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G. Mazza,1 A. Amaricci,2 M. Capone,2 and M. Fabrizio1

1Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
2Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (IOM) and Scuola Internazionale

Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
(Received 23 December 2014; revised manuscript received 20 April 2015; published 15 May 2015)

We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly
correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different
electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is
connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic,
the system relaxes to a steady state that sustains a finite current. The zero-bias conductance is finite and independent
of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the
slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge
tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.
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I. INTRODUCTION

Correlated materials such as the transition-metal oxides
(TMOs) feature an impressive variety of interesting properties,
usually caused by the presence of electrons in the partially
filled outer d orbitals of the transition-metal atoms [1–3]. The
electrons in these orbitals give rise to narrow electronic bands,
which increase the relevance of electron-electron interactions
with respect to inner orbital shells. The competition between
the tendency of the electrons to localize near the ionic position
to minimize the potential energy and the energy gained by
delocalizing through the lattice is at the heart of the diverse and
remarkable features of these materials. The most paradigmatic
effect of the strong correlation in the bulk of TMOs is the
Mott metal-insulator transition [4,5]: by changing pressure,
temperature, or chemical doping a metallic state can be
transformed into a partially filled insulating state.

The effects of the strong correlation are nevertheless not
limited to bulk properties, and they can induce subtle and
remarkable effects at the surface or at the interface of materials
[6–8]. Lately, the quest for a theoretical understanding of how
bulk correlations influence the reconstruction of the surface
electronic phase triggered a great deal of attention [9–11].
This is not only motivated by the advances in the engineering
and control of heterostructures with potential applications
ranging from electronics to sustainable energy, but it also
helps to reconcile contrasting experimental evidences [12]. A
paradigmatic example in this sense is provided in the metallic
state of the prototypical correlated compound V2O3, where
surface-sensitive photoemission measurements fail to observe
quasiparticle excitations, which are instead observed in bulk-
sensitive experiments [13]. This evidence was theoretically
interpreted in Ref. [14], where it has been shown that for an
inhomogeneous correlated system the metallic character of the
surface electronic states gets strongly suppressed with respect
to the bulk.

More recently the development of time-resolved experi-
ments triggered a huge interest in the nonequilibrium phe-
nomena occurring in correlated systems [15,16]. In partic-
ular, the possibility to follow the real-time evolution of the
electronic response offered a new opportunity to understand

the transport properties in correlated electrons systems far
away from the linear regime. Particular emphasis is given to
the investigation of the nonequilibrium dynamics in electric-
field driven systems, with the aim of improving the design
and the engineering of new electronic devices for possible
technological applications. In this context, a great deal of the
attention is devoted to understand the mechanisms responsible
for the dielectric breakdown of the Mott insulating state, which
nevertheless in some parts remain yet an open challenge to
condensed-matter physics.

Recent experimental observations pointed out different
scenarios for the dielectric breakdown in various types of
correlated materials [17–23]. The Joule heating was shown
to be the driving mechanism of the dc-voltage breakdown in
VO2 compounds [22]. Nevertheless, different mechanisms can
be held responsible in other situations. Indeed, for a different
setup of the same compound the dielectric breakdown was
shown to be associated to the electronic bulk delocalization
induced by charge surface accumulation [23]. An avalanche
breakdown of pure electronic origin has been proposed
as the breakdown mechanism in a family of narrow gap
Mott insulators including chalcogenide and oxide compounds
[17,18]. More recentely, a nonlinear conductance consistent
with a Landau-Zener tunnel mechanism has been observed in
perovskite nickelates thin films [21].

From the theoretical point of view the presence of a
large electric field naturally leads to consider heterostructured
correlated systems, in which both spatial and time translation
invariance are broken [16]. The difficulty in treating on the
same level inhomogeneity and real-time dynamics has slowed
down the theoretical advance in this field. The initial steps
focused mainly on stationary states in heterostructures, with
the aim to identify the mechanism underlying the formation
or the suppression of conductive channels in the presence of
a sufficiently large potential bias [24–28]. The early stages
of the investigation of nonequilibrium dynamics of strongly
correlated systems focused on the real-time evolution of
driven homogeneous systems. In this context important results
were obtained using nonequilibrium formulation of dynamical
mean-field theory [16] to investigate, e.g., the nonlinear
response to constant [29–31] or periodic fields [32–34]
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or to address the dielectric breakdown of Mott insulators
[35–37]. Insight into the electronic dynamics of inhomoge-
neous systems out of equilibrium has been obtained by mean
of the time-dependent Gutzwiller (TDG) method [38]. The
initial focus was on the quench dynamics of a layered system
of correlated planes coupled to phonons [39]. The extension
of nonequilibrium DMFT to the inhomogeneous case allowed
us to study in more detail the real-time dynamics of driven
heterostructures either in the presence of a voltage potential
bias [40,41] or after shining ultrashort light pulses [42].

In this work we study the nonequilibrium dynamics of a
strongly correlated heterostructure coupled to external metallic
leads and driven out of equilibrium by a voltage potential bias.
Using a suitable formulation of the TDG [38] method we study
the dynamics of the inhomogeneous system and its nonlinear
transport properties. In the first part of this work we focus
on the correlated metallic regime where U is smaller than the
critical value for the Mott transition Uc. Here we follow the
dynamical formation of surface states with enhanced metallic
character after the sudden coupling to external metallic leads.
We show that this effect is associated to a characteristic time
scale which diverges at the Mott transition. Next, we show
that the formation of current-carrying stationary states in the
presence of a finite voltage bias depends directly on the value
of the coupling between the slab and the leads. While for
small couplings a stationary state can always be reached, at
strong coupling the system gets trapped in a metastable state
caused by an effective decoupling of the slab from the leads.
We study the current-voltage characteristic of the system and
demonstrate both the existence of a universal behavior with
respect to interaction at small bias and the presence of a
negative differential resistivity for larger applied bias.

In the second part of this paper we focus on the Mott
insulating regime for U > Uc. Following the same analysis
of the metallic case, we study first the dynamical formation
of a metallic surface state in the Mott insulating regime.
Indeed, we show that this is determined by an avalanche
effect leading to an exponential growth of the quasiparticle
weight inside the slab bulk. Such quasiparticle weight becomes
exponentially small in the bulk over a distance of the order of
the Mott transition correlation length [14]. Finally, we show
that for large enough voltage bias a conductive stationary
state can be created from a Mott insulating slab with highly
nonlinear current-bias characteristics. In particular, we show
that the currents are exponentially activated with the applied
bias and associate this behavior to a Landau-Zener dielectric
breakdown mechanism [43,44].

The rest of the paper is divided as follows: In Sec. II we
introduce the inhomogeneous formulation of the TDG method
and briefly discuss the derivation of some important relations.
The technical aspects of this derivation and the details of the
numerical solutions are outlined in Appendix A. In Sec. III we
apply the TDG method to study the nonequilibrium electronic
transport in biased metallic inhomogeneous systems. We
discuss first on the zero-bias regime and we relate it to
the equilibrium description of the same system. Then we
study the transport in, respectively, the small- and large-bias
regimes. In Sec. IV we present our results for the case of
a driven Mott insulating slab and discuss the properties of
insulating dielectric breakdown caused by the applied voltage

bias. Finally, in Sec. V we summarize our results and discuss
future perspectives.

II. MODEL AND METHOD

We consider a strongly correlated slab composed by a series
of N two-dimensional layers with in-plane and interplane
hopping amplitudes and a purely local interaction term. We
indicate the layer index with z = 1, . . . ,N while we assume
discrete translational symmetry on the xy plane of each layer.
This enables us to introduce a two-dimensional momentum k
so that the slab Hamiltonian reads

HSlab =
N∑

z=1

∑
k,σ

εkd
†
k,z,σ dk,z,σ

+
N−1∑
z=1

∑
k,σ

(tz,z+1 d
†
k,z+1,σ dk,z,σ + H.c.)

+
N∑

z=1

∑
r

(
U

2
(nr,z − 1)2 + Ez nr,z

)
, (1)

where εk = −2t(cos kx + cos ky) is the electronic dispersion
for nearest-neighbor tight-binding Hamiltonian on a square
lattice, r label the sites on each two-dimensional layer, tz,z+1 is
the interlayer hopping parameter, and Ez is a layer-dependent
on-site energy. In the rest of this work we assume tz,z+1 = t

and we use t = 1 as our energy unit.
A finite bias �V across the system is applied by coupling

with an external environment composed by two, left (L)
and right (R), semi-infinite metallic leads described by not
interacting Hamiltonians with symmetrically shifted energy
bands,

HLead =
∑

α=L,R

∑
k,k⊥,σ

(
εα

k + tαk⊥ − μα

)
c
†
kk⊥ασ ckk⊥ασ , (2)

where k⊥ labels the z component of the electron momentum. In
Eq. (2) εα

k = −2tα(cos kx + cos ky), tαk⊥ = −2tα cos k⊥, where
we shall assume tL = tR = t , and μL/R = ±e�V/2, with e

the electron charge (see Fig. 1). We couple the system to the
metallic leads through a finite tunneling amplitude between
the left (right) lead and the first (last) layer, i.e.,

HHyb =
∑

α=L,R

∑
k,k⊥,σ

(
vα

k⊥ c
†
kk⊥ασ dkzασ + H.c.

