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Symmetry and the critical phase of the two-bath spin-boson model: Ground-state properties
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A generalized trial wave function termed as the “multi-D1 ansatz” has been developed to study the ground
state of the spin-boson model with simultaneous diagonal and off-diagonal coupling in the sub-Ohmic regime.
Ground-state properties including energy and spin polarization are investigated, and the results are consistent with
those from exact diagonalization and density matrix renormalization group approaches for the cases involving
two oscillators and two baths described by a continuous spectral density function. Breakdown of the rotational
and parity symmetries along the continuous quantum phase transition separating the localized phase from the
critical phase has been uncovered. Moreover, the phase boundary is determined accurately with the corresponding
rotational- and parity-symmetry parameters. A critical value of the spectral exponent s∗ = 0.49(1) is predicted
in the weak coupling limit, which is in agreement with the mean-field prediction of 1/2, but much smaller than
the earlier literature estimate of 0.75(1).
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I. INTRODUCTION

The paradigm of a quantum spin interacting with its
dissipative environment has drawn sustained research interests
in a variety of fields including quantum computation [1–3],
spin dynamics [4–6], quantum phase transitions [7–10], charge
transfer in biological molecules [11,12], and impurity effects in
magnetic materials [13–15]. Among the most popular models
employed in this regard is the spin-boson model [16] that
describes a two-level system, i.e., a spin- 1

2 , coupled linearly to
an environment represented by a set of harmonic oscillators.
The coupling between the system and the environment can be
characterized by a spectral function J (ω). This model is known
to exhibit rich ground-state properties. In particular, if the bath
is characterized by a gapless spectral density J (ω) ∼ 2αωs , a
quantum phase transition is expected to appear, separating a
nondegenerate “delocalized” phase from a doubly degenerate
“localized” phase due to the competition between tunneling
and environment-induced dissipation. Depending on the value
of s, there exist three distinct cases known as sub-Ohmic
(s < 1), Ohmic (s = 1), and super-Ohmic (s > 1) regimes.
Recent theoretical studies [7–10] show that the transition is of
second order in the sub-Ohmic regime and Kosterlitz-Thouless
type in the Ohmic regime [4]. In the super-Ohmic regime,
however, there is no phase transition.

A number of studies have investigated extensions of
the standard spin-boson model, for example, to a two-spin
system involving a common bath [17,18] or two independent
baths [6,19], and to a single spin coupled to a bath with
simultaneous diagonal and off-diagonal coupling [20]. We
have recently studied a two-bath spin-boson model [21,22],
shown schematically in Fig. 1(a), where Z and X denote the
diagonal and off-diagonal coupling, respectively, and the arrow
represents a spin. The bath spectral densities can be described
by Jz(ω) = 2αω1−s

c ωs and Jx(ω) = 2βω1−s̄
c ωs̄ , where α and

*Electronic address: YZhao@ntu.edu.sg

β are the dimensionless coupling strengths and s and s̄ denote
the spectral exponents characterizing the two baths coupled to
the spin diagonally and off-diagonally, respectively. Possible
realizations of such a two-bath model include impurities in
a magnet coupled to two spin-wave modes or two sources
of dissipation [23–26], excitonic energy transfer processes
in natural and artificial light-harvesting systems [27], elec-
tromagnetic fluctuations of two linear circuits attached to a
superconducting qubit [28–30], two cavity fields coupled to a
superconducting quantum interference device (SQUID) based
charge qubit [31], and the process of thermal transport between
two reservoirs coupled with a molecular junction [32].

In the two-bath model with s = s̄, α = β, studies based
on the perturbative renormalization group theory predict the
presence of two phases, namely, the “critical phase” and the
“free phase,” in the absence of bias and tunneling [24,33,34].
Very recently, the existence of a “localized phase” in the
two-bath model was discovered numerically in the strong
coupling regime [35]. The schematic of the phase diagram that
emerges is shown in Fig. 1(b). A continuous quantum phase
transition separating the localized phase from the critical phase
was claimed to exist only after satisfying the spectral exponent
relation s∗ < s < 1, and a critical value of the spectral
exponent, s∗ = 0.75(1), was estimated from the density matrix
renormalization group (DMRG) calculations. When s > 1, the
impurity behaves as a free spin in the so-called free phase [35].
The phase boundary was determined from the response to
the external field (i.e., the bias or tunneling) perpendicular
to the bath plane. However, the localized-to-delocalized phase
transition will occur under the external field, which renders the
phase diagram very complicated. Still unclear is the influence
of the external field to the localized-to-critical transition.
Moreover, the critical value of the spectral exponent was
predicted by a recent mean-field analysis [22] to s∗ = 1/2,
which stands at variance to the aforementioned DMRG result.
It thus remains a challenging task to map out precisely the
localized-to-critical phase transition as represented in Fig. 1(b)
in the absence of an external field.
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FIG. 1. (Color online) (a) Schematic of the two-bath spin-boson
model. A single spin is immersed in two independent baths with
simultaneous diagonal coupling (Z) and off-diagonal coupling (X).
(b) Schematic plot of the phase diagram of the spin-boson model with
two identical bosonic baths s = s̄ and α = β, where s (s̄) and α (β)
represent the spectral exponents and coupling strengths, respectively,
for the spectral density functions Jz(ω) [Jx(ω)]. Three different phases
(localized, critical, and free) are displayed in the α-s plane with two
critical values of the spectral exponents, s∗ and 1.0 in the limit of
weak coupling.

In the absence of bias and tunneling, the two-bath model
exhibits a high level of symmetry, including parity symmetry
and rotational symmetry [21,22,36]. In the localized phase,
spontaneous symmetry breaking takes place due to strong
spin-bath coupling. Hence, a symmetry analysis may help
distinguish the critical and localized phases. In addition, a
novel quantum phase transition from a doubly degenerate
“localized phase” to another doubly degenerate “delocalized
phase” is uncovered with respect to the ratio of the coupling
strengths α/β between the two baths [22]. The transition is
inferred to be of the first order, and the transition point α/β = 1
is determined when the spectral exponents of the two baths are
identical. Since the system at the transition point corresponds
to the XZ-symmetric spin-boson model, the critical properties
of the ground state, i.e., the spin polarization m(α,s) and
generalized susceptibility χ (α,s) at s = s̄ and α = β, can also
be used to distinguish the localized and critical phases.

The purpose of this paper is to investigate various ground-
state phases in the extended spin-boson model involving

two identical, independent baths, and determine the critical
value of the spectral exponent s∗ separating the localized
and critical phases in the weak coupling limit of α → 0.
Via the variational approach, the DMRG approach, and
the exact diagonalization method we conduct a comprehen-
sive study on the ground-state properties of the two-bath
spin-boson model with zero bias and tunneling for the
baths described by a single mode as well as a continu-
ous spectral density function. In this work, rotational- and
parity-symmetry breaking is found to occur along the
localized-to-critical phase transition, and the phase boundary
is obtained with s∗ = 0.49(1), consistent with the mean-field
predictions.

The rest of the paper is organized as follows. In Sec. II,
the two-bath spin-boson model and its symmetry properties
are described, along with an introduction to the variational
approach. Sections III and IV present the numerical results for
the localized and critical phases in the two-bath spin-boson
model involving a spin coupled to two oscillators or two
baths described by a continuous spectral density function,
respectively. Conclusions are drawn in the Sec. V.

