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We study the quantum anomalous thermal Hall effect in a topological superconductor, which possesses an
integer bulk topological number and supports Majorana excitations on the surface. To realize the quantum
thermal Hall effect, a finite gap at the surface is induced by applying an external magnetic field or by the
proximity effects with magnetic materials or s-wave superconductors with complex pair potentials. Basing
on the lattice model Hamiltonian for superconducting states in Cu-doped Bi2Se3, we compute the thermal
Hall conductivity as a function of various parameters such as the chemical potential, the pair potential, and
the spin-orbit coupling-induced band gap. It is argued that the bulk topological invariant corresponds to the
quantization rule of the thermal Hall conductivity induced by complex s-wave pair potentials.
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I. INTRODUCTION

Topological insulators and superconductors are new quan-
tum states of matter, characterized by topological numbers [1].
The quantum Hall effect (QHE) [2] is one of the first found
topologically nontrivial states, where the Hall conductivity is
quantized as

σxy = ν
e2

h
, (1)

with ν being an integer value corresponding to the topological
number of bulk wave functions [3]. The two-dimensional
(2D) topological superconductors and superfluids with chiral
(p-wave) Cooper pairing are superconductor analogues of the
QHE and considered to be realized, e.g., in a thin film of 3He
A phase [4,5], Sr2RuO4 [6], and the 5/2-filling fractional QHE
[7]. In superconductors [8], charges are not conserved and thus
an electric-transport study such as quantum Hall measurement
cannot characterize their topological nature. Instead, since the
energy is still conserved, thermal transport, especially the
thermal Hall conductivity, reflects the topological character
of topological superconductors as [9]

κxy = ν
π2k2

B

6h
T . (2)

Here, ν corresponds to the bulk topological number [9].
Recent studies have shown that topological states exist

in time-reversal invariant and three-dimensional (3D) cases
as well [1]. The surface of three-dimensional topological
insulators supports gapless excitations with a linear disper-
sion, for some simple cases, which can be described by
the two-dimensional massless Dirac Hamiltonian. One of
the intriguing phenomena is the quantum anomalous Hall
effect on the surface [10–14]. Recently, the experimental
observation of the quantum anomalous Hall effect was reported
in Cr-doped (Bi,Sb)2Te3 thin films [15], where the Hall
conductivity exhibits a clear quantized plateau, accompanied
by a considerable drop in the longitudinal resistance.

*nomura@imr.tohoku.ac.jp

Theoretically, the systematic classification of topologically
nontrivial insulators and superconductors has been established
in terms of symmetries and dimensionality, and has clarified
that topologically nontrivial superconductors (TSCs) and su-
perfluids (TSFs) with time-reversal symmetry are also realized
in three dimensions [16,17]. In contrast to three-dimensional
topological insulators which are characterized by Z2 topolog-
ical numbers, three-dimensional topological superconductors
are characterized by integers Z [16,17]. An example of 3D
TSFs is the B phase of superfluid 3He [16]. From the bulk-
boundary correspondence, there exist topologically protected
gapless Andreev bound states in TSCs. In particular, the
superconductivity infers that the gapless Andreev bound states
are their own antiparticles, and thus Majorana fermions [16].
On the surface of the 3He B phase, a clear linear dispersion of
in-gap states was measured experimentally [18]. In addition,
the newly found superconducting phase in Cu-doped Bi2Se3

[19] has been proposed to be a 3D TSC [20]. Recently,
point-contact spectroscopy experiments in Cu-doped Bi2Se3

[21,22] have reported a zero-bias conduction peak, which
is in debate as to whether [23,24] or not [25] it indicates
gapless surface modes with characteristic dispersion relations
modified from the linear Majorana cone.

As surface Dirac fermions realize the anomalous quantum
Hall effect in topological insulators, the anomalous quantum
thermal Hall effect of Majorana fermions occurs on the
surface of topological superconductors. For the ideal case
where surface spectra have a linear Dirac-Majorana dispersion
such as the 3He B phase, the thermal Hall conductivity can

be easily evaluated [26–29] as κxy = ±π2k2
B

12h
T . On the other

hand, it is not obvious what the value of the thermal Hall
conductivity is in the case of Cu-doped Bi2Se3 with modified
surface dispersions. In addition, it would be natural to question
whether the quantized thermal Hall conductivity is related to
the bulk topological number.