)
, (3)

where zL = 1, zR = N , and

vα
k⊥ =

√
2

N⊥
sin k⊥ vα, (4)

which corresponds to open boundary conditions for the leads
along the z direction.

The final Hamiltonian is thus the sum of Eqs. (1)–(3),

H = HSlab + HLeads + HHyb. (5)

We drive the system out-of-equilibrium by suddenly switching
the tunneling between the slab and the leads, that is vL(t) =
vR(t) = vhyb θ (t), and by turning on a finite bias �V (t) =
�V r(t) according to a time-dependent protocol r(t) that, if
not explicitly stated, we also take as a step function. This
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FIG. 1. (Color online) Sketch of the correlated slab sandwiched
between semi-infinite metallic leads. vL and vR represent respectively
left and right slab-leads hybridization coupling.

double quench protocol is chosen for practical reasons with
the aim of reducing the simulation time, after having explicitly
verified that the initial state does not play a major role on the
dynamics under finite bias. We exploit the local energies Ez

in Eq. (1) to model the potential drop between left and right
leads. Even though the profile of the inner potential should
be self-consistently determined by the long-range Coulomb
interaction, see, e.g., Refs. [45] and [46], we assume that a flat
profile Ez = 0 represents a reasonable choice for the system
in its metallic phase, simulating the screening of the electric
field inside the metal. On the other hand, in the insulating
phase we shall assume a linear potential drop Ez = e�V (N +
1 − 2z)/2(N + 1) matching the left and right leads chemical
potential for z = 0 and z = N + 1. In the rest of the work we
will assume the units e = 1 and � = 1.

Since an exact solution of the time-dependent Schrödinger
equation for the model (5) is not feasible we resort the so-
called time-dependent Gutzwiller approximation [38] and its
extension to inhomogeneous systems [39]. While we refer the
reader to Ref. [47] for a detailed derivation, we sketch the
main steps that lead to the Gutzwiller dynamical equations
for the present case of an inhomogeneous system coupled to
semi-infinite leads.

As customary we split the Hamiltonian (5), H = H0 +
Hloc, into a not-interacting term H0 and a purely local
interaction part Hloc,

H0 = Hleads + Hhyb +
N∑

z=1

∑
k,σ

εk d
†
k,z,σ dk,z,σ

+
N−1∑
z=1

∑
k,σ

(tz,z+1 d
†
k,z+1,σ dk,z,σ + H.c.), (6)

Hloc =
N∑

z=1

∑
r

U

2
(nr,z − 1)2 + Eznr,z ≡

∑
R

Hloc,R, (7)

where R = (r,z), and define the time-dependent variational
wave function

|�(t)〉 =
∏

R

PR(t)|�0(t)〉, (8)

where |�0(t)〉 is a time-dependent wave function for which
Wick theorem holds, and PR are linear operators that act
on the local Hilbert space at site R and control, through
a set of time-dependent variational parameters, the weights
of the local electronic configurations. The dynamics of the
variational parameters and of the wave function |�0(t)〉 is
obtained by applying the time-dependent variational principle
δS = 0 on the action S = ∫ 〈�| i∂t − H |�〉. Upon imposing
the following constraints:

〈�0(t)|P†
R(t)PR(t) |�0(t)〉 = 1,

〈�0(t)|P†
R(t)PR(t) d

†
Rσ dRσ ′ |�0(t)〉 = 〈�0(t)| d†

Rσ dRσ ′ |�0(t)〉,
(9)

expectation values can be analytically computed in lattices
with infinite coordination number [47]. In particular, if one
parametrizes the Gutzwiller operators PR through site- and
time-dependent variational matrices �̂R(t) in the basis of the
local electronic configurations, the following closed set of
coupled dynamical equations is readily obtained [47]:

i
∂|�0(t)〉

∂t
= H∗[�̂(t)]|�0(t)〉, (10)

i
∂�̂R(t)

∂t
= Hloc,R�̂R(t) + 〈�0(t)|∂H∗[�̂(t)]

∂�̂
†
R(t)

|�0(t)〉. (11)

In Eqs. (10) and (11) H∗[�̂(t)] is an effective not-
interacting Hamiltonian that depends parametrically on the
variational matrices �̂R(t). Equation (10) represents an ef-
fective Schrödinger equation for noninteracting electrons and
is commonly interpreted as a Hamiltonian for the coher-
ent quasiparticles. The dynamics of the local variational
parameters determined by Eq. (11) can be associated to
the incoherent excitations of the Hubbard bands. The two
dynamical evolutions are coupled in a mean-field-like fashion,
each degree of freedom providing a time-dependent field for
the other one. This aspect represents a great advantage of the
present method with respect to standard mean-field techniques,
e.g., time-dependent Hartree-Fock.

On the other hand, similarly to any other mean-field
approach, the TDG describes the quasiparticle dynamics only
in terms of an effective single-body Hamiltonian, which in
turn does not couple electronic states at different k momenta.
As such this method poorly accounts for all the dissipative
processes that would lead to a genuine relaxation to a steady
state.

If we use as local basis at site R the empty state |0〉, the
doubly occupied one, |2〉, and the singly occupied ones, |σ 〉
with σ = ↑,↓ referring to the electron spin, and discard mag-
netism and s-wave superconductivity, the matrix �̂R(t) can
be chosen diagonal with matrix elements �R,00(t) ≡ �R,0(t),
�R,22(t) ≡ �R,2(t), and �R,↑↑(t) = �R,↓↓(t) ≡ �R,1(t)/

√
2.

Due to translational invariance within each xy plane, the
variational matrices depend explicitly only on the layer index
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z, i.e., �̂R(t) = �̂z(t), and the constraints (9) are satisfied by
imposing

|�z,0(t)|2 + |�z,2(t)|2 + |�z,1(t)|2 = 1, (12)

and

δz(t) ≡ |�z,0(t)|2 − |�z,2(t)|2

= 1 −
∑
kσ

〈�0(t)| d†
kzσ dkzσ |�0(t)〉, (13)

where δz(t) is the instantaneous doping of layer z. Through
this choice we obtain the following effective Hamiltonian
H∗[�̂(t)],

H∗[�̂(t)] = HLeads +
N∑

z=1

∑
k,σ

|Rz(t)|2 εk d
†
k,z,σ dk,z,σ

+
N−1∑
z=1

∑
k,σ

(R∗
z+1(t) Rz(t) d

†
k,z+1,σ dk,z,σ + H.c.)

+
∑

α=L,R

∑
k,k⊥,σ

(vk⊥ Rzα
(t) c

†
kk⊥ασ dkzασ + H.c.),

(14)

where the layer-dependent hopping renormalization factor
reads

Rz(t) =
√

2

1 − δz(t)2
(�z,0(t)�∗

z,1(t) + �∗
z,2(t)�z,1(t)). (15)

Straightforward differentiation of Eq. (14) with respect
to �̂

†
z(t) yields the equations of motion for the variational

matrices (11), which together with the effective Schrödinger
equation (10) completely determine the variational dynamics
within the TDG approximation. Though the derivation of the
set of coupled dynamical equations is very simple, the final
result is cumbersome so that we present it in Appendix A
together with details on its numerical integration.

We characterize the nonequilibrium behavior of the system
by studying the electronic transport through the slab. In
particular, in the following we shall define the electronic
current flowing from the left/right lead to the first/last layer
of the slab as the contact current with the expression

jα(t) = −i

[∑
kσ

∑
k⊥

vk⊥〈�(t)| d†
kzσ ckk⊥ασ |�(t)〉 − c.c.

]
,

(16)

and the layer current as the current flowing from the zth to the
z + 1-th layer, i.e.,

jz(t) = −i

[∑
kσ

〈�(t)|d†
kzσ dkz+1σ |�(t)〉 − c.c.

]
. (17)

Within the TDG approximation these two observables read,
respectively,

jα(t) = −i

[
R∗

zα
(t)

∑
kσ

∑
k⊥

vk⊥〈d†
kzσ ckk⊥ασ 〉 − c.c.

]
(18)

and

jz(t) = −i

[
R∗

z (t)Rz+1(t)
∑
kσ

〈d†
kzσ dkz+1σ 〉 − c.c.

]
, (19)

where 〈. . .〉 ≡ 〈�0(t)|. . .|�0(t)〉. Notice that, due to the
left/right symmetry, jL = −jR and we need only to consider
currents for z � N/2. In the following, together with the real
time observables dynamics, we will consider the correspond-
ing time averages defined by

〈O(t)〉 ≡ 1

t

∫ t

0
dτO(τ ), (20)

where O(t) represents the real time dynamics of a generic
observable.

III. NONEQUILIBRIUM TRANSPORT IN THE STRONGLY
CORRELATED METAL

In this section we consider the case of a correlated slab in
its metallic phase, U < Uc where Uc ≈ 16 is the critical value
above which the system is Mott insulating in equilibrium.