II. METHODOLOGY

A. Model

The two-bath spin-boson model can be described by the
Hamiltonian below

Ĥ = ε

2
σz − �

2
σx +

∑
l,i

ωlb
†
l,ibl,i + σz

2

∑
l

λl(b
†
l,1 + bl,1)

+ σx

2

∑
l

φl(b
†
l,2 + bl,2), (1)

where ε and � is the spin bias and tunneling constant,
respectively, i = 1,2 is the index of the baths, and λl (φl)
is the diagonal (off-diagonal) coupling strength. In order
to investigate the quantum phase transition between the
critical and localized phases, we focus on the case of
ε = � = 0 as mentioned in the Introduction. A logarithmic
discretization procedure is adopted by dividing the phonon
frequency domain [0,ωc] into M intervals ωc[�−l ,�−(l−1)]
(l = 1,2, . . . ,M) [8,37,38]. The coupling strengths ωl and λl

(or φl) in Eq. (1) can then be calculated as

λ2
l =

∫ �−lωc

�−l−1ωc

dtJ (t),

(2)

ωl = λ−2
l

∫ �−lωc

�−l−1ωc

dtJ (t)t.

For convenience, the frequency cutoff ωc = 1 and the dis-
cretization factor � = 2 are set throughout this paper. It
should be noted that infinite bath modes are considered via the
integration of the continuous spectral density J (ω), although
the number of effective bath modes M is finite.

Since various values of 〈σx〉 and 〈σz〉 are possible due to
the extended symmetry of the two-bath model with zero bias
and tunneling, the spin polarization is introduced as

m =
√

〈σx〉2 + 〈σy〉2 + 〈σz〉2. (3)
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Due to Hamiltonian invariance under the transformation σy →
−σy , the y component of the spin polarization is 〈σy〉 ≡ 0.
Hence, m can be simplified to be

√
〈σx〉2 + 〈σz〉2. According

to Ref. [35], the critical phase is characterized by 〈σi〉 = 0
(i = x,y,z), which results in m = 0.

In addition, the phonon population Pph(x,z) is introduced
to depict the ground state of the two-bath model, assuming
that the wave function of the ground state can be written as

|�g〉 = |+〉|ψ+〉ph + |−〉|ψ−〉ph, (4)

where |ψ+〉ph and |ψ−〉ph are the phonon parts of the wave
function corresponding to the spin-up and -down states,
respectively, which can be expanded in a series of Fock states
or coherent states. The phonon population Pph(x,z) is thus
defined as

Pph(x,z) = 〈�g(x,z)|�g(x,z)〉spin

= |ψ+(x,z)|2 + |ψ−(x,z)|2, (5)

where 〈· · · 〉spin represents the trace of the spin freedom in
the wave function, x and z are coordinates in X-Z plane
corresponding to the off-diagonal and diagonal coupling baths,
and ψ±(x,z) = 〈�r|ψ±〉ph is the phonon-component of wave
function in the two-dimensional coordinate representation
�r = (x,z).

B. Ground-state symmetry

The model studied in this paper exhibits a high level of
symmetry due to zero bias and tunneling (ε = 0,� = 0). A
group theory analysis [21,22] shows that the ground state is
always doubly degenerate. We introduce four parity-symmetry
operators including I as the unit operator,

Px = σxe
iπ

∑
l b

†
l,1bl,1 ,

(6)
Pz = σze

iπ
∑

l b
†
l,2bl,2 ,

and PxPz. The influence of the parity-symmetry operations to
the ground state G is displayed in Fig. 2(a). Under the operation
Px (Pz), the sign of the coordinate values corresponding to the
displacements of phonons in the diagonal coupling bath (off-
diagonal coupling bath) will be changed. The parity-symmetry
parameters ζx and ζz are defined as

ζx = 〈�g|Px |�g〉,
(7)

ζz = 〈�g|Pz|�g〉.
When α 	= β, the results ζz = 1 and ζx = 0 (ζz = 0 and ζx =
1) are obtained for the localized phase (delocalized phase)
in the two-bath spin boson [22]. However, ζx and ζz in the
case of α = β are still unclear. A vanishing value of ζ =√

ζ 2
x + ζ 2

z usually indicates breakdown of the parity symmetry.
In contrast, one has ζ = 1 when the ground state has perfect
parity symmetry along the X or Z direction. If 0 < ζ < 1, the
ground state exhibits partial parity symmetry which may be
induced by the numerical errors or the finite number of the
degrees of freedom.

In the XZ-symmetric spin-boson model with s = s̄ and
α = β, the system may exhibit rotational symmetry, since the
Hamiltonian is invariant when one simultaneously rotates the
spin and the two baths in the X-Z plane by an arbitrary angle

θ . According to the Abelian U (1) symmetry of the two-bath
model proposed in Ref. [36], the rotational-symmetry operator
T̂ (θ ) is introduced as

T̂ (θ ) = exp(−iθ Ŝ), (8)

where Ŝ is the generator of the U (1) symmetry defined as

Ŝ = 1

2
σy + i

M∑
l=1

(bl,1b
†
l,2 − b

†
l,1bl,2). (9)

Figure 2(b) shows the influence of the rotational-symmetry
operator on the ground state G, where the coordinate values
of the ground state fx,fz in the X and Z directions are

FIG. 2. (Color online) The schematic of the influence of the
parity-symmetry operators Px,Pz and rotational-symmetry operator
T̂ (θ ) to the ground state G is displayed in (a) and (b), respectively.
For convenience, we use the polygon shape of the ground states
to emphasize the influence of symmetry operations. PxG,PzG and
T̂ (θ )G are new ground states under these symmetry operations, θ

denotes the rotational angle, and fx and fz represent the coordinate
values of the ground state in the X and Z directions, respectively.
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proportional to the phonon displacements in the off-diagonal
and diagonal coupling baths, respectively.

The symmetry parameters γ (θ ) and γph(θ ) are introduced
to quantitatively measure the rotational symmetry as

γ (θ ) = 〈�g|T̂ (θ )|�g〉,
γph(θ ) = 〈�g|T̂ph(θ )|�g〉

= 〈�g| exp

[
M∑
l=1

θ (bl,1b
†
l,2 − b

†
l,1bl,1)

]
|�g〉. (10)

It should be noted that only the rotation of the two baths
is considered in the definition of γph(θ ). The system energy
E(θ ) = 〈�g|T̂ †(θ )Ĥ T̂ (θ )|�g〉 is expected to be independent
of the rotational angle θ in the two-bath spin-boson model
involving two identical baths. If the ground state has perfect
rotational symmetry, one has γph(θ ) = 1 for the whole regime
of rotational angle θ . In contrast, γph(θ ) ∼ δ(θ ) is obtained
in the absence of the rotational symmetry, where δ(θ ) is a δ

function. When the ground state has partial rotational symme-
try, γph(θ ) decays with the rotational angle θ . Furthermore, we
investigate the θ -dependent behavior of the parity-symmetry
parameters ζ (θ ) defined as

ζx(θ ) = 〈�g|T̂ †
ph(θ )PxT̂ph(θ )|�g〉,

ζz(θ ) = 〈�g|T̂ †
ph(θ )PzT̂ph(θ )|�g〉, (11)

ζ (θ ) =
√

ζx(θ )2 + ζz(θ )2,

where T̂ph(θ ) defined in Eq. (10) is the phonon part of the
rotational operator and T̂ph(θ )|�g〉 is one of the degenerate
ground states obtained by rotating the ground state |�g〉. In
the rest of the paper, both symmetry parameters, γph(θ ) and
ζ (θ ) of the rotational and parity symmetries, respectively, will
be comprehensively studied, as they are useful and sensitive
to detect the spontaneous symmetry breaking in the localized-
to-critical phase transition.

C. Variational method

A systematic coherent-state expansion of the ground-state
wave function, termed as the “multi-D1 ansatz,” is introduced
as the variational trial ansatz [22,39,40]. It can be written as

|�〉 = |+〉
N∑

n=1

An exp

[
2M∑
l

(fn,lb
†
l − H.c.)

]
|0〉ph

+|−〉
N∑

n=1

Bn exp

[
2M∑
l

(gn,lb
†
l − H.c.)