In this work, we study anomalous thermal transport on
the surface of superconducting doped topological insulators
basing on a microscopic model for CuxBi2Se3 [20]. We first
calculate the phase diagram of the effective Bogoliubov–de
Gennes Hamiltonian for the bulk case, as a function of the
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original band gap of the host material, the chemical potential,
and the superconducting pair potential. There exist different
types of gapped superconducting states. We characterize the
gapped states by computing the topological numbers in the
bulk and the thermal Hall conductivity in a slab geometry.

The paper is organized as follows: In Sec. II, we present
the model Hamiltonian for bulk superconducting states of Cu-
doped Bi2Se3. We study the ground-state phase diagram in
Sec. III, and the bulk topological numbers in Sec. IV as a
function of the chemical potential, the pair potential, and the
band gap. In Sec. V, the model Hamiltonian for a slab geometry
is introduced and the surface energy spectra are calculated. In
Sec. VI, the anomalous thermal Hall conductivity is computed
and compared with the bulk topological number. In Sec. VII,
we present a summary of the results obtained in this work.

II. MODEL HAMILTONIAN

In the presence of translational invariance, the supercon-
ducting state of CuxBi2Se3 is described by the momentum-
space Bogoliubov–de Gennes Hamiltonian [20–22],

HBdG =
∑

k

[
c
†
k,c

T
−k

]
HBdG(k)

[
ck

c
†T
−k

]
, (3)

where c
†
k = (c†k↑−,c

†
k↓−,c

†
k↑+,c

†
k↓+) and cT

k =
(ck↑−,ck↓−,ck↑+,ck↓+) are the creation and annihilation
operator for electrons, ± is the band index showing parity,
and

HBdG(k) =
[
h(k) �̂

�̂† −hT (−k)

]
(4)

is an 8 × 8 matrix. The diagonal part h(k) describes the
normal electronic states of Cu-doped Bi2Se3. For simplicity,
we consider the highest valence band and lowest conduction
band [30], where each band has twofold degeneracy in the
presence of time-reversal and inversion symmetries. As a
simplified model, we consider the hexagonal lattice with the
lattice constants a and c, where the 2D triangular lattices stack
along the c-axis direction. Although the real crystal structure
is more complicated, this model describes the low-energy
physics of the system. The effect of doping Cu is taken
account as the shift of the chemical potential. The four-band
Hamiltonian h(k) is given by

h(k) =
3∑

i=1

Ri(k)αi + M(k)β + ε(k)I, (5)

where

αi =
(

0 σi

σi 0

)
, β =

(
I 0
0 −I

)
(6)

are 4 × 4 Dirac matrices, with σi the Pauli matrix, I the identity
matrix, and [20–24,30,31]

R1(k) = A1
2√
3

sin

(√
3

2
kxa

)
cos

(
1

2
kya

)
,

R2(k) = A1
2

3

[
cos

(√
3

2
kxa

)
sin

(
1

2
kya

)
+ sin(kya)

]
,

R3(k) = A3 sin(kzc),

M(k) = M0 − B1[2 − 2 cos(kzc)] − 4

3
B2

[
3 − cos(kya)

− 2 cos

(√
3

2
kxa

)
cos

(
1

2
kya

)]
,

ε(k) = −μ + D1[2 − 2 cos(kzc)] + 4

3
D2

[
3 − cos(kya)

− 2 cos

(√
3

2
kxa

)
cos

(
1

2
kya

)]
. (7)

The band gap is given by the parameter M0. In this notation,
M0 > 0 (<0) corresponds to a topological (ordinary) insulator.
For Bi2Se3, we use the following values: A1 = 1.007 eV, A3 =
0.32 eV, B1 = 0.216 eV, B2 = 3.41 eV, D1 = 0.024 eV, and
D2 = 1.18 eV [21,30]. The chemical potential is measured
from the Dirac point.