A. Zero-bias dynamics

To start with we shall consider the dynamics at zero bias
�V = 0. In this case we assume that the nonequilibrium
perturbation is the sudden switch of the tunnel amplitude vhyb

between the correlated slab and the leads. In the equilibrium
regime, the metallic character at the uncontacted surfaces is
strongly suppressed with respect to the bulk as effect of the
reduced kinetic energy. This suppression, commonly described
in terms of a surface dead layer, extends over a distance which
is quite remarkably controlled by a critical correlation length
ξ associated to the Mott transition. Indeed ξ is found to grow
approaching the metal-insulator transition and diverges at the
transition point [14]. In the presence of a contact with external
metallic leads the surface state is characterized by a larger
quasiparticle weight with respect to that of the bulk irrespective
of its metallic or insulating character, realizing what is called a
living layer [48]. As we shall see in the following, by switching
on vhyb it should be possible to turn the dead layer into the living
one on a characteristic time scale τ : the dynamical counterpart
of the correlation length ξ .

In Fig. 2 we show the time evolution of the layer-dependent
quasiparticle weight Zz(t) ≡ |Rz(t)|2 for a N = 20 slab and
different values of the interaction U . The dynamics shows
a characteristic light-cone effect, i.e., a constant velocity
propagation of the perturbation from the junctions at the
external layers z = 1 and z = N to the center of the slab. After
few reflections the light cone disappears leaving the system
in a stationary state. The velocity of the propagation is found
to be proportional to the bulk quasiparticle weight, hence it
decreases as the Mott transition is approached for U → Uc.

The boundary layers are strongly perturbed by the sudden
switch of the tunneling amplitude. In particular, we observe
in Fig. 3(a) that the surface dead layers rapidly transform
into living layers with stationary quasiparticle weights greater
than the bulk ones and equal to the equilibrium values for
the same setup [48]. This has to be expected since the energy
injected is not extensive. On the contrary, the bulk layers are
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FIG. 2. (Color online) Layer-resolved dynamics of the local
quasiparticle weights |Rz(t)|2 for a slab of N = 20 layers and two
values of the interaction U . The slab-lead hybridization is equal to
the interlayer hopping amplitude vhyb = 1.0.

weakly affected by the coupling with the metal leads; see
Fig. 3(b). Their dynamics is only affected by small oscillations
and temporary deviations from the stationary values due
to the perturbation propagation described by the light-cone
reflections.

0 10 20 30 40 50
time

0

0.1

0.2

0.3

0.4

0.5

Z 
(la

ye
r 1

)

U = 12
U = 13
U = 14
U = 15

0 1 2 3 4
|U-Uc|

0

2

4

6

τ

(a)

0 10 20 30 40 50
time

0

0.1

0.2

0.3

0.4

0.5

Z 
(la

ye
r 1

0)

0 10 20
layer

t = 0
t = 50(b) (c)

FIG. 3. (Color online) (a) Dynamics of the local quasiparticle
weight for the first layer. Dashed lines are the fitting curves obtained
with Eq. (21). Arrows represent the hybridized slab equilibrium
values. Inset: dead layer awakening time as a function of U . Dashed
lines represents the fitting curve τ = α/|U − Uc|ν∗ with ν∗ ≈ 0.4895.
(b) Dynamics of the local quasiparticle weight for the bulk (z = 10)
layer. Arrows represent the hybridized slab equilibrium values. (c)
Quasiparticle weight profiles at times t = 0 (dotted lines) and t = 50
(lines).

We characterize the evolution from the dead to the living
layer by fitting the dynamics of the boundary layer quasiparti-
cle weight with an exponential relaxation towards a stationary
value:

Z(t) = Zdead + (Zliving − Zdead)(1 − e−t/τ ). (21)

As illustrated in Fig. 3(b) the dynamics shows a slowing-down
upon approaching the Mott transition. In particular the dead-
layer wakeup time τ diverges as τ ∼ |U − Uc|−ν∗ when we
approach the critical value Uc with a critical exponent that we
estimate as ν∗ = 0.4895, very close to the mean-field value
ν∗ = 1/2. Such a mean-field dependence, similar to that of
the correlation length ξ ∼ |U − Uc|−1/2 [48] implies, through
τ ∼ ξ ζ , a dynamical critical exponent ζ = 1.

B. Small-bias regime

We shall now focus on the the dynamics in the presence of
an applied bias. In Fig. 4 we report our results for the real-time
dynamics of the currents at the contacts and layers, defined by
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0.5005

FIG. 4. (Color online) Top: Real-time dynamics of the currents
computed at the slab-lead contact (thick lines) and between two neigh-
boring layers (light grey lines) after a bias quench with �V = 0.5
and U = 12. for a N = 10 slab and different values of the slab-leads
coupling vhyb. Inset: Current dynamics for a ramplike switching pro-
tocol r(t) = [1 − 3/2 cos(πt/τ∗) + 1/2 cos(πt/τ∗)3]/4 compared to
the sudden quench limit (τ∗ = 30). Bottom: Dynamics of the local
electronic densities nz(t) for the first, third, and fifth layer and
vhyb = 1.0. Inset: stationary density profile showing an almost flat
density distribution with slightly doped regions near the left and right
contacts.
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FIG. 5. (Color online) Relative variation of the slab internal
energy as defined in Eq. (22) for the same set of parameters of
Fig. 4. Inset: Stationary current for �V = 0.5 as a function of the
hybridization with the leads with a fitting curve j (vhyb) = j0 v2

hyb

(dashed line).

Eqs. (19) and (18), after a sudden switch of the bias �V and
a flat inner potential.

We observe that the contact and the layer currents display
very similar dynamics, characterized by a monotonic increase
at early times and a saturation to stationary values at longer
times. The stationary dynamics displays small undamped
oscillations around the mean value due to oscillations of the
layer-dependent electronic densities [see Fig. 4(b)]. As we
already mentioned, the persistence of oscillations, i.e., the
absence of a true relaxation to a steady state, is a characteristic
of the essentially mean-field nature of the method. However,
this problem can be overcome either by time-averaging the
signal or, as shown in the inset of Fig. 4, using a finite-time
switching protocol r(t) for the voltage bias. In both cases we
end up with the same currents and density profiles, which are
almost flat as a function of the layer. The flat profile of the
density is the expected for a metal as result of the electric-field
screening. This validates our choice for a flat inner potential
profile in the metallic regime of the slab.

We highlight that the nonequilibrium dynamics is strongly
dependent on the coupling between the system (correlated
slab) and the external environment (leads), represented in
this case by the slab-lead tunneling amplitude vhyb. This is
evident from the stationary value of the current that increases
as a function of vhyb, as expected since this latter sets the
rate of electrons/holes injection from the leads into the slab.
Furthermore, the coupling to an external environment is
essential to redistribute the energy injected into the system
after a sudden perturbation to lead to a final steady state
characterized by a stationary value of the internal energy. In
order to study the competition between energy dissipation and
energy injection rate we plot, in Fig. 5, the time dependence of
the relative variation of the slab internal energy with respect
to its equilibrium value:

δε∗(t) ≡ E∗(t) − E∗(t = 0)

|E∗(t = 0)| , (22)

where

E∗(t) ≡〈�(t)|HSlab|�(t)〉 ≈ 〈�0(t)|H∗[�̂(t)]|�0(t)〉
+

∑
z

Tr(�̂z(t)
†Hloc,z�̂z(t)).

The last expression holds within the TDG approximation. We
observe the existence of two regimes as a function of the
coupling to the leads vhyb. When the system is weakly coupled
to the external environment the energy shows an almost linear
increase in time without ever reaching any stationary value.
This signals that the dissipation mechanism is not effective
on the scale of the simulation time. For larger values of
vhyb, the dissipation mechanism becomes more effective. The
internal energy shows a faster growth at initial times, due to
the larger value of the current setting up through the system.
Further increasing (see the case vhyb = 1.0 in the figure) the
initial fast rise is of the energy is followed by a downturn
towards a stationary value, which in turn is reached very
rapidly. As shown in the inset of Fig. 5 the crossover between
the nondissipative and dissipative regimes coincides with
the point in which the current deviates from linear-response
theory—which predicts a quadratically increasing current
j ∝ v2

hyb—and bends towards a smaller value.