]
|0〉ph, (12)

where H.c. denotes Hermitian conjugate, |+〉 (|−〉) stands for
the spin-up (-down) state, |0〉ph is the vacuum state of the
phonon bath, and M and N represent the numbers of bath
modes and coherent-superposition states, respectively. In fact,
Eq. (12) describes a superposition of the spin states |±〉 that
are correlated with the bath modes with displacements fn,l

and gn,l , where n and l represent the ranks of the coherent-
superposition state and effective bath mode, respectively.
The displacements (fn,l,gn,l) with 0 < l � M (M < l � 2M)
correspond to the phonons in the diagonal (off-diagonal)

coupling bath. Using this trial wave function, the system
energy E can be calculated with the Hamiltonian expectation
value H = 〈�|Ĥ |�〉 and the norm of the wave function
D = 〈�|�〉 as E = H/D. The ground state is then obtained
by minimizing the energy with respect to the variational
parameters An, Bn, fn,l , and gn,l . The variational procedure
entails N (4M + 2) self-consistency equations,

∂H

∂xi

− E
∂D

∂xi

= 0, (13)

where xi(i = 1,2, . . . ,4NM + 2N ) denote the variational
parameters. The multi-D1 ansatz is much more sophisticated
and contains more flexible variational parameters than the
Silbey-Harris ansatz [41] and its recent extension [42],
where only 2M + 1 and 4M + 2 variational parameters are
employed, respectively. For example, if N = 16 and M = 20,
our new ansatz has 1312 variational parameters, compared to
41 parameters in the Silbey-Harris ansatz and 82 parameters
in its extension.

For each set of the coefficients (α, β, s, and s̄) in the
continuous spectral densities Jx(ω) and Jz(ω), more than
100 initial states are used in the iteration procedure with
variational parameters (An,Bn) uniformly distributed within
an interval [−1,1]. Displacement coefficients (fn,l,gn,l) of
the initial states obey the classical displacements, i.e., fn,l =
−gn,l ∼ λl/2ωl for the diagonal coupling bath and fn,l =
−gn,l ∼ φl/2ωl for the off-diagonal coupling bath. In the
single-mode case, fn,l, gn,l , An, and Bn are all initialized
randomly. After preparing the initial state, a relaxation iteration
technique [43,44] is adopted, and a simulated annealing
algorithm [22] is also employed to improve the energy
minimization procedure. The iterative procedure is carried out
until the target precision of 1 × 10−12 is reached.

Theoretically, an infinite number of coherent-superposition
states N → ∞ is required for the completeness of the phonon
wave function in the present variational method. However,
large values of N pose significant challenges to numerical
simulations. To obtain reliable numerical results with large
N , an approach to improve the variational algorithm is
undertaken based on the parity symmetry. Assuming |�g〉 is
the ground state obtained by the variational method with N

coherent-superposition states, an intermediate state |�int〉 can
be generated via the parity-symmetry operators I, Px, Pz, and
PxPz,

|�int〉 = (C1I + C2Px + C3Pz + C4PxPz) |�g〉, (14)

where Ci(i = 1,2,3,4) is the weight coefficient. According
to the symmetry analysis [22], the symmetry operator Px or
Pz can lead to the other branch of the doubly degenerate
ground state with the same energy Eg. Hence, these four
symmetry operators should be equally weighted with |C1| =
|C2| = |C3| = |C4|. If C1 = 1, then C2 = ±1, C3 = ±1, and
C3 = ±1 can be derived. Similar to the case of the delocalized
Davydov D1 variational ansatz in the Holstein model [45],
the energy Eint of the intermediate state is lower than EN

g
after considering the parity symmetry. Using these eight states
as initial states, one can obtain a new ground state |�g〉
by performing the variational procedure with 4N coherent-
superposition states, which yields a lower ground-state energy
E4N

g < Eint < EN
g .
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Due to numerical errors, however, the state |�〉 found by the
variational algorithm corresponds only to the local minimum
in energy in the vicinity of the ground state. To refine the
variational results, the rotational symmetry should also be
considered in the case of s = s̄ and α = β. Via the rotational
operator T̂ (θ ) acting onto the state |�〉, a subspace composed
of a series of states with respect to the rotational angle θ is
built. Subsequently, the state with the minimum energy in this
subspace is regarded as the ground state. Since the generator of
the U (1) symmetry Ŝ involves a hopping between the diagonal
and off-diagonal coupling baths, the displacement coefficients
in the two baths are identical after considering the rotational
symmetry, consistent with the argument that the ground state is
accompanied by a symmetric distribution of phonon numbers
in the diagonal and off-diagonal coupling baths.

The phonon population Pph(x,z) defined in Eq. (5) can be
calculated with the multi-D1 variational ansatz in Eq. (12) as

Pph(x,z) =
N∑

n=1

[AnFn(x,z)]2 + [BnGn(x,z)]2

D
, (15)

where D = 〈�g|�g〉 is the norm of the wave function,
An and Bn denote the weight coefficients of the nth
coherent-superposition state coupled to the spin-up and -down
states, and the phonon functions Fn(x,z) = 〈�r|ψ+〉ph =
fn,x(x)fn,z(z) and Gn(x,z) = 〈�r|ψ−〉ph = gn,x(x)gn,z(z) rep-
resent the phonon component of the wave function |ψ±〉ph in
the two-dimensional coordinate representation �r = (x,z). The
function fn,x(x), denoting a coherent state in the off-diagonal
coupling bath, can then be deduced,

fn,x(x) =
∏

l

〈x|fn,l〉

=
∏

l

(ωl

π

)1/4
e−ixlpl/2eiplxe−ω(x−xl )2/2, (16)

where xl and pl are defined as

pl = −i

√
ωl

2
(fn,l − f ∗

n,l), (17)

xl = 1√
2ωl

(fn,l + f ∗
n,l). (18)

In the same way, the functions fn,z(z), gn,x(x), and gn,z(z)
can also be calculated with the displacement coefficients fn,l

and gn,l in Eq. (12) as input. In the single-mode case, i.e.,
M = 1, the phonon function can be simplified as Fn(x,z) =
fn,x(x)fn,z(z) = 〈z|fn,1〉〈x|fn,2〉 where the subscripts 1 and
2 correspond to the diagonal and off-diagonal coupling
oscillators, respectively.

III. SINGLE MODE

The ground state of the model involving two oscillators
coupled diagonally and off-diagonally to a spin is investigated
in this section. The corresponding Hamiltonian can be written
as

Ĥsingle = ω(b†1b1 + b
†
2b2) + σz

2
λ(b†1 + b1) (19)

+ σx

2
φ(b†2 + b2), (20)

where λ and φ are diagonal and off-diagonal coupling con-
stants, respectively. It is the simplest version of the two-bath
model under current study. Furthermore, we focus on the
case of two identical coupling constants λ = φ as it gives
the Hamiltonian the rotational symmetry, which may provide
insights into the nature of the phase transition between the
critical and localized phases.

A. Exact diagonalization

In the exact diagonalization procedure, the phonon states
|ψ+〉ph and |ψ−〉ph corresponding to the spin-up and -down
states, respectively, are expanded in a series of Fock states,

|ψ+〉ph =
Ntr∑
k1k2

ck1,k2 |k1k2〉, (21)

|ψ−〉ph =
Ntr∑
k1k2

dk1,k2 |k1k2〉, (22)

where ck1,k2 and dk1,k2 are the coefficients of the Fock state
|k1k2〉 for the two oscillators coupled diagonally and off-
diagonally to the spin, and Ntr = 100 is the bosonic truncation
number defined as the cutoff value of the phonon occupation
number. We have verified that this value of Ntr is sufficiently
large for the ground-state energy to converge. Solving the
Schrödinger equation, one can obtain the wave function of the
ground state |�g〉 with a series of coefficients, ck1,k2 and dk1,k2 ,
and the ground-state energy Eg. Thus, the expectation values
of σz and σx can be calculated as

〈σx〉 =
Ntr∑
k1k2

c∗
k1k2

dk1k2 + d∗
k1k2

ck1k2 ,

(23)

〈σz〉 =
Ntr∑
k1k2

|ck1k2 |2 − |dk1k2 |2.

