr as

Cel
P = C

NpIr
P − C

NpIr
P (phonons),

(2)
Cel

P = C
NpIr
P − CThIr

P + γ ThIr · T ,

where γ T h = 4.8 ± 0.1 mJK−2 mol−1 is the electronic heat
capacity of ThIr. Figure 6(a) displays the total electronic con-
tribution to the heat capacity of NpIr divided by temperature,
revealing a broad peak centered at T = 30 K and a near
constant behavior at high temperatures.

Integrating the total electronic contribution to the heat
capacity of NpIr allows an estimate for the entropy to be
obtained, which is shown in Fig. 6(b). The entropy varies
smoothly, and by extrapolation to higher temperature appears
to be compatible with the free ion value for Np3+ (R ln 10)
or Np4+ (R ln 9). Assuming that the 5f contribution to the
heat capacity is close to saturation by ∼200 K, we can deduce
from Fig. 6(a) that the electronic coefficient has an upper
limit of γ = 20 ± 2 mJK−2 mol−1 at high temperature. Such a
considerable difference between the low and high temperature
electronic heat capacities suggests that the enhanced low
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FIG. 6. (Color online) (a) Total electronic (5f +conduction elec-
trons) contribution to the heat capacity of NpIr divided by temperature
obtained from C

NpIr
P − CThIr

P + γ ThIr · T . (b) The entropy obtained by
integrating the data in panel (a) as a function of temperature.

temperature γ value is due to a strong Kondo interaction while
localization features are enhanced at higher temperatures.

IV. AB INITIO CALCULATIONS

A. Methodology

Electronic structure calculations were carried out using the
Vienna ab initio simulation package (VASP) [29,30], with
the generalized gradient approximation (GGA) as the density-
functional theory (DFT) exchange-correlation functional, as
well as with its extension to treat strongly correlated electrons,
DFT with an additional Hubbard U term (DFT+U ) [31,32].
Within the GGA+U approach, we have used the Dudarev
et al. formulation [32], where the Hubbard and exchange
parameters, U and J , respectively, are introduced to account
for the strong on-site correlations between the neptunium 5f

electrons. This helps to remove the self-interaction error and
improves the description of correlation effects in the open
5f shell. We have chosen a Hubbard U value of 4.0 eV
and an exchange parameter J value of 0.6 eV, which are
in the range of accepted values for Np and Pu compounds
[33,34]. To test the dependence of our results on the U value,
we have also performed calculations for U = 2 and 3 eV,
and for U = 0 eV, i.e., for the common GGA functional.
Further, to deal with the problem of degenerate metastable
states when using the DFT+U methodology, we have used
the occupation matrix control (OMC) method proposed by
Dorado et al. [35] This method consists of the direct control of
the strongly correlated electron occupation matrices. Details of
the electronic structure calculations can be found in Ref. [36].
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We have considered three different magnetic orders: ferro-
magnetic (FM), antiferromagnetic (AFM), and paramagnetic
(PM) order. In the FM ordered state, we assume that all the Np
ions have collinear magnetic moments oriented along the c

direction. In the AFM ordered state, the Np ions are considered
to be collinear with magnetic moments changing sign from
one Np plane to another. Finally, for the PM ordered state, we
adopt the disordered local moments (DLM) approach [37,38],
which states that paramagnetism can be modeled as a state
where atomic magnetic moments are randomly oriented (non-
collinear magnetism), valid for materials that display a Curie-
Weiss paramagnetism, such as NpIr. The DLM approach can
be simplified by considering only collinear magnetic moments
when the spin-orbit coupling is not taken into account. Hence,
the problem of modeling paramagnetism becomes a problem of
modeling random distributions of collinear spin components.
It can be solved by using special quasirandom structures
(SQS) [39]. An SQS is a specially designed supercell built of
ideal lattice sites to mimic the most relevant pair and multisite
correlation functions of a completely disordered phase (PM
order in our case). As a PM simulation cell we used an extended
lattice cell of 64 atoms. We note however that on account of
the large simulation cell needed for the DLM calculations,
it was not possible to perform these including the spin-orbit
interaction.