C. Large-bias regime

The interplay between the energy injection and the dissi-
pation highlighted in the dynamics of the slab internal energy
(Fig. 5) is a direct consequence of the fact that in our model
these two mechanisms are controlled by the coupling with
the same external environment. Therefore, we may envisage
a situation in which the internal energy of the slab grows so
fast that the leads are unable to dissipate the injected energy
preventing a stationary current to set in. This phenomenon
occurs at large values of the voltage bias (�V � 1) and of the
tunneling amplitude vhyb, i.e., when the slab is rapidly kicked
away from equilibrium. In order to illustrate this point we
report in Fig. 6 the current dynamics for the same parameters
as in the previous Fig. 4 but for a larger value of the voltage
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0
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0 50 1000
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FIG. 6. (Color online) (a) Real-time dynamics for the contact
currents for the same parameters and values of hybridization coupling
of Fig. 4 and �V = 2.0. (b) Blowup of the currents dynamics for
vhyb = 0.1 and vhyb = 0.25. (c) Dynamics of the current time average
〈j (t)〉 as defined in the main text for vhyb = 0.5 and vhyb = 1.0.
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FIG. 7. (Color online) Dynamics of the relative energy variation
for the same parameters in Fig. 6.

bias �V = 2.0. We observe that, while for weak tunneling
(vhyb = 0.1) the current flows to a steady state, upon increasing
vhyb the stationary state cannot be reached and strong chaotic
oscillations characterize the long-time evolution.

Indeed, the inability of reaching a steady state is intertwined
with the fast increase of the slab internal energy, as revealed by
our results in Fig. 7. In particular, for vhyb = 1.0 the relative
variation of the internal energy rapidly reaches δε∗(t) ≈ 1,
after which it starts to oscillate chaotically just like the currents
does. The same behavior shows up in the dynamics of the
quasiparticle weight averaged over all layers:

Z∗(t) ≡ 1

N

N∑
z=1

Zz(t) = 1

N

N∑
z=1

|Rz(t)|2 , (23)

which displays fast and large oscillations whereas it is smooth
in the case of small vhyb (see Fig. 8).

This behavior is similar to that observed across the
dynamical phase transition in the half-filled Hubbard model
after an interaction quench [38,49] occurring when the injected
energy exceeds a threshold [50,51]. This correspondence is
further supported by noting that the onset of chaotic behavior
occurs precisely when the internal energy E∗(t) of the slab
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vhyb = 0.1
vhyb = 1.0

FIG. 8. (Color online) Dynamics of the mean quasiparticle
weight for the same parameters in Fig. 6 and vhyb = 0.1 (black line)
and vhyb = 1.0 (red line).
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FIG. 9. (Color online) Current (a) and internal energy dynamics
(b) for U = 12, vhyb = 1.0, and three values of the applied bias. The
occurrence of the breakdown of the stationary dynamics due to the
dynamical transition is highlighted by the vertical arrows.

reaches zero (see Fig. 9). The value E∗ = 0 is indeed the energy
of a Mott insulating wave function within the Gutzwiller
approximation. This anomalous behavior thus suggests that
as soon as the energy crosses zero, E∗(t) � 0, the system gets
trapped into an insulating state characterized by a strongly
suppressed tunneling into the metal. This prevents the excess
energy to flow back into the leads and therefore the relaxation
to a metal with a steady current.

The absence of such a steady current blocks the indefinite
increase of the slab internal energy, which indeed is found to
suddenly decrease after the current collapse. In this condition
current-carrying states can be reconstructed, until this even-
tually brings again the internal energy to its threshold value
E∗ ≈ 0. This behavior determines the strong oscillations in the
current dynamics visible in Figs. 6–9. In particular, in Fig. 9
we highlight the different times at which the current-carrying
state is temporary destroyed using vertical arrows connecting
the currents and energy dynamics.

We associate this behavior to a shortcoming of the TDG
approximation, which does not include all the dissipative
processes and therefore artificially enhances the stability of
such a metastable state. If we want to compare this behavior
with a real system, we can argue that the TDG description only
describes a transient state produced by the large initial heating
of the slab that is temporarily pushed into a high-temperature
incoherent phase of the Hubbard model, which takes a long
time to equilibrate back with the metal leads but evidently not
the infinite time that the TDG approximation suggests. This
behavior is similar to what has been observed by DMFT in the
case of an homogeneous system driven by a static electric field
in the absence of external dissipative channels [30].

In the case of an interaction quench it was found that,
even though the absence of a true exponential relaxation is
faulty, the time-averaged values of observables as obtained
within the TDG approximation might still be representative
of the true dynamics [38,50] This allows us to define a
sensible current by time averaging the real-time evolution,
which indeed approaches a finite value at long enough times
[see Fig. 6(c)].
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FIG. 10. (Color online) (a) Current-bias characteristics for a N =
10 slab for different values of U and vhyb = 0.1. (b) Blowup of
the linear part of the current-bias characteristics. (c) Differential
conductance measured with respect to the quantum conductance
G0 = 1/2π in our units. Grey line represents the universal zero-bias
value.

D. Current-bias characteristics

The overall picture emerging from our investigation of
the metallic case can be summarized by an inspection of the
evolution of the current as a function of the bias (current-bias
characteristic) for different values of the interaction strength.

In the limit of weak coupling to the external environment,
we have seen that the currents display a stationary dynamics in
a wide range of bias values. In Fig. 10 we report these station-
ary values as a function of the bias for vhyb = 0.1 and a wide
range of interaction strengths. All the curves show a crossover
between a linear regime at small bias and a monotonic decrease
for larger values. This behavior is similar to what was already
observed in different contexts [30,31,52,53]. We connect the
drop of the current for large biases to the reduction of energy
overlap between the leads and the slab electronic states at large
bias. Indeed, in a single-particle picture the current should
collapse to zero when �V = 2W , being W the bandwidth
associated to the longitudinal dispersion [54], i.e., W = 4t⊥,
so that in our case the current suppression occurs for �V � 8.

In the linear regime we find that the zero-bias differential
conductance G(0) = ∂j/∂�V |�V =0 is universal with respect
to the interaction strength [27,55] as expected when the
electronic transport is determined only by the low-energy
quasiparticle excitations.

Within the TDG approximation this fact can be easily
rationalized by noting that quasiparticles are controlled by
the noninteracting Hamiltonian H∗ in Eq. (14), characterized
by a hopping amplitude renormalized by the factors |R| � 1.
This leads to an enhancement of the quasiparticle density of
states by a factor ν ∼ 1/|R|2 that at low bias compensates the
reduction of tunneling rate into the leads. Conversely, as the
bias increases the current-bias characteristics starts deviating
from the universal low-bias behavior and becomes strongly
dependent on the interaction strength U [27]. In particular, the
crossover between the positive and the negative differential
conductance regimes gets shifted towards smaller values of
the bias as U is increased as effect of the shrinking of the
coherent quasiparticle density of states.
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0.2
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FIG. 11. (Color online) Left: current-bias characteristics for a
N = 10 slab, different values of U , and vhyb = 1.0. Plus, cross,
and star symbols represents stationary currents values, while circles
represent converged currents time averages values. Right: blowup of
the linear part of the current-bias characteristics for vhyb = 0.5 and
vhyb = 1.0, showing universal zero-bias conductivity G/G0 ≈ 0.452
and 1.203 respectively.

As discussed in the previous section, increasing the cou-
pling to the external environment leads to a chaotic regime at
large bias, in a regime where we cannot identify anymore a
stationary current. However, as mentioned above, we can still
extract a meaningful estimate of the current through its time
average Eq. (20), restricting to the range of bias for which
the latter is well converged. This is explicitly illustrated in
Fig. 11 for the current-bias characteristics at vhyb = 1.0. The
open circles represent currents computed using converged
time averaged while the other symbols represent currents
characterized by a stationary dynamics. Our results show that
the curves have qualitatively the same features of the small
vhyb case with a universal linear conductance and a crossover
to a negative conductance regime.

IV. DIELECTRIC BREAKDOWN OF THE MOTT
INSULATING PHASE

We now move the discussion to the effect of an applied
voltage bias to a slab which is in a Mott insulating regime
because U > Uc. Unlike the metallic case, we now assume
that the field penetrates inside the slab, leading to a linear
potential profile of the form Ez = �V (N + 1 − 2z)/2(N + 1)
matching the chemical potential of the left and right leads for
z = 0 and z = N + 1 respectively.

A. Evanescent bulk quasiparticle

Within the Gutzwiller approximation the Mott insulator is
characterized by a vanishing number of doubly occupied and
empty sites as well as by a zero renormalization factor R = 0,
leading to a trivial state with zero energy. However, it has been
shown that in the presence of the metallic leads evanescent
quasiparticles [48,56] appear inside the insulating slab. This
is revealed by a finite quasiparticle weight which is maximum
at the leads and decays exponentially in the bulk of the slab
with a characteristic length ξ ∼ (U − Uc)−1/2 which defines
the critical correlation length of the Mott transition [48].
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FIG. 12. (Color online) Real-time dynamics for the quasiparticle
weights from layer 1 to 5 (from top to bottom) of a N = 10 Mott
insulating slab suddenly coupled to the metallic leads (vhyb = 1.0).
U = 16.5 and U = 17.5. Inset: inverse of the characteristic time
for the exponential quasiparticle formation τ−1 ∼ (U − Uc)−ν∗ , ν∗ ≈
0.4753.