The phonon population Pph(x,z) can also be obtained by

Pph(x,z) =
Ntr∑
k1k2

{[ck1,k2Ck1,k2 (x,z)]2 + [dk1,k2Dk1,k2 (x,z)]2},

(24)

where Ck1,k2 (x,z) and Dk1,k2 (x,z) represent the Fock states
|k1k2〉 in the coordinate representation �r = (x,z), correspond-
ing to the spin-up and -down states, respectively.

B. Analytical results

The characteristics of the single-mode spin-boson model
involving two oscillators can be investigated intuitively in
coordinate representation with the transformation x̂ = (b1 +
b
†
1)/

√
2ω and ẑ = (b2 + b

†
2)/

√
2ω. In the following discus-

sion, we use x and z as the classical counterparts of the
corresponding operators x̂ and ẑ. The Hamiltonian is then
described by

H = H0 + V,

H0 = − 1
2∇2 + 1

2ω2r2, (25)

V = λ′�r · �σ ,
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where we denote �r = (x,z), r = √
x2 + z2, �σ = (σx,σz), λ′ =

λ
√

ω/2, and ∇2 is the two-dimensional Laplace operator
written in polar coordinates. This Hamiltonian describes a
spin in a two-dimensional harmonic potential with spin-
orbital coupling V . When λ �ω, the spatial motion of the
particle is too slow compared to the spin degree of freedom.
Therefore, it is justifiable to introduce the Born-Oppenheimer
approximation. The spatial motion is thus treated classically,
and the spin-part is solved by

V |η±〉 = ε± |η±〉 , (26)

with the adiabatic eigenstates

|η+〉 =
[

cos
(

π
4 − θ

2

)
sin

(
π
4 − θ

2

)
]

,

(27)

|η−〉 =
[

sin
(

π
4 − θ

2

)
− cos

(
π
4 − θ

2

)
]

,

and the corresponding eigenvalues ε± = ±λ′r . Here we define
tan θ = z/x.

Then the wave function of the system can be assumed as,

|�〉 = ϕ+ (�r) |η+〉 + ϕ− (�r) |η−〉 . (28)

Using the adiabatic eigenstate as the basis, the equations for
the spatial part of the wave function are obtained with the
stationary Schrödinger equation H |�〉 = E |�〉,(

−∇2

2
+ 1

8r2
+ ω2r2

2
+ λ′rσ̂z + iV̂ n.a.σ̂y − Ê

)
��(�r)

= 0, (29)

where Ê = diag {E+,E−}, ��(�r) = (ϕ+(�r),ϕ−(�r))�, σ̂z and σ̂y

are the Pauli matrices, and the nonadiabatic terms are given by
the operator

V̂ n.a. = 1

2r2

∂

∂θ
, (30)

which are only in the angular direction, and can be neglected
in further analysis. Following the standard procedure of
separation of variables, the solution has the form

ϕ± (�r) =
∑
m

cmeimθR± (r,m) , (31)

wherein the radial function R± (r,m) is determined by the
equation[

− 1

2r

∂

∂r

(
r

∂

∂r

)
+ Veff (r)

]
R± (r,m) = E±R± (r,m) ,

(32)

with the effective potential

Veff (r) = ω2

2
r2 ± λr +

(
1

8
+ m2

2

)
1

r2
. (33)

The effective potential contains a harmonic potential, a
linear potential, and a centrifugal potential, and the angular
quantum number is half-integer (m = ± 1

2 , ± 3
2 . . . ) due to the

contribution of the spin- 1
2 part. Thus, the ground state that

corresponds to m = ±1/2 is doubly degenerate. In the strong

coupling regime (λ � ω), we can neglect the centrifugal
potential, leading to the expectation of a ring-shaped ground
state with the radius R ∝ λ/ω2.

C. Numerical results

We first investigate the ground state of the two-bath model
in the case of ω = 1 and λ = φ = 10 via the variational method
with N = 8 and M = 1. According to the aforementioned
theoretical arguments, the wave function of the ground state
is expected to be ring shaped in the two-dimensional (x,z)
coordinate representation. However, variational results depict
only a quarter of the ring as shown in Fig. 3(a), where the
color represents the value of the phonon population Pph(x,z)
defined in Eq. (15), and x and z coordinates correspond to
the off-diagonal and diagonal coupling baths, respectively.
Applying the parity-symmetry operators onto the ground state,
an intermediate state defined in Eq. (14) is obtained and shown
in Fig. 3(b). The energy of this intermediate state, Eint =
−25.489 118 11, is found to be slightly below the ground-state
energy EN=8

g = −25.480 580 88. Taking this intermediate
state as an initial state, one can seek the ground state via
the variational method with N = 32. Figure 3(c) shows the
phonon population Pph(x,z) decreasing smoothly with the z

coordinate, quite different from that of the intermediate state.
It indicates that the parity symmetry in the z direction is
broken, resulting in doubly degenerate ground states with
different values of 〈σz〉 but the same ground-state energy
EN=32

g = −25.497 419 79, which is much lower than both
EN=8

g and Eint.
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FIG. 3. (Color online) The wave function of the ground state in
a strong coupling case of λ = φ = 10 and ω = 1 is displayed in two-
dimensional coordinate representation (x,z). The x and z coordinates
correspond to off-diagonal and diagonal coupling baths, respectively,
and the color represents the phonon population Pph(x,z). In (a) and
(c), the numbers of coherent-superposition states N = 8 and 32 are
adopted, respectively, and an intermediate state defined in Eq. (14) is
shown in (b).
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FIG. 4. (Color online) The convergence test of the ground state
at λ = φ = 10 and ω = 1 is displayed for various numbers of
the coherent superpositions N = 4, 6, 8, 12, 32, and 96 in (a)–(f),
respectively. The x and z coordinates correspond to off-diagonal and
diagonal coupling baths, respectively, and the color represents the
phonon population Pph(x,z).

Furthermore, the ground-state convergence with respect to
the number of the coherent-superposition states N warrants
a careful examination. As shown in Fig. 4, the phonon
population Pph(x,z) gradually starts to resemble a ringlike
shape as N is increased from 4 to 6, 8, 12, 32, and 96. In
fact, the X-Z symmetric spin-boson model exhibits continuous
degeneracy by the projection T̂ (θ )|�g〉, where T̂ (θ ) is the
rotational-symmetry operator defined in Eqs. (8) and (9), and
|�g〉 is one branch of ground states. Moreover, the ground-state
energy EN

g monotonically decreases with N and is convergent
to an asymptotic value EN=96

g = −25.497 421 539, consistent
with the exact diagonalization result Eg = −25.497 421 544,
where the phonon truncation number is Ntr = 100.

The ground state of the two-bath model in the case of
weaker coupling, λ = φ = 2 and ω = 1, is investigated next.
The phonon distribution Pph(x,z) for N = 4, 6, 16, and 24
is displayed in Figs. 5(a)–5(d). Different from the results
shown in Fig. 4, the shape of the ground state remains nearly
unchanged, indicating that a small value of N is sufficient
to obtain a reliable numerical result. The ground-state energy
EN=24

g = −1.368 929 967 is again in an excellent agreement
with the exact diagonalization result Eg = −1.368 929 970.

