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Strain control of electronic phase in rare-earth nickelates
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We use density functional plus U methods to study the effects of a tensile or compressive substrate strain on
the charge-ordered insulating phase of LuNiO3. The numerical results are analyzed in terms of a Landau energy
function, with octahedral rotational distortions of the perovskite structure included as a perturbation. Less than
4% tensile or compressive strain leads to a first-order transition from an insulating structure with large-amplitude
breathing-mode distortions of the NiO6 octahedra to a metallic state in which breathing-mode distortions are
absent but Jahn-Teller distortions in which two Ni-O bonds become long and the other four become short
are present. Compressive strain produces uniform Jahn-Teller order with the long axis aligned perpendicular
to the substrate plane, while tensile strain produces a staggered Jahn-Teller order in which the long bond lies
in the plane and alternates between two nearly orthogonal in-plane directions, forming a checkerboard pattern.
In the absence of the breathing-mode distortions and octahedral rotations, the tensile-strain-induced transition to
the staggered Jahn-Teller state would be of second order.
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I. INTRODUCTION

The rare-earth nickelates have been studied for many
years [1–5] and have been of substantial recent interest
[6–21] following the proposal of Chaloupka and Khalliulin
[6] that in an appropriately chosen superlattice configuration,
an electronic structure similar to that found in the high-Tc

cuprates could be realized. A one-band state has not been
achieved, but the question of the degree to which the electronic
structure can be controlled by appropriate combinations of
strain and heterostructuring remains an area of active research
[8,11–13,18,20].

The chemical formula of the rare-earth nickelates is RNiO3,
with R standing for La or Nd, Pr, Sm, Gd, Eu, Lu of the rare-
earth series. The materials crystallize in variants of the ABO3

perovskite structure with the R ion on the A site and the Ni ion
on the B site. The basic structural motif is a corner-shared BO6

octahedron. In the ideal perovskite structure the octahedron has
six equal Ni-O bond lengths, and the point-group symmetry
of the Ni site is Oh. The important orbitals are the Ni-centered
eg-symmetry d orbitals. Standard valence-counting arguments
suggest that the Ni ion is in the low-spin d7 configuration with
a filled t2g shell and one electron in the two eg-symmetry
orbitals, which are degenerate in Oh symmetry.

Having a single electron occupy two degenerate orbitals is
expected to favor a symmetry-breaking distortion in which one
of the eg orbitals becomes preferentially occupied and the point
symmetry of the Ni ion is lowered from Oh to D4h. However,
such a distortion has not been observed to date in the nickelate
materials. With the exception of the LaNiO3 (which remains
undistorted to lowest temperatures), the materials exhibit at
low temperatures an ordered phase [1] characterized by two
distinct NiO6 octahedra, one in which the six Ni-O bonds
are short (but approximately equal) and one in which the
six Ni-O bonds are long (but again approximately equal) [7].
This disproportionation is sometimes referred to as “charge
ordering” [4,5] based on the idea that the ionic charge of
the Ni ion with longer Ni-O bond lengths should be larger
than that of the Ni ions with shorter Ni-O bonds and based
also on a difference in size of measured magnetic moments

between the two sites. Although the actual charge difference
between the sites is very small [11,18], for simplicity we will
refer to the disproportionated state as “charge ordered.”

The charge ordering is, at first sight, surprising because the
dominant interaction in transition-metal oxides is generally
believed to be a large on-site repulsion U that acts to
disfavor charge ordering. Indeed, U = EN+1 + EN−1 − 2EN

is defined as the energy cost to change the electronic config-
uration from N electrons on each transition-metal ion to the
disproportionated configuration in which half of the ions have
N + 1 electrons and the other half have N − 1. The behavior is
now understood [3,18] as a consequence of a relatively large
electronegativity of Ni. This places the rare-earth nickelate
materials in or close to the “negative charge-transfer gap”
regime so that the electronic configuration is much closer to
d8L̄ than to d7: one electron is transferred from the ligand
(oxygen) state to Ni, so the Ni ion has two electrons in the eg

orbitals (in the high-spin configuration), and there is an average
density of 1/3 hole per O ion. Density functional plus dynam-
ical mean-field calculations [18,21] have shown that in this
situation the “charge disproportionation” can be understood
as a consequence of a hybridization (bond-centered) density
wave leading to a site-selective Mott insulating regime. The
high-spin d8 configuration of the Ni ions disfavors Jahn-Teller
distortions with unequal occupancy of the eg orbitals, in
agreement with measurements, indicating that even in strained
superlattices of metallic LaNiO3 the difference in occupancy of
the two eg orbitals is small [12,22]. Subsequent model-system
studies confirmed the essential features of this understanding
[19] and suggested that a negative charge-transfer energy
implies that the effective low-energy theory is a two-orbital
Hubbard-like model with a small or possibly negative effective
U but a non-negligible J [20].

While this physical picture provides a satisfying under-
standing of the essential features of the observations in terms
of specific physics of the nickelate materials, it is incomplete in
some respects. First, both experimental and theoretical studies
of orbital disproportionation have focused on the metallic
regimes of the nickelate phase diagram [11,12,23–25] and
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leave open the question of strain effects on the physics of
the charge-ordered state. Second, the d8L̄ configuration has
the same symmetry properties as the d7 configuration (this
point was emphasized by Peil et al. [20]), meaning that
the qualitative arguments suggesting a Jahn-Teller distortion
should still apply. If a locally symmetric volume nonpreserving
disproportionation of the NiO6 octahedra may occur, one may
ask why not also cubic-tetragonal disproportionations?

