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d-wave superconductivity in coupled ladders

J. P. L. Faye,1 S. R. Hassan,2 P. V. Sriluckshmy,2 G. Baskaran,2,3 and D. Sénéchal1
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We study the one-band Hubbard model on the trellis lattice, a two-dimensional frustrated lattice of coupled
two-leg ladders, with hopping amplitude t within ladders and t ′ between ladders. For large U/t this is a model
for the cuprate Sr14−xCaxCu24O41. We investigate the phase diagram as a function of doping for U = 10t

using two quantum cluster methods: The variational cluster approximation (VCA), with clusters of sizes 8
and 12, and cellular dynamical mean field theory (CDMFT), both at zero temperature. Both methods predict a
superconducting dome, ending at roughly 20% doping in VCA and 15% in CDMFT. In VCA, the superconducting
order parameter is complex in a range of doping centered around 10%, corresponding to bulk chiral, T -violating
superconductivity. However, the CDMFT solution is not chiral. We find evidence for a migration of the Cooper
pairs from the interladder region towards the plaquettes as doping is increased.
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I. INTRODUCTION

Inspired by the discovery of high-Tc superconductivity,
Dagotto et al. predicted a superconducting phase in a
theoretical model consisting of weakly coupled, quasi-one-
dimensional ladders. This model exhibits a spin-gap and
d-wave hole-pair formation away from half filling [1–3].
This prediction was realized in the copper-oxide-based ladder
material Sr14−xCaxCu24O41 with hole doping. At x = 13.6,
the critical temperatures under pressures of 3 and 4.5 GPa
are Tc = 12K and Tc = 9K, respectively [4]. At x = 11.5, a
superconducting dome is seen as a function of pressure [5].
Recently, the critical temperature of the x = 11 compound
Sr3Ca11Cu24O41 has been doubled, from 12 to 24K, by
applying a weak uniaxial pressure of 0.06 GPa [6].

Many theoretical studies have been reported on the single-
ladder Hubbard model, with and without doping, using a va-
riety of methods: Exact diagonalizations [2,7], density-matrix
renormalization group [8], resonating-valence-bond (RVB)
mean-field theory [9], bosonization [10], and quantum Monte
Carlo (QMC) [11,12]. A consistent result from those studies is
the emergence of d-wave superconducting correlations in the
double-leg ladder upon doping. Coupled ladders described by
the trellis lattice have been investigated using the fluctuation
exchange (FLEX) method, confirming the possibility of d-
wave superconductivity at half-filling [13].

In this paper, we report on a theoretical study of super-
conductivity in the one-band Hubbard model on the trellis
lattice away from half-filling, at zero temperature. We use
the variational cluster approximation (VCA) [14] and cellular
dynamical mean-field theory (CDMFT) [15,16] with an exact
diagonalization solver. For the range of on-site repulsion
studied, superconductivity does not occur at half-filling, but
a superconducting dome appears upon doping. Moreover,
the superconducting order parameter computed from VCA
becomes complex in a range of doping centered around 10%,
thus breaking time-reversal symmetry. The energy gain from
the chiral nature of superconductivity is small, at best 6 to 7%
of the condensation energy, and the chiral solution is not found
with CDMFT.

This paper is organized as follows. In Sec. II the model is
presented, as well as the structure of singlet superconductivity
in the BCS approximation. In Sec. III the VCA technique is
summarized and the results of its application are presented;
this is the main part of the paper. In Sec. IV CDMFT is applied
in order to confirm by an independent method the occurrence
of superconductivity. We add a short discussion and conclude
in Sec. V.

II. MODEL AND MEAN-FIELD REPRESENTATION

The Hamiltonian of the one-band, repulsive Hubbard model
on the trellis lattice is

H =
∑
i,j,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓ − μ
∑

i

(ni↑ + ni↓), (1)

where ciσ annihilates an electron of spin σ at site i, tij = tj i

is the hopping amplitude between sites i and j , and niσ =
c
†
iσ ciσ is the number operator at site i and U the on-site

Coulomb repulsion. The density of electrons is controlled by
the chemical potential μ. The only nonzero hopping terms are
indicated by intersite links on Fig. 1, with tij = t on the ladder
plaquettes, and tij = t ′ between ladders. Model (1) has two
bands: The unit cell contains two orbitals, separated by ex on
the figure. The vectors e0 and ey on Fig. 1 define a basis for the
lattice. For convenience, we define the Brillouin zone exactly
like on the graphene lattice.