B. GGA+U results

A full structural and atomic-site relaxation has been carried
out for NpIr (with U = 4 eV and J = 0.6 eV). We have
found, in agreement with experiments, that NpIr crystallizes
in a monoclinic structure (described by the P 21 space group).
We further found that the calculated lattice parameters a =
5.6072 Å, b = 10.7829 Å, c = 5.6088 Å, and β = 95.708◦ are
very close to the experimental values (see Sec. II). The relaxed
atomic positions for the FM order are given in the Appendix,
where again the proximity to the experimental atomic positions
can be observed.

The total energy for the three different magnetic orders have
been calculated. Although the energy differences are small, we
found that the FM order has the lowest total energy, followed

by the PM and AFM orders, having 0.039 and 0.056 eV
per formula unit higher total energies, respectively. These
findings differ from the experimental results which reveal no
sign of magnetic order for T > 1.8 K, while the Curie-Weiss
temperature implies strong antiferromagnetic interactions.

To investigate the origin of the obtained energy order we
have investigated the influence of the Hubbard U parameter
and considered the influence of the spin-orbit interaction.
Performing calculations with U values of 0, 2, and 3 eV did not
lead to a change in the relative energy sequence. The FM phase
was always found to have the lowest total energy, followed by
the PM phase, and then by the AFM phase. The relative energy
differences were similar to those found for U = 4 eV. We
emphasize, however, that these calculations were performed
without the spin-orbit interaction, as the DLM calculations
are computationally too heavy with spin-orbit interaction. We
have for the sake of comparison computed a hypothetical
nonmagnetic phase of NpIr (i.e., no moments at all) with the
spin-orbit interaction. We find its total energy to be higher
than that of both the FM and AFM phases. This indicates that
a nonmagnetic state is unlikely and would be an insufficient
representation of the PM phase. Thus, in the absence of DLM
calculations with spin-orbit interaction we cannot definitely
state what the lowest energy magnetic order of NpIr is. It
is however worth noting at this point that isostructural UIr,
which also displays antiferromagnetic interactions based on
the Curie-Weiss temperature, in fact orders ferromagnetically
below 46 K. The local spin moments of the Np ions have also
been calculated; these are 3.78 μB, 3.74 μB, and 3.71 μB for
the FM, PM, and AFM orders, respectively.

The calculated partial densities of states (DOS) for the
three different magnetic orders are given in Fig. 7. There are
significant hybridizations of the Np-f and Ir-d electrons in
the energy range of −3 to +3 eV, as can be inferred from the
similar DOS structures. The Coulomb U potential leads to a
splitting in the 5f spectrum (of about 3 eV) which can be
clearly seen for the PM and AFM ordered states.

To assess the importance of the spin-orbit interaction on the
atomic magnetic moments we have carried out an analysis of
its influence on the FM order. We find that the total magnetic
moment M , written as the sum of the spin magnetic moment
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FIG. 7. (Color online) Atom-resolved partial density of states for the three different magnetic orders calculated for NpIr using the GGA+U

approach.
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FIG. 8. (Color online) Top: Total and partial density of states
of NpIr calculated using the GGA+U approach and including the
spin-orbit coupling. Bottom: The same, but computed with the GGA
approach and including the spin-orbit coupling.

MS and the orbital magnetic moment MO is M = MS + MO =
3.748 μB − 0.933 μB = 2.815 μB. This value is very close to
the intermediate coupling value for a 5f 4 configuration. The
total and partial density of states including spin-orbit coupling
are shown in Fig. 8 (top).

C. GGA results

To investigate the importance of the Hubbard U term, we
have performed a similar study using the plain GGA approach.
Similarly to the spin-orbit case, we only analyzed the FM
order. For this approximation the lattice parameters are a =
5.4620 Å, b = 10.5037 Å, c = 5.4636 Å, and β = 95.708◦.
Although they are in good agreement with the experimental
results, the deviation with respect to these is larger than when
comparing with the GGA+U results. The local magnetic
moments on the Np ions without accounting for the SO
coupling have a magnitude of 3.113 μB. If we include the SO
coupling the spin magnetic moment drops to 2.842 μB while
the orbital magnetic moment becomes −2.527 μB, giving a
net moment of only 0.315 μB. The calculated density of states
are plotted in Fig. 8 (bottom), where it can be observed that
there is a splitting of the f orbitals (into 5f 5

2
and 5f 7

2
) in the

case that SO interaction is included. Nonetheless the manifold
of 5f states appears close to the Fermi energy and has its

maximum at the Fermi energy. Application of the GGA+U

method conversely splits the 5f manifold of states and leads
to a low 5f DOS near the Fermi level (Fig. 8, top).