In this paper we address these questions via an ab initio
study of the response of the charge-ordered insulating ground
state of LuNiO3 to an applied biaxial strain. In our study
we fully relax the lattice subject to a constraint on the
in-plane lattice constant, thereby approximating the effects
of substrate-imposed strain on an epitaxially grown film. We
find that strains on the order of a few percent (i.e., of a
magnitude comparable to those applied by epitaxial growth
on reasonable substrate) have the potential to destabilize the
charge-ordered state. For compressive strain the result is a
metallic state with a modest cubic-to-tetragonal distortion of
the NiO6 octahedra, which is approximately the same for each
octahedron. Sufficient tensile strain, however, is found to lead
to a replacement of charge order by a spatially alternating in-
plane Jahn-Teller order. We interpret the calculational results
using a Landau theory free-energy analysis which provides
insights into the orders of the transition (indicating in particular
that the transition to staggered Jahn-Teller state is intrinsically
of second order and becomes first order only by virtue of
competition with the charge-ordered state). Our results thus
provide a different perspective on the strain control of orbital
properties in transition metal oxides and show that the d8L̄

configuration may also be susceptible to Jahn-Teller order.
The rest of this paper is organized as follows. Section II

defines the system we study and the structural distortions
we analyze and presents a Landau theory which encapsulates
our results. Section III presents the specifics of our ab initio
calculations. Section IV presents our computational results,
and Sec. V is a summary and conclusion.

II. FORMALISM

A. Structure and strain

In this paper we study LuNiO3. This material has a
high charge-ordering transition temperature and an insulating
ground state with a large gap to charge excitations [26]. The
ground-state structure obtained from density functional plus
U calculations described in Sec. III is presented in Fig. 1. The
unit cell has four inequivalent NiO6 octahedra. In the absence
of charge ordering, the octahedra differ only by rotations;
the charge ordering creates two classes of octahedra with
different mean Ni-O bond lengths. Figure 1 also shows the
lattice constants. From these we define a Cartesian coordinate
system with the z axis parallel to a3 and the x and y axes in
the plane defined by a1 and a2 but rotated by 45◦.

In the ground state of the actual material, the Ni-Ni distance
in the basal (xy) plane is 3.76 Å, and there is a slight rhombic
distortion, so the Ni-Ni bond angles are 86◦ and 94◦. We wish
to simulate the effects of placing LuNiO3 on a substrate, which
will typically have a square symmetry. We therefore neglect the
rhombic distortion and consider square structures with |a1| =

FIG. 1. (Color online) Charge-ordered structure of LuNiO3 at
vanishing external strain calculated using DFT + U as described in
Sec. III. NiO6 octahedra are indicated as gray cubes; the darker cubes
have mean Ni-O bond length 0.10 Å smaller than that of the lighter
ones. The triad on the left defines the lattice vectors. The calculated
lattice constants |a1| = 5.12 Å, |a2| = 5.52 Å, |a3| = 7.36 Å are in
close agreement with experiment [26]. We define Cartesian x, y,
and z coordinates so that z is parallel to a3, and a1 and a2 point
approximately along the diagonals of the xy plane.

|a2| and 90◦ Ni-Ni bond angles in the xy plane. We define
the xy-plane lattice constant |a1| = |a2| = a as the diagonal
of the square. In the undistorted structure, the lattice constant
is a = a� ≈ 5.3 Å, at which the energy is minimum. We will
be interested in the consequences of a uniform compression
or expansion of the lattice in the xy plane with the z direction
free to adjust. We define strain δa as an imposed change in the
xy-plane lattice constant a:

δa = a − a�. (1)

The key variables in response to δa are the shapes, sizes, and
orientations of the NiO6 octahedra, which are the important
dynamical variables of the structure. In the rest of this section
we build up a theoretical description of the relevant distortions,
starting from the simple case of an isolated NiO6 octahedron
and adding complexity as needed.

B. An isolated NiO6 octahedron

To define notation we begin by considering one isolated
NiO6 octahedron. The unstrained structure is perfectly cubic
(point symmetry Oh) with six mutually perpendicular Ni-O
bonds, which we take to lie in the ±x, ±y, and ±z directions.
All six bonds have the same length, l0 ≈ 2 Å.

The distortions of interest here preserve the inversion
symmetry about the Ni ion and the orthogonality of the Ni-O
bonds, so that a D2h symmetry is preserved. The distortions
may be expressed in terms of three modes, defined in terms of
the changes δlx , δly , δlz in the x, y, and z bond lengths as

Q0 = δlx + δly + δlz√
3

, (2a)

Q1 = δlx − δly√
2

, (2b)

Q3 = −δlx − δly + 2δlz√
6

. (2c)

Here Q0 is the volume expansion mode, Q1 is the (volume-
preserving) xy-plane square-to-rhombic distortion, and Q3
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is the (volume-preserving) cubic-to-tetragonal Jahn-Teller
distortion in the z direction. The Q0 mode is invariant
under Oh. The Q1 and Q3 modes together form a two-
dimensional irreducible representation. Therefore, the energy
of the octahedron E(Q0,Q1,Q3) up to cubic order will be of
the form

E = AQ2
0 + B

(
Q2

1 + Q2
3

)

+C

(
Q2

1 − Q2
3

3

)
Q3 + · · · , (3)

where A, B, and C are constants. We omit the cubic terms Q3
0

and Q0(Q2
1 + Q2

3), which are just products of lower-order Oh

invariants, and highlight the cubic coupling Q2
1Q3 in the third

term with coefficient C. In the lattice system, this part will give
rise to an important coupling between the distortion Q�

3 and
the staggered Jahn-Teller order QM

1 , which we will define later.