This model offers an approximate description of
Sr3Ca11Cu24O41, wherein each site represents a copper atom.
In the actual material, oxygen atoms are located midway
between copper atoms on the links of each square plaquette.
The relation between hole doping δ (the electron density is
n = 1 − δ) and Ca doping x in the material is not simple, as
δ is also affected by pressure. Throughout this paper we set
t = 1 and t ′ = 0.15; this ratio t ′/t is taken from band structure
calculations [17]. The value of U/t will be set to 10 in most
VCA and CDMFT computations.
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FIG. 1. (Color online) Model for the ladder cuprate
Sr14−xCaxCu24O41 on the trellis lattice. The dots stand for
copper atoms. The open circles represent oxygen atoms (not shown
in the middle of the figure), which are not explicitly included in the
model. The shaded areas are the clusters used in VCA, labeled C8
and C12. Ip and Ic are the supercurrent loops circulating around the
plaquette and between the plaquettes, respectively.

A. Superconductivity

What form can superconductivity take in such a model?
To answer this question, let us first provide a description of
the superconducting order parameter at the mean-field level.
It is then convenient to adopt a Nambu description, with the
multiplet of destruction-creation operators

Ck = (c1↑(k),c2↑(k),c†1↓(−k),c†2↓(−k)), (2)

where the first index of each operator is a sublattice index,
distinguishing the left and right sites of each rung. This array of
operators is used in a matrix description of the noninteracting,
mean-field Hamiltonian

HBCS =
∑

k

C†
kHkCk, (3)

with the 4 × 4 Hermitian matrix

Hk =

⎛
⎜⎝

−2 cos(k · ey) − μ γk θk ηk
γ ∗

k −2 cos(k · ey) − μ η−k θk
θ∗

k η∗
−k 2 cos(k · ey) + μ −γk

η∗
k θ∗

k −γ ∗
k 2 cos(k · ey) + μ

⎞
⎟⎠ (4)

with γk = −e−ik·ex − t ′e−ik·e1 − t ′e−ik·e2 . This is the most
general form for singlet superconductivity. If we assume only
nearest-neighbor pairing with amplitudes Dx , −Dy , and D1,2

in the directions ex , ey , and e1,2 respectively, the anomalous
terms of that matrix are

θk = −Dy cos(k · ey),
(5)

ηk = Dxe
ik·ex + D1e

ik·e1 + D2e
ik·e2 .

The choice of sign for Dy reflects our anticipation of d-wave
superconductivity on the plaquettes.

If the superconductor is time-reversal (T ) invariant, the
components of Hk satisfy the relation H−k = H ∗

k . This implies
that the amplitudes Dx,y,1,2 defined above are all real. On the
other hand, if any one of them is complex, the superconductor
breaks time-reversal invariance.

Let us stress that we are not performing a true mean-field
computation here: There is no factorization of the interaction,
no self-consistent procedure, etc. Indeed, the Hubbard model,
with its local repulsion, is not amenable to a self-consistent
(BCS) mean-field computation of d-wave superconductivity.
We are simply illustrating the form that superconductivity can
take in this model, in order to compare with the complete
variational or self-consistent computations reported in Sec. III.

B. Order parameter

The most general way to represent superconducting order
is to plot the momentum-dependent order parameter �ab(k),
defined as the integral over frequency of the Gorkov function

(the anomalous part of Green’s function):

�ab(k) =
∫ ∞

−∞

dω

2π
Fab(k,iω). (6)

Here (a,b) are sublattice indices taking two possible values,
associated with the left and right legs of the ladder. The Gorkov
function Fab is the top-right block of the Nambu Green’s
function Gμν(k,ω) defined as follows at zero temperature:

Gμν(k,ω) = 〈�|Cμ(k)
1

ω − H + E0
C†

ν(k)|�〉

+〈�|C†
ν(k)