In Fig. 12 we show the dynamics of the formation of
evanescent quasiparticles after the sudden switch on of the
coupling to the leads vhyb. We observe a rapid increase of the
quasiparticle weight as soon as the coupling is switched on.
The rapid increase can be reasonably well parametrized as an
exponential with a characteristic growth time τ . The results
for τ−1 reported in the inset of the left panel of Fig. 12 clearly
show that the increase of the quasiparticle weight becomes
faster as the Mott transition is approached. Interestingly, the
exponential growth is not limited to the boundary layers close
to the leads, but it is present throughout the slab, with a
characteristic time τ (z) which is nearly uniform in space.

Such an exponential growth is suggestive of a dynamics
driven by the combined action of the high-energy excitations
(Hubbard bands) and of the quasiparticles, which within
the Gutzwiller approach can be associated to the variational
parameters �z,n(t) and to the noninteracting Slater determinant
|�0(t)〉, respectively. Indeed, we can support this statement by
a simplified analytical calculation reported in Appendix B.
As outlined in Appendix B, we can reproduce the long-time
approach to the steady state corresponding to evanescent quasi-
particles at equilibrium, considering a simplified dynamics
in which we neglect the dynamics of the Slater determinant
|�0(t)〉 and take into account only that of �z,n(t). The latter
can be analytically written in terms of a Klein-Gordon-like
equation for the hopping renormalization factors R(z,t),

1

c2
R̈(z,t) − ∇2 R(z,t) + m2 c2 R(z,t) = 0, (24)

with parameters (see Appendix B)

c2 = u

24
, m2c2 = 6(u − 1) = ξ−2, (25)

with u ≡ U/Uc. As anticipated above the simplified dynamics
described by Eq. (24) correctly captures the long-time be-
havior of the system, but it cannot reproduce the short-time
exponential growth. In the latter regime the time evolution
is indeed governed by the interplay between Hubbard bands
and quasiparticles, responsible for the evanescent quasiparticle
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FIG. 13. (Color online) Time-averaged currents for three slabs
with applied bias �V = 0.5. U = 16.5 > Uc, vhyb = 1.0, and N =
4, 12, 20 (from top to bottom).

formation into the Mott insulating slab, which is neglected in
the approximation leading to Eq. (24).

The presence of the evanescent bulk quasiparticle provides
a conducting channel across the slab, possibly leading to finite
currents upon the application of a finite bias. In particular,
we expect that if the slab length is smaller than the decay
length ξ every finite bias �V is sufficient to induce a finite
current through the slab. On the other hand we expect the
current to be suppressed when the slab is longer than ξ . This
is confirmed by the results reported in Fig. 13 where we show
the average current for a bias �V = 0.5, in the linear regime
in the metallic case, and different slab sizes N . A finite current
is rapidly injected for small N = 4, whereas it does not for
larger systems (e.g., N = 12 or N = 20).

B. Dielectric breakdown currents

Increasing the value of the applied bias we observe an
enhancement of the quasiparticle weight throughout the slab.
This effect is illustrated in Fig. 14 where panels (a)–(c)
show the dynamics of the quasiparticle weights in a driven
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FIG. 14. (Color online) Layer dependent quasiparticle weight
dynamics for layers 1 (a), 5 (b), and 10 (c) of a N = 20 slab,
U = 16.5, vhyb = 1.0 and two values of the applied bias �V = 1.0
(red lines) and �V = 4.0 (blue lines). (d) Time-averaged stationary
quasiparticle weight profile.
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FIG. 15. (Color online) Time-averaged currents for the same
parameters in Fig. 14 and �V = 4.0, 3.0, 2.0, and 1.0 (from top
to bottom). Dashed lines are fitting curves from Eq. (26). Inset:
Real-time dynamics of the current for �V = 4.0.

Mott insulating slab with different values of the bias for
three different layers (z = 1, 5, 10). While the dynamics
is characterized by strong oscillations reminiscent of the
incoherent dynamics discussed in Sec. III for the metallic slab
under a large applied bias, the time-averaged quantities in
the long-time limit converge to stationary values. The spatial
distribution as a function of the layer index shows a strong
enhancement in the bulk upon increasing the bias [Fig. 14(d)].

Such enhancement results in a finite current flowing.
Indeed, as shown in Fig. 15, the time-averaged current has
a damped oscillatory behavior that converges towards a steady
value, although the real dynamics follows a seemingly chaotic
pattern (see the inset). As in the metallic case, we checked
that when a finite current sets in the resulting local charge
imbalance is so small that the correction to the inner potential
profile due to long-range Coulomb repulsion is negligible.

We extract the stationary values by fitting the current time-
averages with

〈j (t)〉 = jsteady + α

t
. (26)

As evident by looking at the results reported in Fig. 15,
the stationary value of the current has a nonlinear behav-
ior as a function of the applied bias. This effect can be
better appreciated in the next Fig. 16, where we plot the
current-voltage characteristics for increasing values of the slab
size N .

Interestingly, the current displays an exponential activated
behavior with a characteristic threshold bias which can be
described by

jsteady(�V ) = γ �V e−�Vth/�V . (27)

Indeed, our data for the current agree very well with the fit
(27) for �V � 2, while the fit becomes inaccurate for smaller
values of the voltage bias. We motivate the discrepancy in this
regime of very small currents with the presence of spurious
effects, such as for example a small residual current carried
out by the evanescent quasiparticles, or a slight inaccuracy
in the estimate of such tiny currents. These spurious effects
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FIG. 16. (Color online) Current bias characteristics for U = 16.5
and different values of the slab length N = 8, 10, 12, 16, and 20
(from top to bottom). Dashed lines represent fitting curves with
Eq. (27). Insets: threshold bias �Vth and electric field Eth = �Vth/N

as a function of the slab size. The horizontal line is the extrapolation
for the large-N size independent electric field.

becomes irrelevant when the current becomes sizable, i.e., at
larger values of the bias.

From the fit in Fig. 16 we obtain a linearly increasing
threshold bias �Vth as a function of the slab size N (see
inset of the figure). This behavior indicates a crossover from a
bias to an electric field induced breakdown mechanism, as the
slab size N is increased [57]. Thus, in the large-N limit the
threshold electric field Eth = �Vth/N saturates to a constant
value Eth and we rewrite Eq. (27) as

jsteady(�V )

�V
= γ e−Eth/E, (28)

with Eth ≈ 0.85, the saturation value extracted from the slope
of the threshold bias in the inset of Fig. 16. This expression
is suggestive of a Landau-Zener type of dielectric breakdown
[43,44], in agreement with the results obtained within dynam-
ical mean-field theory (DMFT) studies of either homogeneous
[35] and inhomogeneous systems [24,40]. Moreover, such a
dielectric breakdown mechanism has been recently proposed
to explain the outcome of conductance experiments in thin
films of strongly correlated materials [21].

We further support the Gutzwiller scenario for the dielectric
breakdown with the simple calculation for the stationary
regime outlined in Appendix B, which follows the analysis
reported in Ref. [48] for the equilibrium case. In particular,
we consider a single metal-Mott insulator interface in the
presence of an electrochemical potential μ(z) and compute
the resulting quasiparticle weight inside the insulating side.
As detailed in Appendix B, we find that for weak μ(z), the
hopping renormalization factor R(z) satisfies the equation

∇2R(z) =
(

m2c2 − 2μ(z)2

c2

)
R(z), (29)

which is nothing but the stationary Klein-Gordon equation (24)
in the presence of a field, or alternatively, the Schrœdinger
equation of a particle impinging on a potential barrier. This
equation identifies an avoided region through which electrons
can tunnel under the effect of the electrochemical potential
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μ(z), in a way similar to the Zener tunneling mechanism
originally discussed in Ref. [58]. For a constant electric field
μ(z) = E z and within the WKB approximation, we obtain the
stationary transmission probability beyond the turning point z∗
of the barrier (see Appendix B):

|R(z > z∗)|2 ∼ exp

(
−Eth

E

)
, (30)

where

Eth = π

2

√
u

48
ξ−2, (31)

with the definition of the correlation length ξ−1 = √
6(u − 1)

of Ref. [48]. This calculation identifies the transmission
probability [Eq. (30)] with the dielectric breakdown currents
[Eq. (28)] and predicts via the definition of the correlation
length [Eq. (25)] a threshold electric field increasing with the
interaction strength [35].

Finally, we note that the threshold field obtained from
our numerical results (see Fig. 16) and analytical estimates
[Eq. (31)] is consistent with the rough estimate Eth ∼ �/ξ

valid of a Mott insulator with a gap � and a correlation length
ξ . Indeed, for � ∼ U and ξ ∼ (u − 1)−1/2 we find, in the
large-U limit, Eth ∼ U 3/2 matching the analytical estimate in
Eq. (31). On the other hand, setting our energy and length
units to t ∼ 0.1 eV and a ∼ 1 Å, our numerical results show
that Eth ∼ 1 V/nm which is valid for a typical Mott gap of
the order of 1 eV and ξ of few lattice spacings. However, we
mention that such threshold values overestimate by about one
to two orders of magnitude the experimentally observed fields
for the Landau-Zener-like breakdown [21] and even more for
other mechanisms such as the avalanche breakdown [17].