Finally, the ground states of the two-bath model with
λ = φ = 0.1 and 20 are also plotted in Figs. 6(a) and 6(d),
respectively, to facilitate comparison with those for λ = φ = 2
in Fig. 6(b) and λ = φ = 10 in Fig. 6(c). In the weak coupling
regime λ � ω, a ground state with clear rotational symmetry
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FIG. 5. (Color online) The wave function of the ground state in
a case of λ = φ = 2 and ω = 1 is displayed in (a)–(d) for various
numbers of the coherent-superposition states N = 4, 6, 16, and 24.
The x and z coordinate correspond to off-diagonal and diagonal
coupling baths, respectively, and the color reflects the value of the
phonon population Pph(x,z).

is found, while it collapses in a corner of the X-Z plane in
the strong coupling regime λ � ω. It supports our conjecture
that the rotational symmetry is broken when the coupling
strength exceeds a certain value λc, similar to the picture
of the phase transition in the classical XY model. Since the
radius of the circle in Fig. 6(a) is quite small, any slight shift
of the center from the coordinate origin (0,0) will induce a
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FIG. 6. (Color online) The wave function of the ground state
obtained by variational method is displayed in (a)–(d) for the coupling
strengths λ = φ = 0.1, 2, 10, and 20, respectively. The phonon
frequency ω = 1 is set for both two baths. The x and z coordinates
correspond to off-diagonal and diagonal coupling baths, respectively,
and the color represents the phonon population Pph(x,z).
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FIG. 7. (Color online) The wave function of the ground state
obtained by exact diagonalization is displayed in (a) and (c)
for λ = φ = 10 and λ = φ = 2, respectively. Correspondingly, the
difference between the exact diagonalization and variational results
are displayed in (b) and (d). The x and z coordinates correspond to
off-diagonal and diagonal coupling baths, respectively, and the color
represents the phonon population Pph(x,z).

sharp jump in the spin polarization from m = 0 to m ≈ ±1. It
indicates that the spin polarization m is unstable in the weak
coupling regime, corresponding to the free phase. That the
ground state in Fig. 6(c) shows a crescent profile rather than
a complete ring may be reasoned from previous analytical
results. The ground state here must be doubly degenerate, and
our numerical calculations yield only one branch of ground
states. Upon combining both the degenerate sates, once can
readily obtain the complete ring shape of the ground state.

D. Discussion

The ground states obtained by the exact diagonalization
method are shown in Figs. 7(a) and 7(c) for the two cases of
λ = φ = 10 and λ = φ = 2, respectively. Results for both of
these cases seem to be identical to those with the variational
results shown in Figs. 4(f) and 5(d). To further verify the
consistency, the difference between exact diagonalization and
variational results are displayed in Figs. 7(b) and 7(d). The
resulting difference is two orders of magnitude smaller than the
phonon population Pph(x,z), implying that the wave function
obtained by the two methods are nearly the same, thereby
lending support to the superior accuracy of our variational
results.

The ground-state energy Eg and spin polarization m ob-
tained by the variational method and the exact diagonalization
approach are summarized in Table I for the coupling strengths
λ = φ = 0.1, 2, and 10. In all three cases, results from the two
methods agree with each other for more than nine significant
digits of Eg and m. Moreover, the radii of the rings R = 5, 25,
and 50 in the cases of λ = φ = 2, 10, and 20 calculated

TABLE I. The ground-state energy Eg and spin polarization m

obtained by the variational method (VM) and exact diagonalization
(ED) are listed for three different cases with the diagonal and
off-diagonal coupling strengths λ = φ = 0.1, 2, and 10, respectively.
The phonon frequency ω = 1 is set, and N and Ntr denote the
coherent-superposition number in the variational method and the
bosonic truncated number in the exact diagonalization, respectively.

λ = φ = 0.1 λ = φ = 2 λ = φ = 10

VM N 8 24 96
Eg −0.00498758265 −1.368929967 −25.497421539
m 0.995049457657 0.568606150 0.500053226

ED Ntr 100 100 100
Eg −0.00498758265 −1.368929970 −25.497421544
m 0.995049457657 0.568606143 0.500053212

from Figs. 5(d), 4(f), and 6(d), respectively, are found to
be consistent with the theoretical prediction R = cλ/ω2 with
the coefficient c = 2.5. This excellent reproduction of results
again points to the superiority of the variational method and
to the robustness of the ground state obtained by numerical
calculations.

The symmetry of the ground state in the single-mode case is
also studied via the symmetry parameters ζ = √

ζ 2
x + ζ 2

z of the
parity symmetry and γph of the rotational symmetry. Though
the phase transitions may be reduced to the ground-state level
crossings due to the finite number of degrees of freedom, the
symmetry properties of the ground states in the localized (λ =
φ � 1), critical, and free phases (λ = φ � 1) are unchanged.
Figure 8 shows ζ (θ ) for λ = φ = 0.1, 2, 10, and 20 when
ε = � = 0 and ω = 1. Interestingly, it is found that ζ = 1

0 0.5 1 1.5 2
θ/π

0

0.5

1

ζ(θ)

λ = φ = 0.1, 2.0 and 10

λ = φ = 20
ε = Δ = 0, ω = 1

Localized phase

Critical and free phases

FIG. 8. (Color online) The parity-symmetry parameter ζ (θ ) =√
ζ 2
x + ζ 2

z is displayed as a function of the rotation angle θ/π for
coupling strengths λ = φ. The spin bias ε = 0, tunneling constant
� = 0, and frequency ω = 1 are set.
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FIG. 9. (Color online) The rotational-symmetry parameter γph(θ )
is displayed as a function of the rotation angle θ/π for various
coupling strengths λ = φ = 0.1, 2, 10, and 20. The spin bias ε = 0,
tunneling constant � = 0, and frequency ω = 1 are set.

regardless of θ in the weak and intermediate coupling regimes,
pointing to the parity symmetry in the critical and free phases.
In the localized phase, however, narrow peaks of ζ (θ ) are found
for a strong coupling strength λ = 20. It indicates that the
ground state is localized without the parity symmetry. In Fig. 9,
the symmetry parameter γph(θ ) of the rotational symmetry is
also plotted, which shows an abrupt decay to zero in the strong
coupling regime (λ = φ = 20) but remains equal to one in
the weak coupling regime (λ = φ = 0.1). In the intermediate
regime, γph(θ ) is found to decrease gradually. These numerical
results further support our contention that the rotational
symmetry is broken only when the coupling is strong.

IV. CONTINUOUS SPECTRAL DENSITIES

A. The case with α = β

In this section, we study the ground-state properties of
the two-bath model involving the baths described by a
continuous spectral density function J (ω) via the variational
approach. Infinite bath modes are considered in the variational
calculations, although the number of the effective modes M

is finite due to the logarithmic discretization procedure. For
convenience, we first examine the case involving two identical
baths, i.e., s = s̄ and α = β.

The spin polarization m defined in Eq. (3) is displayed in
Fig. 10 as a function of the coupling strength α for various
values of the spectral exponent s = 0.4, 0.5, 0.6, 0.7, and 0.8
in the case of s = s̄ and α = β. For α > αc, an increase of
the spin polarization m(α) is found with increasing α for all
values of s, corresponding to the localized phase shown in
Fig. 1(b). However, a nonzero spin polarization is found in the
critical phase with α < αc, quite different from the prediction
of m = 0 in an earlier study [35]. In addition, the localized-

0 0.2 0.4 0.6 0.8
α

0.7

0.8

0.9

m(α)

s = 0.4
s = 0.5
s = 0.6
s = 0.7
s = 0.8

s = s- , α = β
ε = 0, Δ = 0

FIG. 10. (Color online) The spin polarization m(α) at various
values of the spectral exponent s is plotted as a function of the
coupling strength α in the case of α = β and s = s̄. The number
of coherent-superposition states N = 4 and effective bath modes
M = 20 are used in variational calculations. The downward arrows
indicate the transition points αc.

to-critical transition point αc marked by the downward arrows
is shifted visibly with an increase in s except for s = 0.4 for
which no phase transition occurs. It indicates that the critical
value of the spectral exponent is s∗ ≈ 0.5, consistent with the
prediction s∗ = 1/2 of the mean-field analysis [22], but much
smaller than s∗ = 0.75(1) in Ref. [35].