For the pair potentials, it has been argued that four types
of pair potentials could be realized within the irreducible
representation for the D3D point group, �̂1, �̂2, �̂3, and �̂4

[20,22]. In the following, among these four types, we focus on
the topologically nontrivial one with a full gap, �̂2, which can
be express as

�̂2 = �

(
0 iσy

iσy 0

)
. (8)

In this work, we do not solve the self-consistent equation, but
introduce � as a tuning parameter.

III. PHASE DIAGRAMS

We first study the phase structures of the BdG Hamiltonian
given by Eq. (4). Figure 1 shows the excitation gap of the
bulk spectrum of the Hamiltonian (4) as a function of the
chemical potential μ and the superconducting pair potential
�. The band-gap parameter is fixed at M0 = 0.28 eV. The
phase transitions are signaled by the vanishing excitation gap
in Fig. 1. In the normal case, � = 0, the excitation gap is
finite only when the chemical potential is in the original
band gap, |μ| � M0 (phase I). When the chemical potential

phase II
  (TSC)

   phase III
(ordinary SC)

phase I
   (TI) ν=0

ν=1

ν=0

FIG. 1. Excitation gap as a function of the chemical potential μ

and the pair potential �, where the band gap is fixed at M0 = 0.28 eV.
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phase I
   (TI)

phase II
  (TSC)

phase IV
    (TSC)

    phase III
(ordinary SC)

ν=0

ν=1

ν=0

ν=−1

FIG. 2. Excitation gap as a function of the chemical potential
μ and the band-gap parameter M0. The pair potential is fixed at
� = 0.05 eV.

is above the band gap, |μ| > M0, the system is in the metallic
phase. The finite excitation gap is induced by the nonzero
pair potential �. Within the parameter region of Fig. 1, there
are two superconducting phases, i.e., phase II and phase
III, distinguished by gap vanishing. In the following, we
will see that one of the superconducting states (phase II) is
topologically nontrivial, while the other (phase III) is trivial.
In phase I, since the chemical potential μ is located in the
original band gap, and thus the density of states vanishes, it is
hardly expected that the superconducting order is developed
spontaneously. In this sense, phase I is an artifact introduced
by assuming a finite bulk pair potential. Nevertheless, it is
of theoretical interest to see how two Majorana dispersions
contribute to the thermal Hall conductivity, as discussed in
Sec. VI.

Figure 2 shows the excitation gap as a function of the
chemical potential μ and the band gap M0, where the pair
potential is fixed at � = 0.05 eV. This result indicates that
beside the topological insulating state (phase I), there are three
superconducting gapped states (phases II, III, and IV) which
are separated by gap closing.

IV. SYMMETRIES AND TOPOLOGICAL NUMBERS

Here we study the topological properties of the phases
appearing in the phase diagram by computing the topological
numbers. The Bogoliubov–de Gennes Hamiltonian has both
time-reversal (
) and particle-hole (�) symmetries,


−1HBdG(k)
 = HBdG(−k), (9)

�−1HBdG(k)� = −HBdG(−k). (10)

Because of these symmetries, one can find a unitary matrix
� = 
� that anticommutes with the Hamiltonian [16],

�−1HBdG(k)� = −HBdG(k). (11)

This chiral symmetry implies that eigenenergies of the
Bogoliubov–de Gennes Hamiltonian [Eq. (4)] appear as pairs

of ±En(k):

HBdG(k)|u±
n (k)〉 = ±En(k)|u±

n (k)〉. (12)

Here we introduce the Q matrix defined as

Q(k) =
∑

n

(|u+
n (k)〉〈u+

n (k)| − |u−
n (k)〉〈u−

n (k)|). (13)

As a consequence of chiral symmetry, given by Eq. (11), the
Q matrix can be brought into block off-diagonal form,

Q(k) =
[

0 q(k)
q†(k) 0

]
, q(k) ∈ U (4), (14)

in the basis in which � is diagonal. The topological index in the
presence of chiral symmetry is given by the winding number
[16],