C. Quasiparticle energy distribution

Inspired by the evidence that in our description the transport
activation is driven by an enhancement of the bulk quasiparticle
weight [see Fig. 14(d)], in this section we focus on the spatial
distribution of the quasiparticle energy throughout the slab.
In order to estimate the time evolution of the quasiparticle
energy levels we compute the time evolution of the layer-
dependent chemical potential in the effective noninteracting
model Eq. (14), introduced by the coupling to external voltage
bias. This quantity can be easily extracted by means of the
following unitary transformation of the uncorrelated wave
function:

|ϕ0(t)〉 ≡ U(t) |�0(t)〉 , U(t) =
∏
r,z

exp [iλz(t) n̂r,z], (32)

where λz(t) is the time-dependent phase of the hopping renor-
malization parameters Rz(t) ≡ ρz(t)eiλz(t), with real ρz(t) � 0.
Substituting Eq. (32) into Eq. (10) we obtain a transformed
Hamiltonian that now contains only real hopping amplitudes
at the cost of introducing time-dependent local chemical
potential terms μ∗(z,t), namely:

i∂t |ϕ0(t)〉 = h∗(t) |ϕ0(t)〉, (33)
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FIG. 17. (Color online) Layer-dependent quasiparticle effective
chemical potential profile. Parameters are the same as in Fig. 15 for
�V = 1 and �V = 4. The grey dashed line represents the applied
bias linear profile. Inset: Real-time dynamics of the quasiparticle
chemical potential on the tenth layer. All data are plotted with respect
to the leads’ chemical potential absolute value �V/2.

where the effective Hamiltonian reads

h∗(t) = HLeads +
N∑

z=1

∑
k,σ

ρz(t)
2 εk d

†
k,z,σ dk,z,σ

+
N−1∑
z=1

∑
k,σ

(ρz+1(t) ρz(t) d
†
k,z+1,σ dk,z,σ + H.c.)

+
∑

α=L,R

∑
k,k⊥,σ

(vk⊥ρzα
(t)c†kk⊥ασ dkzασ + H.c.)

+
N∑

z=1

∑
k,σ

μ∗(z,t) d
†
k,z,σ dk,z,σ , (34)

and with μ∗(z,t) = ∂
∂t

λz(t) that plays the role of an effective
chemical potential for the quasiparticles under the influence of
the bias.

Taking the time average of this quantity in the long-time
regime we obtain the energy profile as a function of the position
in the slab of the stationary quasiparticle effective potential,
reported in Fig. 17, locating the energies of the quasiparticles
injected from the leads into the slab. As expected, for any
value of the applied voltage bias the quasiparticles near the
boundaries are injected at energies equal to the chemical
potentials of the two leads, i.e., μ∗ = ±�V/2. On the other
hand, the behavior inside the bulk of the slab depends strongly
on the value of the applied bias.

At a small bias, represented in Fig. 17 by �V = 1, a
value corresponding to an exponentially suppressed current,
the chemical potential remains essentially flat as the bulk is
approached from any of the two leads, despite the presence
of a linear potential drop Ez. This gives rise to a steplike
chemical potential profile with a jump �μ∗ ≈ �V at the center
of the slab. The presence of this jump suppresses the overlap
between the quasiparticle states on the two sides, preventing
the tunneling from the left metallic lead to the right one and
ultimately leading to an exponential reduction of the current.

On the opposite limit of a large enough bias (e.g., �V = 4)
a finite current flows through the slab, corresponding to a
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smoother profile of effective chemical potentials. Indeed, in the
bulk μ∗(z) takes a weak linear drop behavior as expected for a
metal, and slightly reminiscent of the applied linear potential
drop Ez. In this regime the large overlap between quasiparticle
states near the center of the slab allows quasiparticles to easily
tunnel from the left to the right side, giving rise to a finite
current as outlined in the previous Fig. 15.

The disappearance of the effective chemical potential dis-
continuity in the middle of the slab for large bias is determined
by the presence of strong oscillations of this quantity between
positive and negative values, as shown in the inset of Fig. 17.
This suggests that, even though the the quasiparticle chemical
potential averages to an almost zero value at very long times,
the quasiparticles dynamically visit electronic states far away
from the local Fermi energies. We interpret this behavior as
the signal of a strong feedback of the dynamics of the local
degrees of freedom Eq. (11) onto the quasiparticle evolution,
due to the proximity of a resonance between quasiparticles and
the incoherent Mott-Hubbard side bands. Interestingly, even
though in our description there is no high-energy incoherent
spectral weight, this scenario is reminiscent of the formation
of coherent quasiparticle structures inside the Hubbard bands
as observed in previous studies using steady-state formulation
of nonequilibrium DMFT [24].

V. CONCLUSIONS

We used the out-of-equilibrium extension of the inhomo-
geneous Gutzwiller approximation to study the dynamics of a
correlated slab contacted to metal leads in the presence of
a voltage bias. On one side this allowed us to investigate
the nonequilibrium counterpart of known interface effects
arising in strongly correlated heterostructures, such as the
dead and living layer phenomena. On the other we studied
the nonlinear electronic transport of quasiparticles injected
into the correlated slab under the influence of an applied bias.

In the first part of the paper we considered a slab in a
metallic state in the absence of the bias, when the correlation
strength is smaller than the critical value for a Mott transition.
Initially we focused on the zero-bias regime and studied the
spreading of the doubly occupied sites injected into the slab
after a sudden switch of a tunneling amplitude with the metal
leads. Specifically we found a ballistic propagation of the
perturbation inside the slab, leaving the system in a stationary
state equal to the equilibrium one, with an excess of double
occupancies concentrated near the contacts and a consequent
enhancement of the quasiparticle weight at the boundaries
of the slab. We characterized this “awakening” dynamics
of the living layer from the initial dead one in terms of a
characteristic time scale which diverges at the Mott transition.
This divergence allow us to identify this time scale as the
dynamical counterpart of the equilibrium correlation length
ξ [14].

In the presence of a finite bias we studied the conditions
for the formation of nonequilibrium states, characterized
by a finite current flowing through the correlated slab. We
demonstrated that this process is strongly dependent on
the coupling with the external environment represented by
the biased metal leads, which at the same time act as the
source of the nonequilibrium perturbation and as the only

dissipative channel. For weak coupling between the leads and
the slab we found stationary currents flowing in a wide range of
bias. Conversely for large couplings we identified a strong-bias
regime in which the system is trapped into a metastable state
characterized by an effective slab-leads decoupling. This is
due to an exceedingly fast energy increase and to the lack
of strong dissipative processes in the Gutzwiller method,
which prevents the injected energy from flowing back into
the leads and the current to reach a stationary value. Studying
the current-bias characteristics in the range of parameter for
which the system is able to reach a nonequilibrium stationary
state, we observed a crossover from a low-bias linear regime,
which we find universal with respect to the interaction U ,
to a regime with negative differential conductance typical
of finite bandwidth systems. Considering suitable long-time
averages of the current we have been able to observe the same
phenomenology in the region of parameters for which, due to
the aforementioned anomalous heating, the current dynamics
does not lead to an observable stationary value.

In the second part of this work we turned our attention
to the dynamical effect of a bias on a Mott insulating slab,
when the interaction strength exceeds the Mott threshold.
Following the analysis carried out in the metallic case, we
considered the formation of evanescent bulk quasiparticles
after a sudden switch of the slab-leads tunneling amplitude in a
zero-bias setup. In this case, we have found that the living layer
formation is accompanied by an exponential growth of the
quasiparticle weight, suggestive of a strong feedback between
the dynamics of the quasiparticles and the local degrees of
freedom.

In the presence of a finite bias, we studied the conditions
under which these evanescent quasiparticles can lead to the
opening of a conducting channel through the insulating slab.
We showed that at very low bias this is the case only for a very
small slab, for which the correlation length ξ is of the same
order of the slab size. For larger samples we found that the
currents are exponentially activated with a threshold bias �Vth

which increases with the slab size. This behavior is suggestive
of a Landau-Zener type of dielectric breakdown, as found in
previous DMFT studies and in agreement with equilibrium
calculations of the tunneling amplitude for a quasiparticle
through an insulating slab.
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We thank M. Sandri, M. Schirò, and J. Han for insightful
discussions. A.A. and M.C. were financed by the European
Union under FP7 ERC Starting Grant No. 240524 “SUPER-
BAD.” Part of this work was supported by European Union,
Seventh Framework Programme FP7, under Grant No. 280555
“GO FAST.”

APPENDIX A: DETAILS ON THE VARIATIONAL
DYNAMICS

A straightforward differentiation of Eq. (14) with respect
to the variational matrices �̂i leads to the equation of
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motions

i
∂

∂t

⎛
⎝�z,0(t)

�z,1(t)
�z,2(t)

⎞
⎠

=
⎛
⎝h00(z,t) h01(z,t) 0

h∗
01(z,t) 0 h01(z,t)

0 h∗
01(z,t) h22(z,t)

⎞
⎠

⎛
⎝�z,0(t)

�z,1(t)
�z,2(t)

⎞
⎠ (A1)

with

h00(z,t) = U

2
− Ez + δz

1 − δ2
z

{2 |Rz|2 εz

− [R∗
z+1 Rz �z (1 − δz,N ) + c.c.]