C. A corner-shared NiO6 array

We next consider an infinite three-dimensional crystal of
NiO6 octahedra, still with the Oh symmetry in the unstrained
structure at each Ni site. We must now attach a momentum
label to each mode. In addition, because the octahedra are
corner shared, there are constraints on the allowed momenta for
each distortion. The momenta of interest are � = (0,0,0), R =
(π,π,π ), M = (π,π,0). Note that these momenta are defined
in the unit cell of the ideal cubic structure with one octahedron
per unit cell. Of primary interest in interpreting the numerical
results are the two-sublattice charger-order and the in-plane
staggered Jahn-Teller modes, written as, respectively,

q0 = QR
0 , (4a)

q1 = QM
1 . (4b)

In addition, it will be useful to consider

Q0 = Q�
0 , (4c)

Q3 = Q�
3 , (4d)

q3 = QR
3 , (4e)

which are the volume change, uniform Jahn-Teller, and two-
sublattice Jahn-Teller modes, respectively, which describe the
response to a uniform strain and its coupling to a two-sublattice
charge order. Modes q0, q1, and q3 are visualized in Fig. 2.

The energy function E(Q0,Q3,q0,q1,q3) of the five modes
is, in general, very complicated. A group theoretical analysis is
given in Appendix A. The variables Q0 and Q3 are controlled
by the strain δa, which induces a Q3 distortion and, via
Poisson-ratio considerations, a nonzero volume change Q0

of opposite sign to Q3. Both Q0 and Q3 are coupled to the
order parameters q0, q1, and q3, and these couplings will drive
the phase transitions of interest. Our numerical results, which
will be presented in Sec. IV, may be understood in terms of
an energy function E(q0,q1|δa) involving only q0 and q1, with
the other variables Q0, Q3, and q3 determined by the strain δa

and the values of q0 and q1.
Next, we focus on q0, the two-sublattice charge order.

Viewed as a function of only q0 (i.e., when q1 = 0), our
results indicate that the energy E has a first-order transition

FIG. 2. (Color online) The distortion modes (a) QR
0 , (b) QM

1 ,
and (c) QR

3 of a corner-shared NiO6 octahedron array. The vertical
direction is along z, and the substrate plane is xy. The uniform modes
Q�

0 and Q�
3 are not plotted.

structure,

E(q0) = A20q
2
0 + A40q

4
0 + A60q

6
0 , (5)

with strain-dependent coefficients A20,A60 > 0 and A40 < 0
near the transition. Thus, E(q0) has three local minima at
q0 = 0 and q0 = ±q�. The strain δa turns out to affect the
value of q� only slightly; the main effect is to control via Q0

and Q3 the energy difference �E = E(0) − E(±q�) (plotted
against the in-plane lattice constant a in Fig. 4).

We next consider the energy as a function of only q1 (i.e.,
q0 = 0). This energy will be found to have a second-order
transition structure,

E(q1) = A02q
2
1 + A04q

4
1 , (6)

with (at zero strain) A02,A04 > 0. Applying a strain δa leads to
nonzero Q0 and Q3 [see Fig. 3(a)]. Both of these may couple
linearly to q2

1 (recall, in particular, the Q3q
2
1 cubic invariant),

so that we have

A02 = A
(0)
02 − A

(1)
02 δa, (7)

indicating that at tensile strains δa > A
(0)
02 /A

(1)
02 , an in-plane

staggered Jahn-Teller order could be favored.
Finally, there is a biquadratic coupling A22q

2
0q2

1 between
the charge and Jahn-Teller orders; the sign of A22 > 0 is such
that the two orders compete with each other. The resultant
energy is therefore

Ecubic(q0,q1) = E(q0) + E(q1) + A22q
2
0q2

1 . (8)

D. Including octahedral rotations

With Eq. (8) in hand, we now consider the structure of
the actual materials. This involves a GdFeO3-type rotational
distortion with four inequivalent Ni ions (see Fig. 1). The O6
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FIG. 3. (Color online) (a) Strain dependence of spatially uniform
volume-changing (Q0) and even-parity volume-preserving cubic-
tetragonal (Q3) octahedral modes. (b) Strain dependence of stag-
gered volume-changing (q0) and two different even-parity volume-
preserving cubic-tetragonal (q1 and q3) octahedral modes. Solid lines:
results obtained from energy minimization. Dashed lines: results
obtained from metastable states obtained by forcing staggered charge
order (q0) modes to zero.

octahedron around a given Ni site is rotated; the rotations may
be symbolically written as α+

z β−
x β−

y , meaning that starting
from the ideal cubic perovskite structure, there is a rotation
by angle α about the z axis and by angle β about the x and
y axes. The superscript plus sign means the α rotations in
neighboring octahedra about the rotational axis of α (the z

axis) are in the same direction, while the minus sign means
the β rotations in neighboring octahedra about the rotational
axis of β (x or y axis) are in opposite directions. Angles
α and β are small enough (<15◦ in LuNiO3) that we may
neglect the non-Abelian aspect of rotations and treat them as
commuting (additive) axial vectors, rather than noncommuting
(multiplicative) second-rank tensors.