D. Phonons properties and thermal conductivity

We have calculated the phonons of NpIr using the finite-
displacements method in conjunction with supercells consist-
ing of 2 × 2 × 2 primitive cells (128 atoms). The interatomic
forces were calculated with VASP, adopting as above, the
GGA+U approach for the electronic structure. The phonon
modes were obtained with the phonopy package [40] in the
quasiharmonic approximation. To enable this approximation
the system volume has been isotropically expanded by 2%
from the GGA+U relaxed volume. The anharmonic effects
induced by the volume dependence of phonons frequencies
are explored and the lattice thermal properties such as the
lattice specific heat and the phonon thermal conductivity are
calculated.

The ab initio calculated phonon density of states and
phonon dispersion curves ωnq are given in Fig. 9. The 16-atom
unit cell of NpIr results in 48 phonon modes with a rather
homogeneous spreading of the bands from 0 to 4 THz. The
atom-projected phonon DOS (right-hand panel) shows that at
low energies the contribution from the Ir atoms is larger than
that from the Np atoms, while at higher vibrational frequencies
this behavior is reversed.

The lattice heat capacity Cp can be obtained from
the Gibbs free energy G(T ,p) at constant pressure, Cp =
−T (∂2G/∂T 2). The Gibbs free energy is obtained from

G(T ,p) = min
V

[U (V ) + F phon(T ,V ) + pV ], (3)

where U (V ) is the volume-dependent electronic total energy
and F phon the phonon free energy,

F phon(T ,V ) =
∫ ∞

0
dω g(ω,V )

× [�ω/2 + kBT ln(1 − e−�ω/kBT )], (4)

with g(ω,V ) the phonon DOS, computed as mentioned above
for different volumes. The ab initio calculated Cp(T ) of NpIr
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FIG. 9. (Color online) GGA+U calculated phonon dispersions
(left panel) and corresponding projected phonon density of states per
atom (right panel) of NpIr. The q-point labels in the left panel are
those for the standard high-symmetry positions of the monoclinic
primitive Brillouin zone.
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is shown in Fig. 5. As can be noted the computed lattice heat
capacity is smaller than the measured heat capacity of NpIr.
Its temperature dependence corresponds very well with the
measured heat capacity of ThIr. Thus, this confirms that the Cp

of ThIr can be used as a phonon blank to determine the
electronic contribution to the heat capacity of NpIr.

Lastly, we investigate the lattice thermal conductivity κL

of NpIr. A low thermal conductivity of materials is of interest
as this would lead to a high thermoelectric figure of merit
[41]. The thermal conductivity of NpIr is unknown, but its
anisotropic, low-symmetry crystal structure suggest that its
lattice contribution could be very small. We have computed
the (direction averaged) κL(T ) of NpIr using an approximate
solution to the phonon Boltzmann transport equation in the
relaxation-time approximation,

κL(T ) = 1

3

∑
n

∫
dq
8π3

v2
nqτnqCnq, (5)

where the sum is over all phonon modes, vnq is the group
velocity of a given phonon mode, Cnq is the mode heat
capacity depending only on the mode frequency ωnq and
the temperature, and τnq is the mode dependent relaxation
time, which is computed here on the basis of the model of
Bjerg et al. [42]. Furthermore, for the determination of the
lattice thermal conductivity the Grüneisen parameter γ is a
fundamental quantity. It characterizes the relation between
phonon frequency and crystal volume change and is defined as

γnq = − Vuc

ωnq

∂ωnq

∂Vuc

, (6)

where Vuc is the unit cell volume. The Grüneisen parameter
provides an estimation of the anharmonicity strength in a
compound.

The calculated total lattice thermal conductivity of NpIr
is shown in Fig. 10. From temperatures of 30 to 100 K an
exponential decrease of κL(T ) is observed, which is due to
the exponential increase of the phonon-phonon scattering via
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FIG. 10. (Color online) Calculated lattice thermal conductivity κ

of NpIr as a function of temperature. Shown is the total thermal
conductivity κL as well as the thermal conductivities along the
crystallographic axes. The off-diagonal components of the thermal
conductivity are given in the inset.