ν =
∫

d3k

24π2
εμνρ tr[(q−1∂μq)(q−1∂νq)(q−1∂ρq)], (15)

which takes integer values, where μ,ν,ρ = kx,ky,kz, and the
integral extends over the entire Brillouin zone. As shown in
Fig. 3, the evaluated values of ν are 0, 1, 0, and −1 in phases
I, II, III, and IV, respectively.
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 0  0.2  0.4  0.6  0.8

−2

−1

 0

 1

 2

 0  0.2  0.4  0.6  0.8

ν

ν

M0   (eV)

M0   (eV)

μ = 0.6 (eV)

μ = 0.2 (eV)

(a)

(b)

FIG. 3. Winding number defined by Eq. (15) is plotted as a
function of the original band gap M0. The chemical potential is fixed
at (a) ν = 0.6 eV and (b) ν = 0.2 eV.
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V. SURFACE MODES OF TOPOLOGICAL
SUPERCONDUCTORS

To study the energy dispersion of surface modes and
compute the thermal Hall conductivity, we consider a slab
geometry of topological superconductors. The normal part of
the Hamiltonian can be written as

H0 =
∑
k⊥,j

[c†k⊥,j h⊥(k⊥)ck⊥,j + c
†
k⊥,j+1hzck⊥,j

+ c
†
k⊥,j h

†
zck⊥,j+1], (16)

where k⊥ = (kx,ky) and j is the position in the z direction:
j = Lz and j = 1 correspond to the top and bottom surfaces,
respectively. As in Eq. (3), we omit the band and spin indices.
In Eq. (16),

h⊥(k⊥) =
∑
a=1,2

Ra(k⊥)αa + M ′(k⊥)β + ε′(k⊥)I (17)

and

hz = i

2
A3α3 + B1β − D1I (18)

describe spin-dependent hopping in the x-y plane and in the z

direction, respectively, where

M ′(k) = M0 − 2B1 − 4

3
B2

[
3 − cos(kya)

− 2 cos

(√
3

2
kxa

)
cos

(
1

2
kya

)]
, (19)

ε′(k) = −μ + 2D1 + 4

3
D2

[
3 − cos(kya)

− 2 cos

(√
3

2
kxa

)
cos

(
1

2
kya

)]
. (20)

The pair-potential part, �̂, is independent of both the momen-
tum and the position. We obtain the matrix element of the
total Hamiltonian in the basis of {|k⊥,j 〉}. By diagonalizing
the Hamiltonian matrix, eigenenergies En,k⊥ and eigenstates
|n,k⊥〉 are obtained.

Typical results of the spectrum are shown in Fig. 4 for (a)
phase II, (b) phase IV, (c) phase I, and (d) phase III as labeled
in Fig. 2. The presence/absence of the surface modes indicates
that those are topological/trivial superconducting states. In
Fig. 4(a), the simple Majorana cone is seen, as expected from
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(c) (d)

−0.2

−0.1

 0

 0.1

 0.2

−0.1  0  0.1

II

I

IV
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FIG. 4. Energy spectrum of surface modes. (a) EF = 0.4, M0 = 0.28, (b) EF = 0.5, M0 = 1.0, (c) EF = 0.2, M0 = 0.4, and (d) EF = 0.9,
M0 = 0.28. The pair potential in the bulk is fixed at � = 0.05 eV. The number of stuck layers in the z direction is 50.
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previous work [20]. As the chemical potential closes to the
bottom of the conduction band, the surface spectrum deforms
from the simple Majorana cone, as discussed in Refs. [23]
and [24]. Such deformed surface Majorana mode can be
seen also in phase IV [Fig. 4(b)] [21]. In phase I, Majorana
modes are doubled. This can be understood as follows. In
the normal limit, � = 0, phase I is a topological insulating
state which has a single Dirac cone on the surface. As a pair
potential � is induced, the complex fermions are split into two
independent Majorana modes. A similar situation has been
discussed in a quantum anomalous Hall insulator/spin-singlet
s-wave superconductor hybrid system [32]. In the next section,

we discuss the connection between these surface modes and
the quantized thermal Hall conductivity.