1

ω + H − E0
Cμ(k)|�〉 , (7)

where ω is a complex-valued frequency, |�〉 is the many-body
ground state, and E0 is the ground-state energy. For a two-band
model, Fab = Ga,b+2. In the special case of the noninteracting
BCS Hamiltonian (3), the Nambu Green’s function is

Gμν(k,ω) =
(

1

ω − Hk

)
μν

. (8)

In order to connect with the more familiar one-band BCS
theory, let us point out that in that case the matrix Hk has the
simpler form

Hk =
(

εk − μ θk
θ∗

k −εk + μ

)
, (9)
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FIG. 2. (Color online) Superconducting order parameter �ab(k)
for the BCS Hamiltonian (3), as a function of wave vector, with
parameters Dx = 0.09, Dy = 0.03 and D1 = D2 = −0.01 + 0.008i.
Doping is set at 10%. The Brillouin zone is indicated. Panels (a) and
(b) show the real and imaginary parts of the rung component (different
sublattices), whereas panels (c) and (d) show the leg component
(same sublattice). Red (gray) means negative, blue (dark gray) means
positive, and the range is indicated on top of each panel. The normal-
state Fermi surface is shown in red (gray) on panel (a).

where εk is the dispersion relation and θk is the gap function.
The order parameter is then simply

�k = − θk

2
√

ε2
k + |θk|2

. (10)

Figure 2 illustrates the superconducting order parameter
�ab(k) in the particular case of model (3). This is later
compared to a solution, obtained through VCA, that con-
tains correlation effects. We have chosen superconducting
amplitudes (Dx,Dy,D1,D2) that break time reversal slightly
and match local order parameters of an actual VCA solution
described later on. The fact that Im �12(k) 	= − Im �12(−k)
and Im �11(k) 	= 0 is a visual signature of time-reversal
breaking.

III. THE VARIATIONAL CLUSTER APPROXIMATION

We use the variational cluster approximation (VCA) [14] to
investigate the zero-temperature phase diagram of model (1),
more specifically the existence of d-wave superconductivity
upon hole doping for several values of U . VCA—also called
VCPT in its early days—has been used to study the emergence
of d-wave superconductivity in a simple description of the
high-Tc cuprates based on the Hubbard model [18,19]. It is
based on Potthoff’s self-energy functional approach [20]. For
a review, see Ref. [21].

A. Description of the method

In VCA, we must distinguish between the original Hamil-
tonian H , defined on the infinite lattice, and a reference
Hamiltonian H ′, defined on a small cluster of atoms. H ′ is
a restriction of H to the cluster, except that a finite number
of Weiss fields may be added to it, in order to probe certain
broken symmetries. Any one-body term can also be added to
H ′. The electron self-energy �(ω) associated with H ′ is used
as a variational self-energy, in order to construct the Potthoff
self-energy functional:

�[�(h)] = �′[�(h)] + Tr ln[−(G−1
0 − �(h))−1]

− Tr ln(−G′(h)), (11)

where G′ is the physical Green’s function of the cluster, G0

is the noninteracting Green’s function of the original model,
and h denotes collectively the coefficients of all the adjustable
one-body terms added to H ′ acting as variational parameters.
The symbol Tr stands for a functional trace, i.e., a sum
over all degrees of freedom (e.g., momenta or sites) and
frequencies. �′ is the ground-state energy (chemical potential
included) of the cluster which, along with the associated
Green’s function G′, is computed numerically, in our case
via the exact diagonalization method at zero temperature.

Equation (11) provides us with an exact, nonperturbative
value of the Potthoff functional �[
(h)], albeit on a restricted
space of self-energies 
(h), which are the physical self-
energies of the reference Hamiltonian H ′. Expression (11)
is computed numerically in order to look for stationary points
of that functional, for instance via a Newton or quasi-Newton
method. The resulting value of h defines the best possible
self-energy �(ω) for that parameter set; the latter is then
combined with G0 to form an approximate Green’s function
G for the original Hamiltonian H , from which any one-body
quantity, for instance, the order parameters associated with
broken symmetries, can be computed.