the Umklapp mechanism. For temperatures above 100 K the
Umklapp mechanism governs the scattering processes and
consequently an intrinsically low thermal conductivity arises.
The lattice thermal conductivity at room temperature assumes
a value of 0.64 Wm−1 K−1 and a value of 0.19 Wm−1 K−1

at 970 K. Note that these are ultralow values [43]; for
comparison, recent measurements on orthorhombic SnSe
crystals with a very high thermoelectric figure of merit gave
room-temperature values between 0.5 and 0.7 Wm−1 K−1 and
values of 0.23–0.34 Wm−1 K−1 at 970 K, depending on the
crystal axis [44]. Very recent ab initio calculations for NaBi
predicted ultralow values of about 2 Wm−1 K−1 at 300 K
[45]. NpIr is thus predicted to have a record low lattice
thermal conductivity at high temperatures. Apart from a low
lattice thermal conductivity, a high electrical conductivity is
desirable, too, for suitable thermoelectric materials [41]. As
an intermetallic, NpIr is expected to have a good electrical
conductivity and also a considerably larger contribution to
the electronic thermal conductivity than in the chalcogenide
systems. However, it is not currently possible to simply
distinguish between the phonon and electron contributions
experimentally.

Low lattice thermal conductivities can be found for com-
pounds with a large molecular weight or a complex, anisotropic
crystal structures [41]; both conditions are fulfilled for NpIr.
In Fig. 10 we in addition show the axis-projected thermal
conductivities as well as the off-diagonal components (in
the inset). The latter arise because of the low symmetry
of the monoclinic structure. The three crystallographic axis-
projected thermal conductivities are of similar size in NpIr.

To assess the importance of the lattice anharmonicities for
the low thermal conductivity the Grüneisen parameters are
evaluated. The calculated q-averaged Grüneisen parameters
projected on the crystallographic axes are: γ̄a = 2.46, γ̄b =
3.69, and γ̄c = 2.46. As the q-dependent γnq values can be
negative, their absolute values have been computed. The values
for NpIr are large and anisotropic (comparable to those for
SnSe, Ref. [44]), which provides evidence for substantial
lattice anharmonicities that induce heat dissipation and low
values of the thermal conductivity. In addition, the Grüneisen
parameter γ̄b along the b axis is much larger than those along
the a or c axis. From this we can infer that the phonon modes
along the b axis are more strongly anharmonic, and this leads
to a weak interatomic bonding and hence a good channel to
dissipate phonon transport along the b axis.

V. CONCLUSIONS

In conclusion, a new binary equiatomic Np-Ir intermetallic
has been successfully synthesized. Although it is isostructural
with UIr, it is found to be paramagnetic down to 0.55 K, despite
the presence of possibly antiferromagnetic interactions. The
effective paramagnetic moment of 3.20 ± 0.02 μB/Np does
not agree well with estimates for a free Np3+ or Np4+

ion in either the Russell-Saunders or intermediate coupling
schemes, implying some degree of 5f delocalization; while
heat capacity measurements indicate that NpIr is a moderate
heavy fermion system. The form of the electrical resistivity as
a function of temperature and a low temperature Sommerfeld
coefficient, which is strongly enhanced relative to that obtained
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at high temperatures, both indicate that NpIr should be
regarded as a Kondo system.

Ab initio calculations reveal that the GGA+U approxi-
mation provides a better description of the structural and
electronic properties of NpIr than the plain GGA approach.
After relaxation, the calculations give the same geometrical
structure as the experimental one; however, the calculations
without spin-orbit interaction suggest that ferromagnetic order
is energetically the most favorable, followed by the paramag-
netic and antiferromagnetic ordered states. This result stands
in contrast to the lack of any experimental observations of
ferromagnetism, and suggest that DLM calculations with spin-
orbit interaction are needed to address this issue thoroughly.
The absolute value of the local spin magnetic moments on
the Np ions is of the order of 3.7 μB. However, due to a
sizable opposite orbital magnetic moment, when including
the spin-orbit interaction, the moment drops to 2.81 μB,
which is of a similar magnitude to that extracted from
magnetic susceptibility measurements. The calculated lattice
heat capacity of NpIr is in good agreement with the measured
heat capacity of ThIr, which hence can be regarded as a phonon
blank for NpIr. The lattice thermal conductivity of NpIr is
predicted to be exceptionally low at high temperatures.
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APPENDIX: OPTIMIZED STRUCTURE OF NpIr

In Table II we give the GGA+U optimized atomic positions
of the NpIr compound, which was computed to crystallize in
the monoclinic structure.
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