The convergence of the variational results with respect to
N and M is carefully tested. Figure 11 shows the ground-state
energy EN

g as a function of N in the critical phase with
s = s̄ = 0.8 and α = β = 0.2. A power-law decay of the
ground-state energy with the form EN

g = aN−b + Eg(∞) is
found via numerical fitting, which yields the asymptotic value
Eg(∞) = −0.193 572. In the inset, the spin polarization m(N )
is also displayed as a function of N on a log-log scale. A
perfect power-law behavior of m(N ) is obtained with the slope
0.174(2) and the asymptotic value m(∞) = 0. It suggests that
the nonzero value of the spin polarization in the critical phase
originates in the effects of the finite N . Furthermore, the spin
polarization m(N ) in the critical phase is not convergent even
for N = 96, unlike the case of the localized phase, where a
small value of N is sufficient to obtain reliable results. In a
similar manner, the influence of M to the ground-state energy
EM

g and spin polarization m(M) is also depicted in Fig. 12.
Both quantities are found to reach asymptotic values when
1/M < 0.05, indicating the sufficiency of M = 20. Therefore,
in the following discussion on the variational results the
number of coherent-superposition states and the bath modes
are set to N = 16 and M = 20, unless specified otherwise.

Table II presents a comparison between the numerical
results obtained by the variational method and the DMRG
approach [8,37,46,47]. To ensure reliable results, the phonon
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FIG. 11. The ground-state energy EN
g is displayed as a function

of the superposition number N in a case of the critical phase with
s = s̄ = 0.8 and α = β = 0.2. The number of the effective bath
modes M = 20 is used in variational calculations. The dash-dotted
line represents the fitting EN

g = aN−b + Eg(∞). In the inset, the spin
polarization m(N ) is also shown on log-log scale, and the dashed line
indicates a power law fit.
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FIG. 12. The ground-state energy EM
g and the spin polarization

m(M) are displayed as a function of the number of the effective bath
modes M for N = 4 in a critical phase case with s = s̄ = 0.8 and
α = β = 0.2. The dash-dotted and dashed lines represent the fitting
y(M) = aM−b + y(∞).

TABLE II. The ground-state energy Eg and spin polarization
m obtained by the variational method (VM) and DMRG are listed
for three different cases with (s = s̄ = 0.4, α = β = 0.1), (s = s̄ =
0.6, α = β = 0.1), and (s = s̄ = 0.8, α = β = 0.2) in the localized
phase (first case) and critical phase (last two cases). Three numbers
of the coherent-superposition states N = 16, 64, and 96 are used
in variational calculations, which are sufficiently large in each case.
dp = 50 represents the phonon number allocated on each site on the
Wilson chain in the DMRG algorithm.

s = s̄ = 0.4 s = s̄ = 0.6 s = s̄ = 0.8
α = β = 0.1 α = β = 0.1 α = β = 0.2

VM N 16 64 96
Eg −0.16759 −0.12917 −0.19356
m 0.77448 0.53372 0.40171

DMRG dp 50 50 50
Eg −0.16771 −0.12923 −0.19357
m 0.75496 0.42665 0.29635

number used in DMRG algorithm is dp = 50, much larger
than dp = 30 used in the previous work [35]. The length
of the Wilson chain is set to L = 50 and the cutoff
dimension of the matrix is Dc = 60. In the three cases
of (s = s̄ = 0.4, α = β = 0.1), (s = s̄ = 0.6, α = β = 0.1),
and (s = s̄ = 0.8, α = β = 0.2), only a slight difference of the
ground-state energy, i.e., �E/Eg < 0.1%, is found between
the variational and DMRG results, further reconfirming the
superiority of our variational results. Since the ground state
of the critical phase is unstable [35], the spin polarization
obtained by the variational method is larger than that by the
DMRG, as shown in the last two columns in Table II. In the
localized phase, however, a small value of N = 16 is sufficient
to obtain the variational result of the spin polarization m =
0.774 48, comparable with the DMRG result m = 0.754 96.

Figure 13 shows the spin polarization m(θ ) and its x and
z components 〈σx〉 and 〈σz〉 for the states T̂ (θ )|�g〉, where
T̂ (θ ) is the rotational-symmetry operator defined in Eq. (8)
and |�g〉 is the ground state obtained by the variational
method. As the rotational angle θ increases, the values of
〈σx〉 and 〈σz〉 oscillate between −0.5 and 0.5, while the
corresponding spin polarization m remains almost unchanged.
The obtained curves can be fitted to trigonometric functions,
〈σx〉 = −m sin(θ ) and 〈σz〉 = m cos(θ ), with m = 0.53091.
It indicates that neither 〈σx〉 nor 〈σz〉 is a good candidate
to characterize the localized-to-critical phase transition, even
though they were employed in Ref. [35]. In the inset, the shift
�E(θ ) = E(θ ) − Eg is plotted. The sufficiently small value of
�E ≈ 2 × 10−15 shows that there are continuous degenerate
ground states which have the same energy Eg, consistent with
the prediction from the rotational-symmetry analysis.

Apart from the spin polarization, we have also probed the
symmetry properties of the ground state. The parity-symmetry
parameter, ζ (θ ) =

√
ζx(θ )2 + ζz(θ )2, where ζx and ζz are

defined in Eq. (7), is displayed in Fig. 14 for the two cases of
s = s̄ = 0.4 and 0.85 at a sufficiently small coupling strength
α = β = 0.02. In the localized phase with s = 0.4 < s∗, sharp
peaks of ζ (θ ) are found at θ/π ≈ n/2 (n = 1, 2, 3, and
4) with a small peak width �θ defined as the size of the
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FIG. 13. (Color online) The spin polarization m and its x and z

components 〈σx〉 and 〈σz〉 are plotted as a function of the rotational
angle θ for the states T̂ (θ )|�g〉 in the case of s = s̄ = 0.8 and α =
β = 0.2. The dashed lines represent the fitting with the trigonometric
functions. In the inset, the shift �E = E(θ ) − Eg from the ground-
state energy is shown.
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FIG. 14. (Color online) The parity-symmetry parameter ζ (θ ) =√
ζx(θ )2 + ζz(θ )2 is displayed as a function of θ/π for the two cases

of s = s̄ = 0.4 (bottom) and s = s̄ = 0.85 (top) when the coupling
strengths are α = β = 0.02. The width of the peak �θ is defined as
the size of the parity-symmetry regime with ζ > 0.

parity-symmetry regime ζ > 0. It suggests that the ground
state is localized in a corner of the X-Z plane. On the other
hand, ζ (θ ) is always greater than zero in the critical phase
with s = 0.85 > s∗, indicating that the parity symmetry covers
the whole subspace. Hence, the parity index P = 2�θ/π

reflecting the localization of the ground state can be used to
quantitatively distinguish the localized and critical phases.

Shown in Fig. 15(a) is the parity index P (α,s) versus the
spectral exponent s for various values of α, in the case with
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FIG. 15. (Color online) The parity index, P (α,s) = 2�θ/π , is
displayed in (a) as a function of s for various values of α and in (b) as
a function of α for various values of s. The transition point separating
the localized phase from the critical phase is located at the position
where the value of parity index P reaches unity.
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FIG. 16. (Color online) The rotational-symmetry parameter
γph(θ ) is displayed against the rotational angle θ/π for the two cases
of s = s̄ = 0.4, α = β = 0.02 and s = s̄ = 0.85, α = β = 0.02,
corresponding to the critical and localized phases, respectively.

two identical baths, i.e., s = s̄ and α = β. Without any loss
of generality, it is assumed that only the ground state with the
parity index P = 1 belongs to the critical phase, otherwise it
belongs to the localized phase. According to this criteria, the
transition point sc between the localized and critical phases is
calculated for various values of α. With an increase in α, sc

increases monotonically, in agreement with the trend shown in
Fig. 1(b). Moreover, the parity index P (α,s) is also displayed
in Fig. 15(b) for various values of s. The transition point αc

can be measured as a function of s in a similar manner and
subsequently the phase boundary in the X-Z plane can be
obtained.