VI. ANOMALOUS THERMAL HALL CONDUCTIVITY

When the surface modes have a finite gap, the quantum
thermal Hall effect occurs. Physically, the gap is induced by
the magnetic interactions. Figure 5(a) depicts an experimen-
tal setup where the interactions between quasiparticles and
magnetizations in ferromagnets (or magnetic dopants such as
Cr as in Ref. [15]) near the surface are introduced. A similar
situation is realized by applying an external magnetic field.
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κxy

M0   (eV)

M0   (eV)

μ = 0.6 (eV)

μ = 0.2 (eV)

(b)

(c)

M0   (eV)

M0   (eV)

μ = 0.6 (eV)

μ = 0.2 (eV)

(e)

(f)

FM

TSC

FM

x
y

z

(a) (d)

s-wave SC

TSC

s-wave SC

FM

FM

s-wave SC

s-wave SC

FIG. 5. (Color online) Top: Illustration of the experimental setting for the measurement of the quantum thermal anomalous Hall effect of
Majorana fermions on the surface of a three-dimensional topological superconductor with (a) attached ferromagnetic insulators and (d) attached
s-wave superconductors with complex pair potentials. Bottom: Thermal Hall conductivity κxy as a function of the band gap M0 in units of
π 2k2

BT /6h is plotted in (b), (c), (e), and (f). The case of ferromagnets attached on the top and bottom surfaces is shown in (b) μ = 0.6 eV
and (c) μ = 0.2 eV. The bulk pair potential is fixed at � = 0.05 eV. κxy with s-wave pairing induced by the proximity effect is shown in (e)
μ = 0.6 eV and (f) μ = 0.2 eV.
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Due to the Meissner effect, the field can be finite within the
penetration depth from the surface. The magnetic interaction
term is given by

Hexc =
∑
k⊥,j

c
†
k⊥,j JMz(j )

(
σz 0
0 σz

)
ck⊥,j , (21)

where J is the exchange interaction constant and Mz is the
mean value of magnetic moments. For simplicity, we consider
the case where magnetic moments are finite only at the top
(j = 1) and bottom (j = Lz) surfaces, while zero in the bulk.

To compute the thermal Hall conductivity, we use the
generalized Wiedemann-Franz law [33,34] to the case of
Majorana fermions [35,36],

κxy = �π2k2
BT

6L2

∑
n.m

∑
k⊥

θ (−En,k⊥)

× 2Im[〈n,k⊥|vx |m,k⊥〉〈m,k⊥|vy |n,k⊥〉]
(En,k⊥ − Em,k⊥)2

, (22)

where L2 is the area of the surface. Apart from the factor
π2k2

BT /6, the right-hand side resembles the Kubo formula for
the electrical Hall conductivity, which, however, is not a well-
defined quantity for Majorana fermions; nevertheless, Eq. (22)
can be regarded as the generalized Wiedemann-Franz law to
Majorana fermions [33]. Compared to the electron systems,
there is an extra factor of 1/2 due to the Majorana nature.

The thermal Hall conductivity κxy is shown in Fig. 5 as
a function of the original band gap M0. Quantized values in

units of π2k2
B

6h
T are clearly seen. Figures 5(b) and 5(c) show κxy

in the presence of the magnetic interaction [Fig. 5(a)]. At the
chemical potential μ = 0.6 eV, the thermal Hall conductivity
changes from 1 → 0 → 1 as shown in Fig. 5(b), while the
phase changes as II → III → IV [37]. At μ = 0.2 eV
[Fig. 5(c)], κxy changes 1 → 2 → 1, while the phase changes
as II → I → IV. These results show that the quantized thermal
Hall conductivity introduced by the magnetic interaction can
distinguish phases I and III. Moreover, the quantized values
characterize the number of surface Majorana dispersions. The

result κxy = 2 × π2k2
B

6h
T in phase I is consistent with the fact

that the surface modes in phase I are two split Majorana modes,
as shown in Fig. 4(c). Similarly, κxy = 0 is consistent with the
absence of surface modes in phase III, indicating that this
phase is topologically trivial.