When confronted with competing solutions, i.e., different
stationary points of �[
(h)] or points obtained via different
sets of Weiss fields, the one with the lowest value of the
Potthoff functional is selected, as � is an approximation of
the exact free energy of the infinite system. VCA retains the
correlated character of the model, since the local interaction
is not factorized. The approximation may be controlled in
principle by varying the size of the cluster and the number of
variational parameters used.

In this work we use the clusters labeled C8 and C12
illustrated on Fig. 1. It is important to test more than one
cluster, as there will be some variance in numerical results
among different clusters and robust characteristics need to be
identified. Larger clusters will generally lead to smaller values
of the order parameter, because of in-cluster order parameter
fluctuations.

B. Superconductivity

In VCA the possible presence of d-wave superconductivity
is probed by adding to the cluster Hamiltonian H ′ pairing
operators. These may be expressed in terms of the singlet
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pairing operators �̂ij = ci↑cj↓ − ci↓cj↑ = �̂ji as follows:

�̂x =
∑

ri−rj =ex

�̂ij , �̂y = −
∑

ri−rj =ey

�̂ij ,

(12)
�̂1 =

∑
ri−rj =e1

�̂ij , �̂2 =
∑

ri−rj =e2

�̂ij ,

where the unit vectors ex,y,1,2 are defined in Fig. 1. �̂x is
the sum of all pairing operators along rungs, �̂y is the sum
of all pairing operators along legs, and �̂1,2 are the sum
of pairing operators between the ladders. In practice, the
Nambu description (2) is used: A particle-hole transformation
is applied to spin-down operators, giving the above pairing
operators the appearance of hopping terms.

The Weiss Hamiltonian added to the cluster Hamiltonian
H ′ takes the form

H ′
sc = Dx�̂x + Dy�̂y + D1�̂1 + D2�̂2 + H.c., (13)

where the coefficients (Dx,Dy,D1,D2), the so-called Weiss
fields, are variational parameters, adjusted so as to make the
Potthoff functional (11) stationary (in practice, minimum). The
minus sign in front of �̂y in Eq. (12) means that we anticipate
d-wave symmetry on the plaquette, i.e., we anticipate Dx and
Dy to have the same sign, which is indeed what we find
numerically.

In principle, the Weiss fields may be complex valued,
as H ′

sc remains Hermitian anyway. However, we choose Dx

to be real so as to fix the overall phase. Then Dy , D1,
and D2 can be complex. In practice, in order to limit the
number of variational parameters, we assume that Dy is
real and that Re D2 = ± Re D1 and Im D2 = ± Im D1. We
found that the lowest minima of the Potthoff functional have
D1 = D2 ≡ D⊥, and in the rest of this paper we accordingly
define �̂⊥ = �̂1 + �̂2, for a total of 4 variational parameters:
Dx , Dy , Re D⊥, and Im D⊥.

Figure 3 shows the order parameters �α = 〈�̂α〉 + 〈�̂†
α〉,

for α = x,y,⊥, computed from the VCA Green’s function, as a
function of hole doping, for U = 10 and the two clusters shown
on Fig. 1. The interladder order parameter �⊥ is complex
over a range of doping: Its modulus is plotted, along with its
phase (right vertical axis). The superconducting dome has a
maximum between 10% and 15% (depending on the cluster)
and ends at about 20% doping. It falls to zero exactly at
half-filling. The interladder order parameter �⊥ is noticeably
smaller than the ladder order parameters �x and �y , but this
is roughly in line with the ratio t ′/t = 0.15. The rung and
leg order parameters (�x and �y) also have imaginary parts
whenever �⊥ has one, but they are small and would not make
visible contributions to |�x | or |�y | on the plots.