The rotational symmetry is studied next in the critical
and localized phases, using the two typical cases of s = s̄ =
0.4, α = β = 0.02 and s = s̄ = 0.85, α = β = 0.02, respec-
tively. The symmetry parameter γph(θ ) is displayed in Fig. 16
by rotating the two baths in the X-Z plane through an angle θ .
In the localized phase, γph(θ ) quickly depletes to zero, different
from that in the critical phase, where it gradually decays to
a nonzero value. Compared to the results of the single-mode
case in Fig. 9, one can find that the localized and critical phases
correspond to the strong and intermediate coupling regimes,
respectively. In general, the strong coupling regime has a large
coupling strength α and a small spectral exponent s, while
opposite trends ensue in the intermediate coupling regime.
For the spectral exponent s > 1, however, the system always
resides in the weak coupling regime, corresponding to the free
phase.

Similar to the case of the parity symmetry, the symmetry
parameter of the rotational symmetry γph(α,s) can also be used
to distinguish the localized and critical phases. Without loss
of generality, we set a special rotational angle θ = π/2, where
the phonons in the diagonal and off-diagonal coupling baths
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FIG. 17. (Color online) The rotational-symmetry parameter
γph(α,s) at the angle θ = 1/2π is displayed in (a) as a function of s

for various values of α and in (b) as a function of α for various value
of s. The transition point is located at the position separating the
localized phase with γph = 0 from the critical phase with γph > 0.

are interchanged. Thus, the value of the symmetry parameter
is expected to be γph = 0 in the localized phase and γph > 0
in the critical phase. Figure 17(a) shows γph(s) as a function
of s for various values of α. The transition point sc is then
located at the position separating the localized phase from the
critical phase. It monotonously increases with α, consistent
with the results in Fig. 15(a). Moreover, γph(α) is also plotted
in Fig. 17(b) as a function of α for various values of s. The
transition boundary αc(s) separating the localized and critical
phases can then be appropriately calculated.
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FIG. 18. (Color online) The rotational-symmetry parameter
γph(α,s) and the parity index P (α,s) for N = 2, 12, 16, and 20 are
displayed as a function of s in a weak coupling case of α = β = 0.01.
The dashed line indicates the transition point sc = 0.495(5).

To accurately estimate the critical value of the spectral
exponent s∗ shown in Fig. 1(b), the case of very weak coupling
strength α = β = 0.01 is used to investigate γph(α,s) and
P (α,s). As shown in Fig. 18, the transition behavior of P (α,s)
and γph(α,s) is displayed for N = 2, 12, 16, and 20. The near
overlap of the two curves of N = 16 and 20 suggests that
N = 16 is sufficiently large to accurately describe the phase
transition. With the increase of N , the transition point on the
P (α,s) and γph(α,s) lines is found to decrease monotonically,
tending to an asymptotic value of sc = 0.495(5), as marked by
the dashed line. It points to the critical value of s∗ = 0.49(1)
in the weak coupling limit of α → 0, in perfect agreement
with the mean-field prediction of 1/2, but stands at variance
with the value of 0.75(1) by Guo et al. [35]. This discrepancy
may be attributed to the fact that the numerically unstable
critical phase is beyond the reach of the DMRG algorithm of
Guo et al., and the external field holds great sway over the
phase-transition properties of the two-bath model.

In order to get a good estimate of sc(N ), transition points
calculated from the variational approach are plotted in Fig. 19
as a function of 1/N , where N is the number of superpo-
sitions. Two values of coupling strengths α = β = 0.01 and
0.02 are used, and we also set ε = � = 0, and s = s̄. As
1/N decreases, the difference between γph(α,s) and P (α,s)
gradually disappears for both values of α. Using linear fitting of
sc(1/N ), the asymptotic values of sc = 0.493(6) and 0.541(7)
for the two cases are obtained by extrapolation to infinite N ,
which is consistent with the N = 16 results sc = 0.500(5) and
0.55(1) within the error bars, further supporting our claim
that the number of superpositions N = 16 is sufficient to
obtain reliable results. The deviation of the critical point from
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(α, s)

α = 0.02

α = 0.01

FIG. 19. (Color online) Displayed as a function of the superposi-
tion number N are the transition points determined by the variational
calculations at weak coupling α = β = 0.01 (lower curves) and 0.02
(upper curves). The lines with circles and triangles correspond to
the results from the curves of γph(α,s) and P (α,s), respectively. The
dashed lines are the linear fitting for the extrapolation of sc with
1/N → 0.

s∗ = 0.75(1) is not induced by the effect of finite N . The phase
diagram of the extended spin-boson model is displayed in
Fig. 20 in the case of s = s̄ and α = β. The solid triangles and
stars represent the phase boundary obtained from the parity
index P (α,s) and rotational-symmetry parameter γph(α,s),
respectively. The error bars in this phase diagram are estimated
via the difference of the transition points measured with the
fixed α and s, respectively.

Having studied the symmetry properties in detail, we now
turn our attention to the wave function of the ground state
for the two-bath model involving the continuous spectral
density in order to understand the nature of the localized
and critical phases. To serve this purpose, we chose the case
of s = 0.5, α = 0.9 in the localized phase and the case of
s = 0.85, α = 0.02 in the critical phase as examples. Figure 21
shows the displacement coefficients fn,l and gn,l defined in
Eq. (12) in the localized phase as a function of the phonon
frequency ωl . Two different behaviors of the displacement are
found in the upper and lower panels for the phonons in the
diagonal and off-diagonal coupling baths, corresponding to
the “polarized bath” and “unpolarized bath,” respectively. In
the low-frequency regimes, all the displacement coefficients
fn,l and gn,l converge to a value independent of n, i.e., fn,l =
gn,l → cλl/2ωl in the polarized bath and 0 in the unpolarized
bath, where c = −0.91 is a ω-independent constant. In the
low-frequency regime, however, fn,l and gn,l exhibit quite
different behaviors, and the relations f1,l = −f4,l ,f2,l = −f3,l

and g1,l = −g2,l ,g2,l = −g3,l are found, indicating that the
phonons in the unpolarized bath obey certain symmetry
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FIG. 20. (Color online) The phase diagram of two-bath model is
displayed in the α-s plane in the case of s = s̄ and α = β. The phase
boundary separating the critical phase from the localized phase is
obtained from the parity index P (α,s) and The rotational-symmetry
parameter γph(α,s).
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FIG. 21. (Color online) The displacement coefficients fn,l (solid
line) and gn,l (solid circles) of two-bath model in the localized
phase are plotted as a function of the phonon frequency ωl at
s = s̄ = 0.5 and α = β = 0.9. The top and bottom panels correspond
to the polarized and unpolarized baths, respectively. The dashed line
represents the classical displacements rescaled by a factor c = 0.91
for comparison.
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FIG. 22. (Color online) In the top and bottom panels, the dis-
placement coefficients fn,l (solid line) and gn,l (solid circles) in
the critical phase are plotted for s = s̄ = 0.85, α = β = 0.02 for
the polarized and unpolarized baths, respectively. The dashed line
represents the classical displacements rescaled by a factor of 0.87 for
comparison.

constraints. Moreover, the quantum fluctuations of the two-
bath model in the localized phase are negligible, since the
amplitude of the high-frequency displacements Ap ≈ 0.6 in
the unpolarized bath is much smaller than that of the classical
displacement |λl/2ωl| ≈ 15 in the low-frequency limit.

Figure 22 shows the displacement coefficients fn,l and gn,l

in the critical phase as functions of ωl . Similar to the results
in the localized phase shown in Fig. 21, one bath of the model
is in the polarized state, and the other in the unpolarized state.
However, the classical displacement fn,l = gn,l → λl/2ωl ≈
0.2 at ωl = 10−6 in the top panel is compatible with the
amplitude of the high-frequency displacements Ap ≈ 0.15 in
the bottom panel. It means that the quantum fluctuations play
an important role in the critical phase, unlike the case in the
localized phase.