The other way to open a gap in the surface spectrum is
introducing s-wave pairing with an imaginary pair potential
on the surface by the proximity effect with ordinary supercon-
ductors (SC), as proposed in Ref. [27] [Fig. 5(d)]. In our model
Hamiltonian, this interaction is described by

HsSC =
∑
k⊥,j

[
c
†
k⊥,j�s(j )

(
σy 0
0 σy

)
c
†T
k⊥,j

+ cT
k⊥,j�s(j )

(
σy 0
0 σy

)
ck⊥,j

]
. (23)

Because of the proximity effect, we assume that �s is finite
only at the top and bottom surfaces. When the s-wave pair
potentials, �s , have opposite sign between top and bottom,
κxy becomes finite. Figures 5(e) and 5(f) both show that κxy

changes as 1 → 0 → −1. At the chemical potential μ = 0.6
[Fig. 5(e)], the phase changes as II → III → IV. On the other
hand, at the chemical potential μ = 0.2 [Fig. 5(f)], the phase
changes as II → I → IV. The results shown in Figs. 5(e) and
5(f) indicate that κxy vanishes in phases I and III. The quantum
thermal Hall effect induced by the s-wave pair potential does
not distinguish the topological nature of phases I and III.

Let us compare the thermal Hall conductivity obtained
above and the bulk topological number ν. As shown in Fig. 3,
ν changes as 1 → 0 → −1 as the phase changes II → III →
IV and also II → I → IV. These behaviors are identified to the
quantization rule of κxy when the TSC is attached to the s-wave
SC with the complex pair potential, consistent with Ref. [27].
On the other hand, the quantized value of the thermal Hall
conductivity induced by the magnetic interaction should have
some physical meanings. Recent theoretical work [38–40]
addressed that an additional symmetry such as reflection has
a role to protect gapless boundary modes characterized by
the mirror Chern number, even in topologically trivial phases.
Instead of the bulk topological number ν, the integers that ap-
peared in κxy could be connected to the mirror Chern numbers.

The quantum thermal Hall effect obtained above is under-
stood in the viewpoint of surface Dirac theory, as follows. We
focus on Dirac fermions on the top surface. Dirac fermions
on the bottom surface give basically the same results as those
in the top surface. The system in the normal state supports a
surface Dirac fermion, as shown in Fig. 6(a), protected by
time-reversal symmetry. The surface effective Hamiltonian
Hsurf reads

Hsurf(k) = v(kxσy − kyσx). (24)

This Dirac fermion is also protected by mirror-reflection
symmetry, and the corresponding topological number is given
by the mirror Chern number N0

M , which is defined by

N0
M =

∫
dkydkz

2π

[
∂ k × A0

M (ky,kz)
]
x

(25)

and

A0
M (ky,kz) = − i

2

∑
n∈valence

〈
u0

n(0,ky,kz)
∣∣M∂ k

∣∣u0
n(0,ky,kz)

〉
.

(26)

Here, |u0
n(k)〉 is an eigenstate of the Hamiltonian h(k) for the

normal state, the summation with respect to band indices n

runs over the valence bands, and M is the mirror-reflection
operator satisfying

M†h(−kx,ky,kz)M = h(kx,ky,kz), M2 = 1. (27)

The topological insulating phase is characterized by |N0
M | = 1.

The mirror Chern number NM for the superconducting states
is defined by replacing A0

M with

AM (ky,kz) = − i

2

∑
n

〈u−
n (0,ky,kz)|M̃∂ k|u−

n (0,ky,kz)〉, (28)

where the mirror-reflection operator M̃ in the �̂2 supercon-
ducting state is given by

M̃ =
(

M 0
0 −M∗

)
, (29)
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FIG. 6. (Color online) Evolution of the energy gap in the vicinity of the Fermi level μ from the |NM | = 2 phase.