− [R∗
z−1 Rz �∗

z−1 (1 − δz,1) + c.c.]

+ [δz,1 R∗
1�L + δz,N R∗

N �R + c.c.]}, (A2)

h22(z,t) = U

2
+ Ez − δz

1 − δ2
z

{2 |Rz|2 εz

− [R∗
z+1 Rz �z (1 − δz,N ) + c.c.)]

− [R∗
z−1 Rz �∗

z−1 (1 − δz,1) + c.c.]

+ [δz,1R
∗
1�L + δz,NR∗

N�R + c.c.]}, (A3)

h01(z,t) =
√

2√
1 − δ2

z

[R∗
z εz − R∗

z+1 �z (1 − δz,N )

−R∗
z−1 �∗

z−1 (1 − δz,1)+δz,1 �∗
L+δz,N �∗

R]. (A4)

The quantities appearing in the equations of motion (A2)–(A4)
are defined by quantum averages of fermionic operators over
the uncorrelated wave function |�0(t)〉,

εz(t) =
∑
kσ

〈�0(t)| d†
kzσ dkzσ |�0(t)〉,

�z(t) =
∑
kσ

〈�0(t)| d†
kz+1σ dkzσ |�0(t)〉,

�α(t) =
∑
kσ

∑
k⊥

vk⊥〈�0(t)| d†
kzασ ckk⊥ασ |�0(t)〉,

(A5)

and their time evolution is determined by the effective
Scrödinger equation (10).

To solve for the dynamics of the effective Hamiltonian we
introduce the Keldysh Greens’ functions on the uncorrelated
wave function for c and d operators:

GK
kσ (z,z′; t,t ′) = −i 〈TK (dkzσ (t) d

†
kz′σ (t ′))〉, (A6)

gK
kk⊥ασ (z; t,t ′) = −i 〈TK (ckk⊥ασ (t)d†

kz′σ (t ′))〉, (A7)

and express the quantities in Eqs. (A5) in terms of their lesser
components computed at equal time,

〈d†
kzσ dkz′σ 〉(t) = − i G<

kσ (z′,z; t,t),

〈d†
kzσ ckk⊥ασ 〉(t) = − i g<

kk⊥ασ (z; t,t).
(A8)

We compute the equations of motion for the lesser components
at equal times, Eq. (A8), using the Heisenberg evolution for
operators c and d with HamiltonianH∗. In order to get a closed
set of differential equations we have to further introduce

the dynamics for the leads’ lesser Green function, which
due to the hybridization with the slab loses its translational
invariance in the z direction,[

Gαα′
kk⊥k′

⊥σ

]<
(t,t) = i〈c†kk⊥ασ ckk′

⊥α′σ 〉. (A9)

Dropping, for the sake of simplicity, the lesser symbol and
the spin index we get for each k point the following equations
of motion:

i∂tGk(z,z′) = εk(|Rz|2 − |Rz′ |2)Gk(z,z′)

+
∑
i=±1

R∗
z+i Rz Gk(z + i,z′)

−R∗
z Rz+i Gk(z,z′ + i)

+
∑

α=L,R

δz,zα
R∗

zα

∑
k⊥

vα
k⊥ gα

kk⊥(z′)

+
∑

α=L,R

δz′zα
Rzα

∑
k⊥

vα
k⊥

[
gα

kk⊥(z)
]∗

, (A10)

i∂tg
α
kk⊥(z) = (

εα
k + tαk⊥

)
gα

kk⊥(z) − R∗
z+1 Rz gα

kk⊥(z + 1)

−R∗
z−1 Rz gα

kk⊥(z − 1) + vα
k⊥ Rzα

Gk(zα,z)

−
∑

α′=L,R

δzα′ ,z

∑
k⊥

vα
k⊥ Rzα′ G

αα′
kk⊥k′

⊥
, (A11)

i∂tG
αα′
kk⊥k′

⊥
= (

tαk⊥ − tα
′

k′
⊥

)
Gαα′

kk⊥k′
⊥

− vα′
k′
⊥
R∗

zα′ gα
kk⊥(z) − vα

k⊥ Rzα′ [g
α′
kk′

⊥
(z)]∗. (A12)

The set of differential equations, composed by Eqs. (A10)–
(A12) and (A1), completely determines the dynamics within
the time-dependent Gutzwiller and it is solved using a standard
fourth-order implicit Runge-Kutta method [59]. We mention
that this strategy for the solution of the Gutzwiller dynamics
corresponds to a discretization of the semi-infinite metallic
leads. In principle, the latter can be integrated out exactly at the
cost of solving the dynamics for the lesser (<) and greater (>)
component of the Keldysh Greens’ function on the whole two
times (t,t ′) plane. However, such a route can be extremely
costly from a computational point of view and restrict the simu-
lations to small evolution times. We explicitly checked that the
dynamics using the above leads’ discretization coincides with
the dynamics obtained with the two time (t,t ′)-plane evolution,
expect for finite size effects occurring for times larger than a
discretization dependent characteristic time. The latter can be
however pushed far away with respect to the maximum times
reachable within the two time (t,t ′)-plane evolution.

APPENDIX B: LANDAU-ZENER STATIONARY
TUNNELING WITHIN THE GUTZWILLER

APPROXIMATION

We believe it is instructive to explicitly show how the
Landau-Zener stationary tunneling across the Mott-Hubbard
gap in the presence of a voltage drop translates into the
language of the TDG approximation. Here, the gap and
the voltage bias are actually absorbed into layer-dependent
hopping renormalization factors Rz(t) so that an electron
entering the Mott insulating slab from the metal lead trans-
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lates into a free quasiparticle with hopping parameters that
decay exponentially inside the insulator. In other words,
quasiparticles within the Gutzwiller approximation do not
experience a tunneling barrier in the insulating side but rather
an exponentially growing mass.

From this viewpoint, the living layer that appears at the
metal-Mott insulator interface can be legitimately regarded
as the evanescent wave yielded by tunneling across the
Mott-Hubbard gap. Such a correspondence can be made more
explicit following Ref. [48] and its Supplemental Material.

Specifically, we shall consider a single metal-Mott insulator
interface at equilibrium, with the metal and the Mott insulator
confined in the regions z < 0 and z � 0, respectively. The
new ingredient that we add with respect to Ref. [48] is an
electrochemical potential μ(z), which is constant and for
convenience zero on the metal side, i.e., μ(z < 0) = 0, while
finite on the insulating side, μ(z � 0) �= 0, thus mimicking the
bending of the Mott-Hubbard side bands at the junction.

If the correlation length ξ of the Mott insulator is much
bigger that the inverse Fermi wavelength, in the Gutzwiller
approach we can further neglect as a first approximation the
z dependence of the averages of hopping operators over the
uncorrelated Slater determinant |�0〉. [48] We can thus write
the energy of the system as a functional of the variational
matrices only,

E = − 2

24 L

∑
z

R(z)2 − 1

24 L

∑
z

R(z) R(z + 1)

+ 1

2 L

∑
z

u(z) (|�0(z)|2 + |�2(z)|2)

− 1

L

∑
z

μ(z) δ(z), (B1)

where

R(z) =
√

2

1 − δ(z)2
(�1(z)∗ �0(z) + �2(z)∗ �1(z))

is the hopping renormalization factor, and

δ(z) = |�0(z)|2 − |�2(z)|2

is the doping of layer z with respect to half filling, i.e., n(z) =
1 − δ(z). We have chosen units such that the Mott transition
occurs at u = 1, so that u(z < 0) = Umetal � 1 on the metal
side, and u(z � 0) = U � 1 on the insulating one.

The minimum of E in Eq. (B1) can be always found with
real parameters �n(z), so that, since

�0(z)2 + �1(z)2 + �2(z)2 = 1,

there are actually two independent variables per layer. We
can always choose these variables as R(z) ∈ [0,1] and δ(z) ∈
[−1,1], in which case

|�0(z)|2 + |�2(z)|2 = 1

2

(
�[R(z),δ(z)] + δ(z)2

�[R(z),δ(z)]

)
,

where

�[R(z),δ(z)] = 1 −
√

1 − R(z)2
√

1 − δ(z)2

� 1 −
√

1 − R(z)2 + δ(z)2

2

√
1 − R(z)2,

the last expression being valid for small doping. Minimizing
E in Eq. (B1) with respect to δ(z) leads to

δ(z) � 4μ(z)

U

1 −
√

1 − R(z)2

1 + R(z)2 +
√

1 − R(z)2
, (B2)

for z � 0, and δ(z) = 0 for z < 0.
Through Eq. (B2) we find an equation for R(z) in the

insulating side z � 0 that, after taking the continuum limit,
reads

∂2R(z)

∂z2
= − ∂

∂R(z)
V [R(z),z], (B3)

which looks like a classical equation of motion with z playing
the role of time t , R(z) that of the coordinate q(t), and V that
of a time-dependent potential

V (q,t) = −6u(1 −
√

1 − q2) + 3q2

+ 48μ(t)2

u

1 −
√

1 − q2

1 + q2 +
√

1 − q2
. (B4)

On the metallic side R(z < 0) � Rmetal � 1, so that the role of
the junction is translated into appropriate boundary conditions
at z = 0.