The important feature of the octahedral rotations is a
breaking of the q1 ↔ −q1 symmetry while preserving the
q0 ↔ −q0 symmetry. Here the k points R = (π,π,π ) of
q0 and M = (π,π,0) of q1 are defined with respect to the
undistorted structure, i.e., with one octahedron per unit cell.
This is allowed because even though the distorted and rotated
structure now has four translationally inequivalent Ni ions, the
Landau energy function of the system is still invariant under
any translation by a nearest-neighbor Ni-Ni distance.

The octahedral rotations generate an energy term that is
linearly proportional to q1 and is of order αβ2 � 10−2 rad3.
The derivation of this is in Appendix B and uses group theory

again. Similarly, a term Q0q1 or Q3q1 becomes allowed in
addition to the Q3q

2
1 term that we previously discussed. Thus,

the final energy function is given by

E = Ecubic − A01q1

= Ecubic − (
A

(0)
01 + A

(1)
01 δa

)
q1, (9)

where A
(0)
01 and A

(1)
01 are a factor of αβ2 � 10−2 smaller than

the coefficients in Ecubic and A
(1)
01 results from the coupling

terms Q0q1 and Q3q1. The linear term is found to change sign
at a compressive strain δa = −A

(0)
01 /A

(1)
01 . We will look into

the details in Sec. IV. The added term −A01q1 has an effect
similar to that of an external magnetic field on a system near a
ferromagnetic transition.

Equation (9) provides a minimal model that explains our
data in all important qualitative aspects. In reality, there can
be higher-order terms of q0 and q1 in both Ecubic and the
symmetry-breaking terms, as well as nonlinear dependence of
the coefficients Anm on strain δa.

III. METHODS

In Sec. II, we constructed a Landau energy function of
the bond-length distortion modes q0 and q1 in RNiO3 and
took into account the GdFeO3-type rotational distortions
α+

z β−
x β−

y of the NiO6 octahedra in a perturbative way. In
this section and Sec. IV, we study the structural transitions of
LuNiO3 numerically by doing ab initio density functional + U

(DFT+U ) calculations including structural relaxation. The
results are then interpreted using the Landau energy function
in Eq. (9).

Our calculations use the Vienna Ab initio Simulation
Package (VASP) [27,28]. The DFT+U algorithm we choose
in VASP is the rotationally invariant local spin-density approx-
imation + U that follows Ref. [29]. The Hubbard U of the Ni
3d orbitals in LuNiO3 can be obtained with various methods,
e.g., constrained local-density approximation [30,31], self-
consistent linear response [32], constrained random-phase
approximation [33,34], etc. They all give values of U within
U = (5 ± 1) eV. The Hund’s coupling J is estimated to be
0.5–1 eV. We finally chose U = 5 eV and J = 1 eV, as they
gave a structure in Fig. 1 that was closest to the experimental
results. Slight changes of U and J within their errors were
tried, and no qualitative difference was found.

We did a spin-polarized calculation using the Projector
augmented-wave Perdew, Burke, and Ernzerfhof (PAW-PBE)
pseudopotential provided by VASP. The k-point mesh we used
was 6 × 6 × 6, and the energy cutoff of the plane-wave basis
was set to 600 eV. The errors due to k points and energy cutoff
are estimated to be smaller than the errors due to U and J

by comparing the results with those obtained using a coarser
k-point mesh of 4 × 4 × 4 or a lower-energy cutoff of 400 eV.

We found two magnetic states in the charge-ordered
structure: ferromagnetic (FM) and A-type antiferromagnetic
(A-AFM) states with magnitudes of magnetic moments essen-
tially on Ni d orbitals modulated by octahedral sizes. The FM
state is lower in energy than the A-AFM state at all values
of lattice constant a in our DFT+U calculation. All results in
Sec. IV are obtained in the FM state.
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The computational unit cell was chosen to contain four
LuNiO3 formula units. Defining the basal plane as the one in
which strain is applied, we take two formula units in the basal
plane and two displaced vertically. To mimic the effects of
a substrate, the in-plane lattice constants |a1| = |a2| = a are
fixed to preset and equal values (so any in-plane rhombic
distortion is neglected). |a3| and all of the intra-unit-cell
degrees of freedom are allowed to relax. We slightly modified
the conjugate gradient code in VASP to do this.

The minimum energy of the substrate-constrained system is
obtained at a = a� ≈ 5.3 Å. The structure obtained is almost
identical to the free structure in Fig. 1, except that |a1| and |a2|
are made equal (the small rhombic distortion is suppressed).
We then adjust the substrate lattice constant a, our control
parameter, away from a� and see how the structure changes.