The order parameters shown on Fig. 3 are special convo-
lutions of the general momentum-dependent order parameter
�ab(k) with particular form factors associated with nearest-
neighbor pairing. They have the advantage of simplicity but
are somewhat arbitrary. Unfortunately, the full order parameter
�ab(k) cannot be plotted simply as a function of doping.
However, Figure 4 shows �ab(k) for the VCA solution at 10%
doping. This is to be compared with Fig. 2, which shows the
corresponding BCS order parameter, obtained by setting the
BCS fields to values that reproduce the same values of the link

FIG. 3. (Color online) Pairing order parameters (�x,�y,�⊥) as a
function of doping δ for the two clusters used in VCA, at U = 10. The
complex phase of �⊥ can be read on the right axis. The T -breaking
solution (arg �⊥ 	= 0) exists in a finite range of doping.

order parameters �x,y,⊥. We notice that the features of Fig. 4
are qualitatively the same as those of Fig. 2, although less
sharp, because of strong correlation effects. The sharp lines
of Fig. 2 have become broad maxima and minima, but the
asymmetry of Im �21 stands out. Note that the scales (color
range) differ from those of Fig. 2 by factors of two to three.

FIG. 4. (Color online) Superconducting order parameter �ab(k)
computed from the VCA solution, as a function of wave vector.
U = 10 and doping is 10%. This is to be compared with the BCS
order parameter of Fig. 2.
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FIG. 5. (Color online) Loop supercurrents Ip and Ic circulating
respectively around a plaquette and around the center parallelogram
of the C8 cluster, as a function of doping, for U = 10. The loops are
illustrated on Fig. 1.

The T -breaking nature of the solutions found can also be
assessed by computing chiral supercurrents. Figure 5 shows the
supercurrents Ip and Ic circulating along the loops indicated
on Fig. 1. These are defined as the expectation values of

Î = 1

i

∑
i∈loop,σ

(c†i,σ ci+1,σ − H.c.), (14)

where the sum is taken around the loop. The expectation values
〈Îp,c〉clus in the cluster ground state vanishes if �⊥ is real,
but is nonzero as soon as �⊥ develops an imaginary part.
This demonstrates that, in the latter case, superconductivity
is chiral: If Im �⊥ changes sign, the value of the Potthoff
functional does not change—hence we again have a VCA
solution—but the sign of the current changes. Note that these
supercurrents are measured on the cluster itself, as ground-
state expectation values, without using the Green’s function,
because the latter provides expectation values on the whole
lattice and these current loops cancel each other when the
loops are stacked on the lattice. They are computed only to
underline the chiral character of the complex superconducting
solutions. Note that the supercurrent loop located between the
ladders dominates at small doping, whereas the opposite is
true of the plaquette supercurrent. This leads us to believe that
the Cooper pairs tend to locate between the ladders at small
doping and move towards the plaquettes at larger doping.

The T -breaking solution has the lowest energy in a
sequence of solutions that can be obtained in VCA by
increasing the number of variational parameters, as illustrated
in Fig. 6. We plot the value of the Potthoff functional at the
solution, which is an approximation to the grand potential
�, as a function of chemical potential μ, since � is by
construction as a function of μ, not density. In the top curve,
no variational parameters were used, and this represents the
normal solution. The second curve from the top is obtained
by using the plaquette anomalous Weiss fields (Dx,Dy) as
variational parameters. The third curve is obtained by adding
the real part of the interladder pairing D⊥ to the set. Finally, the
lowest curve is obtained by adding both the real and imaginary
parts of D⊥ to the set, and the corresponding solutions break
time-reversal invariance. This illustrates the process by which

FIG. 6. (Color online) Value of the Potthoff functional at the
solution as a function of chemical potential μ for U = 10 and
different sets of variational parameters: the normal solution (no
variational parameters), two T -preserving solutions, with (Dx,Dy)
and (Dx,Dy, Re D⊥) used as variational parameters, and the T -
violating solution with variational set (Dx,Ry, Re D⊥, Im D⊥). The
latter has the lowest value of �. Two values of doping are indicated
for that solution. A multiple of μ is added in order to better separate
the different curves.

the quality of VCA solutions is improved by adding variational
parameters. Another solution, obtained by allowing Dy to take
complex values, is not shown, as it is hardly distinguishable
from the last one. We see that the energy advantage of the
T -breaking solution is at best 0.0025t , or roughly 1

15 of
the condensation energy (the difference between the normal
state and superconducting state energies), and this only at
the most favorable doping (δ ∼ 12%). Thus, even though the
VCA simulation predicts T -breaking superconductivity in this
system in a range of doping, it must be kept in mind that
this solution is very close in energy to other approximate
solutions that do not break time-reversal symmetry. We have
checked that, at optimal doping, increasing t ′ will increase the
energy gain of the chiral solution over the purely real solution.
Thus, the interladder hopping t ′ helps stabilize the T -breaking
solution.