and satisfies

M̃†HBdG(−kx,ky,kz)M̃ = HBdG(kx,ky,kz) (30)

because of MT�̂2M = −�̂2 [23]. In the �̂2 superconducting
state, the mirror Chern number becomes twice (|NM | = 2)
as large as that in the normal state when the Fermi level is
located in the bulk insulating band gap [23]. Consequently, two
Dirac fermions show up on the surface of the superconductor
[Fig. 6(c)], on the mirror-reflection symmetric line kx = 0. The
magnetic interaction Hexc, which breaks the mirror-reflection
symmetry, induces a mass gap in the Dirac fermions [Fig. 6(d)]
and results in the quantum thermal Hall effect of κ

top
xy =

|NM |κ0/2 with κ0 = π2k2
B/(6h) for |NM | = 2. Summing up

the contributions from top and bottom surfaces, one obtains
κxy = |NM |κ0. Imaginary s-wave pair potential HsSC also
opens a gap in the Dirac fermions. This gapped surface state,
however, is in a topologically trivial phase, in the sense that as
one turns off the topological superconducting gap �̂2, the state
is continuously connected to a surface s-wave superconducting
state (HsSC �= 0 and �̂2 = 0) without gap closing owing to
{HsSC,�̂2} = 0. The surface s-wave superconducting state is
described by the Hamiltonian Hssurf ,

Hs−surf(k) =
(

Hsurf(k) − μ σy�s

σy�s −H T
surf(−k) + μ

)
, (31)

and the corresponding surface energy spectrum is illustrated
in Fig. 6(e). Therefore, one can conclude that the thermal Hall
conductance vanishes in the |NM | = 2 phase with an imaginary
s-wave pair potential. Note that the above discussion is valid
only for the |NM | = 2 phase, where the Fermi level is located
within the topological insulating gap. In the |NM | = 1 and
|ν| = 1 phase, since the normal state �̂2 = 0 is gapless, i.e.,
bulk metallic, the surface Dirac theory in the normal state no
longer stands and the bulk electronic states have to be taken
into account. Eventually, the massive Majorana surface states
induced by HsSC in the |NM | = 1 and |ν| = 1 phase are not
continuously deformed into trivial gapped surface states. As
a result, the system is in a nontrivial phase and gives κ

top
xy =

νκ0/2, and κxy = νκ0 in the whole system.
Again, let us mention that the magnetically coupled system

shows the quantum thermal Hall effect. In the normal state,
the magnetic interaction opens a gap at the surface Dirac point
below the Fermi level, as shown in Fig. 6(b). Thus, the surface

states for Hexc �= 0 and �̂2 = 0 are gapless at the Fermi level.
This means that the gapped surface states induced by Hexc

with the help of �̂2 are not connected to a trivial one as �̂2

is switched off. Therefore, the system is in the topologically
nontrivial phase that exhibits the quantum thermal Hall effect
of κxy = |NM |κ0.

VII. DISCUSSION

Time-reversal invariant topological superconductors in
three dimensions (class DIII) are characterized by integers Z
in contrast to topological insulators (class AII) which have Z2

numbers [16,17]. In this paper, we studied the relation between
the topological invariant and the thermal Hall conductivity,
based on the model for superconducting states in Cu-doped
Bi2Se3. The thermal Hall conductivity shows different be-
havior when the surface gap is induced by the magnetic
interactions and by the complex s-wave pair potentials. As
discussed in Ref. [27], we confirmed that the topological
invariants of time-reversal invariant superconductors in three
dimensions are directly related to the surface thermal Hall
conductance induced by the complex s-wave pair potentials.

The quantum thermal Hall effect on the surface of topolog-
ical superconductors is closely related to the cross-correlated
thermal responses of topological superconductors. Since gauge
symmetry is spontaneously broken in superconducting phases,
it is useful to consider responses to the gravitational fields
instead of electromagnetic fields. In Refs. [26] and [27], the
gravitational instanton term was introduced to characterize
the thermal responses because the gravitational fields can be
connected to the thermal gradients [41]. It was argued that
the gravitational instanton term can characterize only the Z2

part of topological classification [27]. Later, the energy density
functional, which characterizes the cross-correlated responses
between the thermal gradient and mechanical rotational mo-
tion with full Z classification of three-dimensional topological
superconductors, was derived in Ref. [28]. The strength of
these couplings, however, was found to be very small, and thus
the effect may not be measurable. The present work concludes
that topological invariants of three-dimensional topological
superconductors can be measured by thermal transport on the
surface subjected to the proximity with a complex s-wave
pairing field.
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