IV. RESULTS

A. Structures and energy difference

Figure 3 presents our main computational results: the
evolution with strain of the structural parameters defined in
Sec. II C. Figure 3(a) shows the spatially uniform component
of the relevant distortions. We see that an applied strain,
as expected, induces both a uniform distortion of the NiO6

octahedra (the Q3 mode) and a volume change. The changes
are approximately linear in the applied strain. Figure 3(b)
shows that in the absence of strain the ground state is
charge ordered (q0 �= 0). Modest strain does not change the
amplitude of the charge order but does activate a modest
amplitude of staggered Jahn-Teller order (q3) as expected
from the combination of strain and breaking of translational
symmetry. When the strain exceeds a critical value (in either
the compressive or the tensile direction), the charge order
vanishes via a first-order transition. On the compressive-strain
side, the resulting state is metallic (as seen from the value
of the density of states at the Fermi surface, not shown)
and is characterized by no order except that imposed by
the strain. On the tensile-strain side, the staggered charge
order is replaced by a staggered Jahn-Teller order (q1) with
a magnitude comparable to that of the charge order. The
Jahn-Teller order q1, unlike the charge order q0, does not open
a gap at the Fermi level, resulting in a metallic state. In this
state, the long-bond direction of the Jahn-Teller order lies in
plane. We also see that a very small amplitude version of this
order exists even in the charge-ordered phase, and the dashed
lines show that if the charge order is suppressed, the amplitude
of the Jahn-Teller order q1 dramatically increases.

The energy difference between the metastable and stable
states in Fig. 3 is plotted in Fig. 4. At zero strain a =
a� ≈ 5.3 Å, the charge-ordered (CO) structure is lower in
energy than the Jahn-Teller (JT) structure by 82 meV per
computational unit cell, as defined in Fig. 1. Under either a
compressive strain (a < a�) or a tensile strain (a > a�), the
Jahn-Teller structure is favored, and �E is reduced. At both
transition points, the curve overshoots a little bit to below zero
and ends where the charge-ordered structure becomes locally
unstable and relaxes to the Jahn-Teller structure. Both the
overshoot and the linear �E − a relation near the transitions
confirm that the transitions are first order.

FIG. 4. (Color online) The energy difference �E = EJT − ECO

at different lattice constants a, with EJT and ECO denoting the energies
of the metastable Jahn-Teller distorted structure (dashed lines in
Fig. 3) and the stable charge-ordered structure (solid lines in Fig. 3)
between the transition points a ≈ 5.1 Å and a ≈ 5.5 Å. Outside the
transition points �E = 0 because the charge-ordered structure does
not exist and relaxes to the only stable Jahn-Teller structure.

B. The lower transition

In this section we analyze the compressive strain-driven
transition with the help of the Landau energy function in
Eq. (9). At fixed lattice constant a, we calculated the energy of a
series of structures linearly interpolated between the structure
with q0 = 0 and the charge-ordered ground-state structure.
Results are plotted in Fig. 5. We see that the energy has the
typical first-order structure, with two locally stable minima
crossing in energy as the lattice constant a is varied, and
we also see that the value of q0 characteristic of the charge
order minimum is insensitive to the value of the strain. The
main effect is simply a coupling of the strain to the energy
difference.

The Landau energy function in Eq. (9) is reduced to Eq. (5)
near the lower transition point a ≈ 5.1 Å because q1 ≈ 0 [see
Fig. 3(b)] makes q0 the only order parameter to consider.

FIG. 5. (Color online) Energy plots of linearly interpolated struc-
tures between the Jahn-Teller (q0 = 0) and charge-ordered (minimum
at q0 = q�) states under compressive strains. The energy of the
Jahn-Teller structure with q0 = 0 is used as a reference point, and
the energies of other structures are measured relative to it. The
data points are fitted to Eq. (5), with A60 > 0 for all three curves.
The other coefficients satisfy A20 > 0,A40 < 0 for a = 5.115 Å and
a = 5.125 Å and A20 < 0,A40 > 0 for a = 5.150 Å.
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Coefficients A20, A40, and A60 are all found to simultaneously
change with the strain δa.

The transition can, nevertheless, be understood by a strain-
induced change in A20 alone. At zero strain a = a� ≈ 5.3 Å
(not plotted), the coefficient A20 is negative, so that the ground-
state structure is charge ordered. A compression of the in-plane
lattice constant a favors the stability of the out-of-plane Jahn-
Teller structure with q0 = 0, thereby increasing the quadratic
coefficient A20. Sure enough, we see A20 change sign in Fig. 5
as a decreases from 5.150 to 5.125 Å. Then q0 = 0 becomes
lower in energy than q0 = q�, the charge order minimum,
when a is further reduced. Finally, at some a below 5.115 Å,
the local minimum q = q� disappears, and q0 = 0 becomes
the only equilibrium structure.

The transition from a nonzero q0 = q� to zero can be either
first order or second order, depending on the sign of the quartic
coefficient A40 near the transition point a ≈ 5.1 Å. Since our
data show a first-order transition, we know A40 < 0 and the
charge-ordered phase with q0 = q� is stabilized by A60 > 0,
i.e., the sixth-order term. This agrees with the fit parameters
in Fig. 5.

C. Evolution of the Jahn-Teller structure

The higher transition at a ≈ 5.5 Å is more complicated
because it involves both q0, the breathing mode, and q1,
the in-plane staggered Jahn-Teller mode, together with the
GdFeO3-type octahedral rotations α+

z β−
x β−

y that break the
q1 ↔ −q1 symmetry. We begin our analysis of this transition
by considering calculations in which q0 is artificially set to
zero. The heavy points in Fig. 6 [equivalent to the dashed q1

line in Fig. 3(b)] show the calculated evolution of q1 with
strain when q0 = 0. We see that over the whole range q1 �= 0
and that the evolution with strain is nonlinear. The nonzero q1

is a consequence of the GdFeO3 rotations, which, as previously
discussed, couple linearly to the staggered component of the
Jahn-Teller distortion.