Finally, the ground states of the two-bath model in the
localized and the critical phases are compared via the phonon
population Pph(x,z), as shown in Fig. 23. According to the
results in Figs. 21 and 22, the displacement coefficients fn,l and
gn,l in the localized and critical phases are quite different in the
low-frequency regime, especially at ωl = 10−6. Hence, only
the bath modes at the frequency ωl = 10−6 are considered,
and the unit of length 1/

√
ωl = 103 is set. The phonon state in

the case of s = s̄ = 0.85 and α = β = 0.02 (critical phase) is
located nearby the origin O, but the one in the case of s = s̄ =
0.5 and α = β = 0.9 (localized phase) is far away from it. In
both the cases, the distance d between the center of the phonon
state and the origin is proportional to the displacement fn,l,gn,l

in the polarized bath. Moreover, the central angle to the origin
is calculated to be � = 2 arctan(r/d) ≈ 0.04π for the case of
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FIG. 23. (Color online) The wave function of the ground states
is displayed for the two cases of s = s̄ = 0.85, α = β = 0.02
(nearby the origin O) and s = s̄ = 0.5, α = β = 0.9 (in a corner),
corresponding to the critical and localized phases, respectively. The x

and z coordinates correspond to off-diagonal and diagonal coupling
baths, respectively, and the color represents the phonon population
Pph(x,z) at the frequency ωl = 10−6. For convenience, we set the unit
of the length in the X-Z plane as 1/

√
ωl = 103.

the localized phase, where r = 0.4 is the radius of the phonon
population Pph(x,z) and d = 20 is the distance. Interestingly,
the central angle � is comparable with the width of the peaks
�θ = 0.038π measured in Fig. 15. It further supports that the
parity index P = 2�θ/π < 1 reflects the localized nature of
the ground state.

B. The case with α �= β

In the two-bath model, we next investigate the case
with β 	= α to identify the critical and localized phases.
According to Ref. [22], there exists a first-order quantum phase
transition separating the doubly degenerate “localized state”
with |〈σz〉| > 0 and 〈σx〉 = 0 from the doubly degenerate “de-
localized state” with 〈σz〉 = 0 and |〈σx〉| > 0. The transition
point βc = α is expected from the X-Z symmetry when the
spectral exponents obey s = s̄. In the following variational
calculations, we use N = 4 and M = 20, which have been
shown to be sufficient in obtaining reliable results of the
localized-to-delocalized phase transition [22].

In Fig. 24(a), the z component of the spin polarization 〈σz〉
obtained by the variational method is plotted with respect to
the ratio β/α for various values of the diagonal coupling α in
the case of s = s̄ = 0.4. The transition point is determined at
βc/α = 1.0000(1), in perfect agreement with the expectation
βc = α within numerical errors. Furthermore, a linear decay of
〈σz〉 is found for β < βc before showing an abrupt jump to zero
at the transition point, thereby verifying the transition to be of
the first order. For comparison, the numerical results obtained
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FIG. 24. (Color online) The z component of the spin polarization
〈σz〉 for various values of α is plotted as a function of the ratio β/α

in (a) and (b), corresponding to the variational and DMRG results,
respectively. In both (a) and (b), the dash-dotted line indicates the
transition point βc = α, and dashed lines represent linear fits. The
value of the spectral exponent s = s̄ = 0.4 is set.

by the DMRG algorithm are also displayed in Fig. 24(b).
Similar behavior of 〈σz〉 is found, pointing to the validity of
the variational method.

Due to infinite degenerate ground states T̂ (θ )|�g〉, the z

component of the spin polarization 〈σz〉 at the transition point
βc = α is undetermined, as shown in Fig. 13. In the regime
with β < α, however, the value of 〈σz〉 is quite robust, since
the rotational symmetry is broken by the anisotropic coupling.
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FIG. 25. The generalized susceptibility χ = ∂m/∂τ |τ=0 is dis-
played as a function of the coupling strength α at s = s̄ = 0.4. The
circles and triangles correspond to the DMRG and variational results,
respectively, and the dashed lines represent exponential fits.

The generalized susceptibility χ is thus introduced by

χ = ∂m

∂τ

∣∣∣∣
τ=0

, (34)

where m is the spin polarization defined in Eq. (3) and τ =
|β − βc|/βc = |β/α − 1| is the reduced coupling strength. As
shown in Fig. 24, the z component of the spin polarization 〈σz〉
can be fitted by a linear behavior. Since the x component of
the spin polarization 〈σx〉 = 0 in the localized state [22], one
obtains m = 〈σz〉 = aτ + b. The generalized susceptibility
χ = a can then be calculated with the linear fitting procedure
for different values of α and s. An extended scaling form
m = 1 − a exp(−bτ ) could lead to a better fitting of the
numerical data and yield χ = ab in the limit of τ → 0.
Figure 25 shows the generalized susceptibility χ (α) at s =
s̄ = 0.4 obtained by the variational method (solid triangles)
and DMRG algorithm (open circles). Both of them decay
exponentially with α, though the exponents obtained via the
fitting with χ ∼ exp(−cαd ) differ for the DMRG (d = 0.5)
and the variational method (d = 0.7). The two curves χ (α)
follow the same behavior, implying that the system is always
in the localized phase at s = s̄ = 0.4 for various values of α,
and no phase transition occurs when s = 0.4 < s∗.

In Fig. 26(a), the generalized susceptibility χ (α,s) is
displayed as a function of the ratio s/(1 + α) for various values
of α. Unlike the trend shown in Fig. 25, χ (α,s) increases with
the spectral exponent s until s/(1 + α) = 0.53 marked by the
dash-dotted line as the position of the peaks when α > 0.1.
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FIG. 26. (Color online) The generalized susceptibility χ (α,s) is
displayed as a function of s/(1 + α) in (a) for various values of
α and in (b) for various values of s = 0.4. The dash-dotted lines
indicate the peak positions of the curves for α > 0.1 and s > 0.5,
pointing to a transition boundary s/(1 + α) ≈ 0.5 in the phase
diagram.

It points to the transition boundary separating the localized
phase from the critical phase. Moreover, the generalized
susceptibility χ (α,s) is also displayed in Fig. 26(b) for various
values of s. The position of the peak similarly marked by the
dash-dotted line is found to be at s/(1 + α) = 0.48 when s >

0.5. From these numerical results, one can obtain a relationship
s/(1 + α) ≈ 0.5, which leads to the transition boundary, i.e.,
αc = 2(s − 0.5). It further supports our contention that the
critical value of the spectral exponent is s∗ ≈ 0.5.
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V. CONCLUSION

The ground states of the spin-boson model with diagonal
and off-diagonal coupling to two identical, independent baths
have been comprehensively studied in this paper by the
variational approach, the DMRG algorithm and the exact
diagonalization method. Adopting a generalized trial wave
function, i.e., multi-D1 ansatz, the spin polarization m, ground-
state energy Eg, and wave function |�g〉 are calculated
accurately by the variational method, in good agreement with
those from the exact diagonalization in the case involving two
oscillators and those from the DMRG algorithm in the case
involving two baths described by a continuous spectral density
function.

Three phases (localized, critical, and free) are identified,
corresponding to the strong, intermediate, and weak coupling
regimes, respectively. Via the symmetry parameters ζ and γph,
the nature of the these phases is uncovered. The breakdown
of the parity and rotational symmetries is found to occur
along the quantum phase transition between the localized and
critical phases. The phase boundary is determined by the parity

index P (α,s) with ζ > 0, consistent with that obtained by
γph(α,s). Moreover, the critical value of the spectral exponent
is estimated as s∗ = 0.49(1), well in agreement with the
mean-field prediction of 1/2 [22]. The behavior of the spin
polarization m(α,s) and the generalized susceptibility χ (α,s)
is also investigated for various values of the coupling strengths
α and spectral exponents s. Both results point to s∗ ≈ 0.5,
further supporting the accuracy of our results in pinpointing
the transition point.
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