Notice that the difference between the second and third
curves on Fig. 6 increases with μ, i.e., towards smaller doping.
This means that the importance of varying D⊥ is greater
on the underdoped side of the dome, which confirms our
interpretation that the Cooper pairs tend to locate between
the ladders at small doping.

IV. THE CELLULAR DYNAMICAL MEAN FIELD THEORY

We also used cellular dynamical mean field theory
(CDMFT) to confirm the appearance of a superconducting
dome by independent means.

A. Description of the method

CDMFT like VCA, proceeds by tiling the lattice with
clusters and by computing an optimized self-energy for each
cluster. Unlike VCA, the space of self-energies is not explored
by adding Weiss fields on the cluster, but rather by coupling
each cluster to a bath of uncorrelated, auxiliary orbitals that
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represent the effect of the cluster’s environment [15,16,22,23].
The cluster Hamiltonian is supplemented by bath-cluster
hybridization and bath energy terms:

Hbath =
∑
μ,α

θαμa†
μcα +

∑
μ,ν

εμνa
†
μaν + H.c., (15)

where aμ denotes the annihilation operator for the bath orbital
labeled μ.

This, together with the restriction of the Hubbard Hamilto-
nian (1) to the cluster, defines an Anderson impurity model.
The cluster Green’s function, when traced over the bath
orbitals, takes the following form as a function of complex
frequency ω:

G′−1(ω) = ω − t − �(ω) − �(ω), (16)

where the hybridization matrix �(ω) is

�(ω) = θ (ω − ε)−1θ † (17)

in terms of the matrices θαμ and εμν . The Green’s function
G(k̃,ω) for the lattice model is then computed from the
cluster’s self-energy as

G−1(k̃,ω) = G−1
0 (k̃,ω) − �(ω). (18)

Here k̃ denotes a reduced wave vector, belonging to the
Brillouin zone associated with the superlattice of clusters that
defines the tiling. All Green’s function-related quantities are
2Nc × 2Nc matrices, with Nc being the number of sites in the
unit cell of the superlattice, which is made of one or more
distinct clusters (the factor of 2 is there because of spin). G0

is the noninteracting Green’s function. In practice, the cluster
Green’s function is computed from an exact diagonalization
technique using variants of the Lanczos method (just like in
VCA). Then the self-energy is extracted from Eq. (16).

The bath and hybridization parameters (εμν,θαμ) are deter-
mined by the self-consistency condition

G′(ω) = Nc

N

∑
k̃

G(k̃,ω) (19)

(N is the [quasi-infinite] number of sites in the whole system).
In other words, the local Green’s function G′(ω) should
coincide with the Fourier transform of the full Green’s function
at the origin. This condition should hold at all frequencies,
which is impossible in a zero-temperature implementation of
CDMFT because of the finite number of bath parameters at
our disposal. Therefore, condition (19) is only approximately
satisfied, through the use of a merit function. Details can be
found, for instance, in Ref. [23].

B. System studied and superconductivity

When modeling superconductivity in CDMFT, it is con-
venient to introduce anomalous terms between bath sites,
thus treating bath sites as if they were forming a so-called
phantom cluster. The cluster-bath system used in this work
is illustrated on Fig. 7. Two unequivalent, four-site clusters
form the repeated unit cell of the superlattice. The Nambu
formalism is used to represent anomalous terms (see Ref. [24]
for explanations of its use in the context of CDMFT). The bath
orbitals are grouped into two sets of four, and within each set

FIG. 7. (Color online) CDMFT cluster-bath system used in this
work. The trellis lattice was deformed into a square lattice for
simplicity. Right panel: arrangement of the two clusters A and B
needed to tile the lattice. Intra- and intercluster hopping terms are
represented by green (dark gray) and light gray lines, respectively
(full for t , dashed for t ′). Left panel: pictorial representation of
the two clusters: lattice sites are gray spheres and bath orbitals are
represented by smaller, red (dark gray) spheres. Dashed (blue) lines
are bath-cluster hybridization terms and dotted (red) lines anomalous
terms between bath sites, forming the anomalous part of the
matrix ε.