A minimal model to understand this evolution of the Jahn-
Teller structure can be obtained by setting q0 = 0 in Eqs. (6)–

FIG. 6. (Color online) Dependence of amplitude q1 of staggered
in-plane Jahn-Teller distortions on applied strain. Points are calcu-
lated values. The solid line is the result of fitting calculated points
to Eq. (11). The solid line is the best-fit line, and the dashed
line is obtained by setting the linear coefficients A

(0)
01 = A

(1)
01 = 0 in

Eq. (11) to recover the ideal case of a second-order phase transition.
The parameters of the best-fit line are A

(0)
01 = 5.89 × 10−3, A

(1)
01 =

5.61 × 10−2, A(0)
02 = 0.388, A(1)

02 = 1.253, A04 = 1, and a∗ = 5.30 Å.

(9), leading to

E(q1) = − (
A

(0)
01 + A

(1)
01 δa

)
q1

+ (
A

(0)
02 − A

(1)
02 δa

)
q2

1 + A04q
4
1 , (10)

where A04 is assumed to be constant for simplicity. Equa-
tion (10) is formally similar to the equation describing a
ferromagnet in a magnetic field. The coefficients A

(0)
01 and A

(1)
01

are like an external magnetic field in the ferromagnetic case
and arise from the breaking of q1 ↔ −q1 symmetry due to the
GdFeO3 rotations. The need to allow for a strain dependence
of the coefficients is shown by the zero crossing of q1 at
a = a1 = 5.20 Å. The dependence of A02 on strain reflects
the tendency of tensile strain to favor the staggered Jahn-Teller
order q1.

Minimizing Eq. (10) leads to

−A
(0)
01 + 2A

(0)
02 q1 + 4A04q

3
1

A
(1)
01 + 2A

(1)
02 q1

= δa. (11)

We have fit Eq. (11) to the data points shown in Fig. 6, and
from the fit parameters we extracted the critical lattice constant
a = a2 = 5.61(4) Å at which the hypothetical cubic structure
would be unstable to staggered Jahn-Teller order in the absence
of charge order or GdFeO3 rotations. We observe that while the
uncertainties involved in fitting a four-parameter function to
the data mean that individual coefficients cannot be determined
with high accuracy, the estimated a2 is robust. It is interesting
that this value is not very much larger than the value of 5.5 Å
at which the charge order vanishes.

D. The competition between q0 and q1

Comparison of the solid and dashed lines in Fig. 3 shows
that the staggered charge order q0 strongly suppresses the
staggered Jahn-Teller order q1. In the notation of Eq. (8), the
biquadratic term A22q

2
0q2

1 is large and repulsive. In terms of
the analysis of Eq. (10), A02 becomes A02 + A22q

2
0 and is so

much more positive that until the charge order collapses at a
first-order transition, the staggered Jahn-Teller order cannot
develop. There is therefore a strong competition between the
two staggered orders, q0 and q1.

V. CONCLUSIONS

We have used density functional and Landau theory
methods to consider the effect of strain (induced by growth
on a substrate with different lattice constants) on the charge-
ordered state of LuNiO3. We find that the charge-ordered
state plays a primary role in controlling the physics. It is the
leading instability under ambient conditions, and its presence
suppresses any other instabilities. However, with sufficient
applied strain (within the DFT+U approximation, of the
order of 4%) the system undergoes a first-order transition
to a non-charge-ordered state. Interestingly, for tensile strain,
the non-charge-ordered state is characterized by a staggered
Jahn-Teller order.

In the actual crystals, the symmetry breaking induced by the
GdFeO3 rotational distortion means that the staggered Jahn-
Teller order does not break any additional symmetry of the
system, but our Landau theory analysis indicates that even the
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ideal cubic nickelate will undergo a transition to staggered
Jahn-Teller order if the tensile strain amplitude is sufficiently
large. We thus conclude that even a d8L̄ system with a negative
charge-transfer energy may have a Jahn-Teller instability.

The actual magnitude of the strain needed to destabilize
the charge order and allow other states is an important open
question. While we imagine the strain as being produced
by epitaxial growth on a substrate, we have not included
any quantum confinement effects in our modeling. Also, the
DFT+U method we have used is known to overestimate
the tendency to charge order [21]. The charge-order phase
boundary also depends on how the double-counting correction
is implemented. More refined calculations, perhaps based on
DFT plus dynamical mean-field theory methods, should be
employed to obtain better estimates for the strain needed
to destabilize the charge order. But it is interesting that the
magnitude of strain we have found is of the order of strains
accessible by epitaxial growth on substrates. On the other hand,
the first-order nature of the transition means that there are no
significant precursor effects to the transition.
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APPENDIX A: THE LANDAU ENERGY FUNCTION BASED
ON CUBIC (Oh) SYMMETRY

In the Fourier space, the nonzero distortion modes that
appear in the calculated structures of LuNiO3 (other rare-earth
nickelates should have very similar perovskite structures)
are Q�

0 , Q�
3 at k point � = (0,0,0), which are the uniform

expansion and cubic-to-tetragonal distortions of all octahedra;
QM

1 at k point M = (π,π,0), which characterizes a checker-
board pattern of in-plane staggered Jahn-Teller distortions;
and QR

0 , QR
3 at k point R = (π,π,π ), which appear only in the

“charge-ordered” structure.
To find out the symmetry-determined form of the Landau

energy E as a function of modes Q000
0 , Q000

3 , Qππ0
1 , Qπππ

0 ,
and Qπππ

3 , we need to extend our configuration space to a
minimal Oh group-invariant subspace of nine dimensions. This
is because the Jahn-Teller distortion Q000

3 along the z direction
can be rotated to x and y directions by Oh to give us the
Q000

1 mode. Similarly, rotating Qπππ
3 to x and y directions

gives us Qπππ
1 , and Qππ0

1 = δlππ0
x − δlππ0

y can be rotated
to Q0ππ

1 = δl0ππ
y − δl0ππ

z and Qπ0π
1 = δlπ0π

z − δlπ0π
x and, of

course, mirrored to −Qππ0
1 , −Q0ππ

1 , and −Qπ0π
1 . We now see

the nine orthonormal modes

Q000
0 , Q000

1 , Q000
3 ,

Qπππ
0 , Qπππ

1 , Qπππ
3 ,

Qππ0
1 , Q0ππ

1 , Qπ0π
1 ,

(A1)

as a basis of the nine-dimensional extended configuration
space that is invariant under Oh.

The Landau energy E as a function of the nine modes
in Eq. (A1) will have to be invariant under the 3! = 6
permutations of the x, y, and z indices due to Oh and the
translations along x, y, and z as well. A translation along x by
one nearest-neighbor Ni-Ni distance, for example, will leave
all kx = 0 modes unchanged and will let all kx = π modes
change sign. Translations in all three directions can generate,
in total, 23 = 8 ways of sign change. The Landau function E

will therefore have to be invariant under 6 × 8 = 48 symmetry
operations which include Oh plus translations. At this point
we forget about the boundary effects of the thin film and the
substrate, so that the x, y, and z directions are all equivalent
in the extended nine-dimensional configuration space.

The algorithm we use for determining the symmetry-
allowed form of the energy E is based mainly on the rearrange-
ment theorem of group theory. We start with a general Taylor
expansion of E with respect to the nine variables in Eq. (A1)
to some required order. The truncated expansion, which is a
nine-variate polynomial, is then transformed by each of the
48 symmetry operations. The average of the 48 transformed
polynomials is then guaranteed to be invariant under all 48
symmetries according to the rearrangement theorem.

Once we find the symmetry-determined function E of the
nine modes, we project back to the five modes we previously
started with by letting Q000

1 = Qπππ
1 = Q0ππ

1 = Qπ0π
1 = 0 for

the other four modes. The general form of E is then given by

E =
∞∑

n=0

2n∑
j=0

∞∑
m=0

Cnjm(Q0,Q3)q2n−j

0 q
j

3 q2m
1 , (A2)

where we have used the short-hand notation Q0 = Q000
0 ,

Q3 = Q000
3 , q0 = Qπππ

0 , q3 = Qπππ
3 , q1 = Qππ0

1 , which we
also used in the main text. The functions Cnjm(Q0,Q3) are
Taylor expandable and have the forms

C000(Q0,Q3) = a0(Q0)Q2
0 + b0(Q0,Q3)Q2

3, (A3)

Cn00(Q0,Q3) = an(Q0) + bn(Q0,Q3)Q2
3, (A4)

Cn10(Q0,Q3) = cn(Q0,Q3)Q3, (A5)

where n = 1,2,3, . . . , and other Cnjm(Q0,Q3) functions and
all lowercase functions that appear in Eqs. (A3)–(A5) are
arbitrary Taylor-expandable functions. Equation (A2) can be
thought of as some advanced version of Eq. (3) in the main text
with arbitrary constants aggregated into the Taylor coefficients
of the arbitrary functions an(Q0), bn(Q0,Q3), cn(Q0,Q3), etc.

Now we study the strain effects, i.e., how things depend on
the lattice constant a. Since the Q0 and Q3 modes are at k point
� = (0,0,0), they are more closely related to the value of a than
the other modes q0, q3, and q1. As a simplification, we assume
that Q0 = Q0(a) and Q3 = Q3(a) are smooth functions of
the control parameter a directly. As a increases, one expects
Q0(a), the overall volume expansion mode, to monotonically
increase and Q3(a), the overall cubic-to-tetragonal Jahn-Teller
distortion, to monotonically decrease. The other three modes,
q0, q3, and q1, may exhibit discontinuous jumps or other
nonanalytic behaviors at certain critical values of a and have
to be kept as order parameters explicitly in the Landau energy
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function E. One may refer to the calculated structures in Fig. 3
to see that the jumps in Q0 and Q3 at the transitions are much
smaller. The energy function E is thus simplified to

E =
∞∑

n=0

2n∑
j=0

∞∑
m=0

Cnjm(a)q2n−j

0 q
j

3 q2m
1 , (A6)

which now has only three order parameters, q0, q3, and q1.
Modes Q0 and Q3 are treated as control parameters that
are smooth functions of the lattice constant a and therefore
disappear from the energy function.