Far inside the insulator, R(z) � 1 and we can expand

V [R(z),z] �
(

−3U + 3 + 24
μ(z)2

u

)
R(z)2,

so that the linearized equation reads

∂2R(z)

∂z2
=

[
6u − 6 − 48

u
μ(z)2

]
R(z), (B5)

for z > 0, while, in the metal side, z < 0, where R(z) is
approximately constant,

∂2R(z)

∂z2
= 0. (B6)

Equations (B5) and (B6) can be regarded as the Shrœdinger
equation of a zero-energy particle impinging on a potential bar-
rier at z � 0. Within the WKB approximation, the transmitted
wave function at z reads

R(z) ∝ exp

(
−

∫ z∗

0
dζ

√
6u − 6 − 48

u
μ(ζ )2

)
, (B7)

where, assuming a monotonous μ(ζ ), the upper limit of
integration is z∗ = z if 8μ(z)2 � u (u − 1) otherwise is the
turning point, i.e., z∗ such that 8μ(z∗)2 = u (u − 1).

Let us for instance take μ(z) = E z, which corresponds to
a constant electric field. In this case

|E| z∗ =
√

u(u − 1)

8
, (B8)

so that the transmission probability

|R(z > z∗)|2 ∼ exp

(
−Eth

E

)
, (B9)

195124-14



ELECTRONIC TRANSPORT AND DYNAMICS IN . . . PHYSICAL REVIEW B 91, 195124 (2015)

where the threshold field

Eth = π

2

√
u

48
ξ−2, (B10)

with the definition of the correlation length ξ−1 = √
6(u − 1)

of Ref. [48].
We observe that Eq. (B9) has exactly the form predicted by

the Zener tunneling in a semiconductor upon identifying

Eg

√
m∗ Eg

�2
∼ u − 1, (B11)

where Eg is the semiconductor gap, m∗ is the mass parameter,
and Uc is the dimensional value of the interaction at the Mott
transition.

Growth of the living layer

The same approximate approach just outlined can be also
extended away from equilibrium. We shall here consider the
simple case of constant and vanishing electrochemical poten-
tial μ(z) = 0. We need to find the saddle point of the action,

S =
∫

dt i

2∑
n=0

∑
z

�n(z,t)∗ �̇n(z,t) − E(t), (B12)

where E(t) is the same functional of Eq. (B1) where now all
parameters �n(z,t) are also time dependent. At μ(z) = 0 we
can set

�0(z,t) = �2(z,t) = 1√
2

eiφ(z,t) sin
θ (z,t)

2
, (B13)

�1(t) = cos
θ (z,t)

2
, (B14)

so that the equations of motion read

sin θ (z,t) φ̇(z,t) = −2
∂E

∂θ (z,t)
, (B15)

sin θ (z,t) θ̇(z,t) = 2
∂E

∂φ(z,t)
. (B16)

Upon introducing the parameters

σx(z,t) = sin θ (z,t) cos φ(z,t), (B17)

σy(z,t) = sin θ (z,t) sin φ(z,t), (B18)

σz(z,t) = cos θ (z,t), (B19)

where σx(z,t) = R(z,t) is the time-dependent hopping
renormalizaton, the equations of motion can be written as

σ̇x(z,t) = −2σy(z,t)
∂E

∂σz(z,t)
= u

2
σy(z,t), (B20)

σ̇y(z,t) = 2σx(z,t)
∂E

∂σz(z,t)
− 2σz(z,t)

∂E

∂σx(z,t)

= −u

2
σx(z,t) − 2σz(z,t)

∂E

∂σx(z,t)
, (B21)

σ̇z(z,t) = 2σy(z,t)
∂E

∂σx(z,t)
, (B22)

where
∂E

∂σx(z,t)
= −1

6
σx(z,t) − 1

24
(σx(z + 1,t) + σx(z − 1,t))

� −1

4
σx(z,t) − 1

24

∂2σx(z,t)

∂z2
. (B23)

Equations (B20)–(B22) show that the Gutzwiller equations
of motion actually coincide to those of a Ising model in
a transverse field treated within mean field, as originally
observed in Ref. [38].

Inside the Mott insulating slab we can safely assume
σz(z,t) ∼ 1 and obtain the equation for R(z,t) = σx(z,t),

R̈(z,t) = −U

4

(
u − 1

)
R(z,t) + u

24

∂2R(z,t)

∂z2
, (B24)

which is the time-dependent version of Eq. (B5) and is just a
Klein-Gordon equation,

1

c2
R̈ − ∇2 R + m2 c2 R = 0, (B25)

with light velocity c and mass m given by

c2 = u/24, (B26)

m2 c2 = 6(u − 1) = ξ−2. (B27)

In dimensionless units
z

ξ
→ z,

ct

ξ
→ t.

Equation (B25) reads

R̈ − ∇2 R + R = 0. (B28)

Let us simulate the growth of the “living layer” by a single
metal-Mott insulator interface and absorb the role of the metal
into an appropriate boundary condition for the surface z = 0 of
the Mott insulator side z � 0. Specifically, we shall assume that
initially R(z,0) = R0(z), with R0(0) = R0 > 0 and R0(z →
∞) = 0, as well as that, at any time t , the value of R(z,t) at
the surface remains constant, i.e., R(0,t) = R0, ∀t . We denote
as R∗(z) the stationary solution of Eq. (B28) with the boundary
condition R∗(0) = R0, that is

R∗(z) = R0e
−z. (B29)

One can readily obtain a solution of Eq. (B28) satisfying all
boundary conditions, which, after defining

φ(x) = R0(x) − R∗(x), (B30)

reads

R(z,t) = R∗(z) + φ(z + t) + θ (z − t) φ(z − t) − θ (t − z) φ(t − z)

2

− t

2

∫ t

−t

dx
J1

(√
t2 − x2

)
√

t2 − x2
[θ (x + z) φ(x + z) − θ (x − z) φ(x − z)], (B31)
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where J1(x) is the first-order Bessel function. We observe that for very long times R(z,t → ∞) → R∗(z), namely the solution
evolves into a steady state that corresponds to the equilibrium evanescent wave with the appropriate boundary condition. Moreover,
Eq. (B31) also shows a kind of light-cone effect compatible with the full evolution that takes into account also the dynamics
of the Slater determinant, which we have neglected to get Eq. (B28). In fact, the missing Slater determinant dynamics is the
reason why the initial exponential growth is not captured by Eq. (B31), which thence has to be rather regarded as an asymptotic
description valid only at long time and distances.

Another possible boundary condition is to impose that ∂zR(z,t) remains constant at z = 0, rather than its value. In this case, if

A = −∂R(z,0)

∂z z=0
= −∂R0(z)

∂z z=0
, (B32)

then we must take R∗(z) = Ae−z and still φ(x) = R0(x) − R∗(x) so that the solution reads

R(z,t) = R∗(z) + φ(z + t) + θ (z − t) φ(z − t) + θ (t − z) φ(t − z)

2

− t

2

∫ t

−t

dx
J1(

√
t2 − x2 )√

t2 − x2
[θ (x + z) φ(x + z) + θ (x − z) φ(x − z)]. (B33)

Also in this case R(z,t) evolves towards a stationary value that, in dimensional units, reads

R(z,t → ∞) = Aξe−z/ξ , (B34)

hence grows exponentially at fixed A and z as the Mott transition is approached.
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[39] P. André, M. Schiró, and M. Fabrizio, Phys. Rev. B 85, 205118
(2012).

[40] M. Eckstein and P. Werner, Phys. Rev. B 88, 075135 (2013).
[41] P. Ribeiro, A. E. Antipov, and A. N. Rubtsov, arXiv:1412.8644.
[42] M. Eckstein and P. Werner, Phys. Rev. Lett. 113, 076405

(2014).
[43] T. Oka and H. Aoki, Phys. Rev. Lett. 95, 137601 (2005).
[44] T. Oka, R. Arita, and H. Aoki, Phys. Rev. Lett. 91, 066406

(2003).
[45] M. Charlebois, S. R. Hassan, R. Karan, D. Sénéchal, and A.-M.

S. Tremblay, Phys. Rev. B 87, 035137 (2013).
[46] L. Chen and J. K. Freericks, Phys. Rev. B 75, 125114 (2007).
[47] M. Fabrizio, in New Materials for Thermoelectric Applications:

Theory and Experiment, NATO Science for Peace and Security
Series B: Physics and Biophysics, edited by V. Zlatic and A.
Hewson (Springer, Netherlands, 2013), pp. 247–273.

[48] G. Borghi, M. Fabrizio, and E. Tosatti, Phys. Rev. B 81, 115134
(2010).

[49] M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. Lett. 103,
056403 (2009).
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