anomalous terms are defined that mimic what could occur on
the cluster itself (hence the expression phantom cluster). Each
bath set has four or five links (dotted [red] lines on the figure)
and a complex pairing operator is defined on each of these
links, except on the rung link where it is assumed to be real,
in order to set the global phase of the superconducting state.
Taking symmetries into account, this makes for a total of 14
bath parameters for superconductivity, in addition to 8 bath
orbital energies and as many hybridization parameters, for a
total of 30 variational parameters.

Figure 8 shows the order parameters �x , �y , and �⊥ for the
CDMFT solutions obtained at U = 10. These solutions do not
break time reversal in any significant way ( Im �⊥ < 10−5).

FIG. 8. (Color online) Order parameters computed from the
CDMFT solutions found with the cluster-bath system illustrated in
Fig. 7, as a function of doping. The CDMFT solutions do not break
time-reversal invariance.
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But the superconducting dome seen in VCA is still there,
although somewhat narrower (nothing beyond δ = 15%). As
doping is increased, the interladder pairing operator �⊥ has
a first maximum around 1.5% and then decreases before
increasing again, carried by the other components. This is
another evidence that the Cooper pairs tend to gather between
the ladders at small doping.

V. DISCUSSION

Let us first point out an important difference between the
present results, obtained for weakly coupled ladders, and
superconductivity in the hole-doped, square lattice Hubbard
model. In the latter [18,24] the order parameter scales like
J ∼ 4t2/U at large U . Here, �x is nearly U independent in
the range studied, as shown on Fig. 9. Changing the ratio
U/t is typically accomplished by applying pressure on the
sample. However, in the case of Sr14−xCaxCu24O41, changing
the pressure would not only affect the value of t but also of
t ′ and, more importantly, doping, as carriers migrate between
the chains and the ladders. Thus mapping a change in U to an
experimentally accessible control parameter is very difficult.

Let us now discuss the origin of the chiral superconductivity
that we have obtained in VCA. It is known that in the
repulsive, large-U Hubbard model, the lattice symmetry and
connectivity play essential roles in determining the symmetry
of the order parameter. On the square lattice, real d-wave
(dx2−y2 ) symmetry fits well with the fourfold coordination.
On the other hand, for triangular and honeycomb lattices,
d + id or chiral superconductivity fits well with the three- and
sixfold coordination: Chiral states carrying a lz = 2 angular
momentum avoid nodes in the order parameter bond values
in real space, thus gaining condensation energy. Likewise,
in an isolated and isotropic ladder, d-wave symmetry fits
well because of the plaquettes. On the trellis lattice, we have
elementary triangles, squares, and fivefold coordination. A
fivefold, odd number coordination in general accommodates
a complex combination of d and s components. Clearly the
amplitude of the chiral component of superconductivity should
increase with frustration, i.e., with t ′.

How to explain, then, that VCA and CDMFT disagree
on the chiral nature of superconductivity? It may be that
the small energy difference between the complex and real
solutions shown on Fig. 6 cannot be resolved efficiently
by CDMFT but would be resolved if the same cluster-bath
systems used in CDMFT were treated by Potthoff’s self-energy
functional approach (a method called CDIA); in practice, this

FIG. 9. (Color online) Order parameters �x (top) and |�⊥| (bot-
tom) as a function of doping δ for cluster C8 and several values of
on-site repulsion U .

is impossible to do because of the large number of variational
parameters involved.

Despite this difference, the two approaches agree on
important features: (1) The absence of superconductivity at
half-filling: the system is then a Mott insulator; (2) the
existence of a dome of d-wave superconductivity up to 15% to
20% doping; and (3) the tendency of Cooper pairs to migrate
from the interladder regions to the plaquettes as doping is
increased. A careful study of the order parameter symmetry of
the superconducting cuprate spin ladder compounds becomes
important in the context of the possibility of chiral supercon-
ductivity found in this work.
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