A further simplification can be made by noticing that in
the calculated structures of LuNiO3 (see Fig. 3), the order
parameters q0 and q3, both at the k point R = (π,π,π ),
are always simultaneously nonzero, as in the charge-ordered
structure, or simultaneously zero when the order is killed by
a sufficiently large compressive/tensile strain. The fact that q0

and q3 always go hand in hand and die together suggests that
we may combine them into one order parameter. This can be
done by treating the ratio q3/q0 = λ(a) as a continuous (not
necessarily monotonic) function of a. The Landau function is
now further reduced to one with only two order parameters:

E =
∞∑

n=0

∞∑
m=0

A2n,2m(a)q2n
0 q2m

1 , (A7)

where the coefficients

A2n,2m(a) =
2n∑

j=0

Cnjm(a)λj (a) (A8)

are arbitrary independent continuous functions of a. Equa-
tion (A7) gives the general form of the symmetry-based Lan-
dau energy function of RNiO3 without considering perovskite
octahedral rotations and nonorthogonal Ni-O bond angles.
Equation (8) in the main text is a simplified model that suffices
to explain our numerical results.

APPENDIX B: INCLUDING OCTAHEDRAL ROTATIONS,
A PERTURBATIVE APPROACH

Only even powers of q0 and q1 enter the Landau energy
function E in Eq. (A7). Here we consider the effects of the
perovskite octahedral rotations in RNiO3. We find that the
rotations preserve the q0 ↔ −q0 symmetry but break the q1 ↔
−q1 symmetry, which allows odd powers of q1 to enter the
energy function E.

The rotational pattern in LuNiO3 (and other rare-earth
nickelates) is of the GdFeO3 type, symbolically written as
α+

z β−
x β−

y . The meaning of the symbol is already explained in
detail in the main text. We want to construct an energy E as
a function of the rotational angles α+

z , β−
x , β−

y and the bond-
length modes q0 and q1 using the symmetry group D4h plus
translations because at general values of the lattice constant a,
the Jahn-Teller mode Q3(a) at the k point � = (0,0,0) lowers
the point-group symmetry from Oh (cubic) to D4h (tetragonal).

The benefits of using D4h instead of Oh are (a) coupling
terms involving Q0 and Q3 are automatically allowed for
and (b) the modes α+

z , β−
x , β−

y , q0, and q1 already form
a group-invariant subspace without needing any extensions.
Since all axial vectors α+

z , β−
x , β−

y and bond-length modes q0,

q1 are invariant under spatial inversion I , only D4h/{E,I } =
D4, which contains eight symmetry operations, is effective
in actually transforming the five modes. In addition to D4,
the translations can generate four possible ways of sign
change according to the k points of the five modes, among
which α+

z and q1 are at M = (π,π,0) and β−
x , β−

y , and q0

are at R = (π,π,π ). We therefore have, in total, 8 × 4 = 32
symmetries to satisfy in order to construct a valid energy
function E(αz,βx,βy,q0,q1) that takes into account the (small)
octahedral rotations.

Following again the algorithm in Appendix A based on the
rearrangement theorem of group theory, we get the general
form of the symmetry-allowed Taylor expansion of the energy
function,

E = Aα2
z + B

(
β2

x + β2
y

) + Cq2
0 + Dq2

1

+ Fαzβxβyq1 + · · · , (B1)

where coefficients A, B, C, D, F , etc., can all be arbitrary
functions of a. This is because the Q0(a) and Q3(a) modes are
functions of a and are invariant under D4h and translations.
They can therefore arbitrarily couple to any variable in
Eq. (B1).

The omitted terms in Eq. (B1) include other quartic terms
that are products of the quadratic ones and higher-order terms.
The leading-order term that breaks the q1 ↔ −q1 symmetry
is Fαzβxβyq1 = Fαβ2q1, which is linear in q1. This term
exists even if one considers the full Oh symmetry, which
symmetrizes it to

Fαzβxβyq1 →F
(
αzβxβyQ

ππ0
1

+ αxβyβzQ
0ππ
1 + αyβzβxQ

π0π
1

)
. (B2)

This means the octahedral rotations α+
z β−

x β−
y break the q1 ↔

−q1 symmetry even at Q3(a) = 0, i.e., at zero strain. However,
the q0 ↔ −q0 symmetry is strictly preserved order by order.
Switching the sizes of the larger and smaller NiO6 octahedra in
the charge-ordered structure is still a symmetry of the system
even in the presence of the GdFeO3-type octahedral rotations.

We therefore add the leading-order symmetry-breaking
term Fαzβxβyq1 to the original Landau function E in Eq. (A7)
as a perturbation to get the symmetry right. The new Landau
function is given by

E =
∞∑

n=0

∞∑
m=0

A2n,2m(a)q2n
0 q2m

1 + F (a)αβ2q1. (B3)

The added term should be small because αβ2 � 1 for small
rotations α and β. It should therefore be ineffective unless
the even-power coefficients A2n,2m(a) make q1 = 0 unstable
or nearly unstable. Equation (9) in the main text is a simplified
model of the general equation (B3) here.

Aside from octahedral rotations, nonorthogonal Ni-O bond
angles can also break the q1 ↔ −q1 symmetry if the Ni-O
bond that is approximately along the z direction forms different
angles with the x and y bonds. The leading-order symmetry-
breaking term should also be small and linear in q1 and can
therefore be addressed on the same footing as octahedral
rotations in our general model system given by Eq. (B3).
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