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Magnetic exchange in α-iron from ab initio calculations in the paramagnetic phase
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Applying the local density approximation (LDA) and dynamical mean field theory to paramagnetic α-iron,
we reinvestigate the origin of its ferromagnetism. The analysis of local magnetic susceptibility shows that at
sufficiently low temperatures T < 1500 K, both eg and t2g states equally contribute to the formation of the effective
magnetic moment with spin S = 1. The self-energy of t2g states shows sizable deviations from Fermi-liquid form,
which accompany earlier found nonquasiparticle form of eg states. By considering the nonuniform magnetic
susceptibility we find that the nonquasiparticle form of eg states is crucial for ferromagnetic instability in α-iron.
The main contribution to the exchange interaction, renormalized by the effects of electron interaction, comes
from the hybridization between t2g and eg states. We furthermore suggest the effective spin-fermion model for
α-iron, which allows us to estimate the exchange interaction from paramagnetic phase, which is in agreement
with previous calculations in the ordered state within the LDA approaches.
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Elemental iron in its low-temperature body-centered cubic
(bcc) phase, which is stable below approximately 1200 K,
provides a unique example of itinerant magnetic d-electron
systems, where formation of well-defined local magnetic
moments can be expected. Indeed, the Rhodes-Wolfarth ratio
pC/pS for this substance is very close to one, which is a
characteristic feature of systems, containing (almost) localized
d electrons [pC corresponds to the magnetic moment, extracted
from the Curie-Weiss law for magnetic susceptibility in the
paramagnetic phase χ = (gμB)2pC(pC + 1)/(3T ), and pS is
the saturation moment (in units of gμB), g is a Landé factor,
and T denotes temperature]. At the same time, the moment
pC = 1.1 has a small fractional part, which is natural for the
itinerant material.

This poses the following natural questions. Which electrons
mainly contribute to the local-moment spin degrees of freedom
of α-iron? What is the appropriate physical model, that
describes spin degrees of this substance? Attempting to answer
the former question, Goodenough suggested [1] that the eg

electrons are localized, while t2g electrons are itinerant. This
suggestion was later on refined in Ref. [2], pointing to a
possibility that only some fraction of eg electrons, contributing
to formation of the peak of the density of states near the Fermi
level, named by the authors as a giant van Hove singularity, is
localized. (The intimate relation between peaks of density of
states and electron localization was also previously pointed out
in Ref. [3]). On the contrary, there were statements made that
95% of electrons are localized in iron [4]. On the model side,
the thermodynamic properties of α-iron were described within
the effective spin S = 1 Heisenberg model [5], assuming
therefore that the main part of the magnetic moment is
localized, in agreement with the above-mentioned Rhodes-
Wolfarth arguments. Use of the effective Heisenberg model
was justified from the ab initio analysis of spin spiral energies
yielding reasonable values of the exchange integrals [6].

These considerations however did not take into account
strong electronic correlations in α-iron, the important role of
which was emphasized first in Ref. [7]. Previous calculations
[8,9] within the local density approximation (LDA), combined

with the dynamical mean-field theory (DMFT), revealed the
presence of nonquasiparticle states formed by eg electrons,
which were considered as a main source of local moment
formation in iron, while t2g states were assumed to be itinerant
[8]. At the same time, magnetic properties of the same t2g

states also show some features of local-moment behavior. In
particular, the temperature dependence of inverse local spin
susceptibility, which was calculated previously [8] only at
T > 1000 K because of the limitations of the Hirsch-Fye
method, is approximately linear, including the contribution
of t2g states; the real part of t2g contribution to dynamic
local magnetic susceptibility has a peak at low frequencies,
reflecting a possibility of partial local moment formation by
t2g states.

Studying this possibility requires investigation of electronic
and magnetic properties at low temperatures, since the energy
scale for partially formed local t2g moments can be smaller than
for eg states. Although real substance orders ferromagnetically
at low temperatures, in the present paper (as in Ref. [8]) we
perform analysis of local properties of iron in the paramagnetic
phase to reveal the mechanism of local moment formation.
Furthermore, we study nonlocal magnetic susceptibility in the
low temperature range T > 250 K, which allows us to analyze
the mechanism of magnetic exchange. To this end we use the
state-of-art dynamical mean-field theory (DMFT) calculation
with a continous time quantum Monte Carlo (CT-QMC) solver
[10], combined with the ab initio local density approximation
(LDA). From our low-temperature analysis, we argue that
t2g electrons almost equally contribute to the effective local
magnetic moment, as the eg electrons, and play a crucial role
in the mechanism of magnetic exchange in iron. In particular,
the most important contribution to the exchange integrals
comes from the hybridization of t2g and eg states, which yields
nearest-neighbor magnetic exchange interaction, which agrees
well with the experimental data.

We perform the ab initio band-structure calculations in
LDA approximation within tight-binding–linear muffin-tin
orbital–atomic spheres approximation framework, the von
Barth–Hedin local exchange-correlation potential [11] was
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FIG. 1. (Color online) Temperature dependence of inverse local
magnetic susceptibility, and the corresponding eg and t2g orbital con-
tributions. Dashed lines show linear behavior in different temperature
intervals.

used. Primitive reciprocal translation vectors were discretized
into 12 points along each direction which leads to 72 k
points in the irreducible part of the Brillouin zone. For DMFT
(CT-QMC) calculations, we use the Hamiltonian of Hubbard
type with the kinetic term containing all s-p-d states, being
extracted from the LDA solution, and the interaction part
with density-density contributions for d electrons only. The
Coulomb interaction parameter value U = 2.3 eV and the
Hund’s parameter I = 0.9 eV used in our work are the
same as in earlier LDA+DMFT calculations [7,8,13]. To
treat a problem of formation of local moments we consider
a paramagnetic phase, which is achieved by assuming spin-
independent density of states, local self-energy, and bath
Green function. For the purpose of extracting corresponding
exchange parameters, we take in LDA part physical value
of the lattice parameter a = 2.8664 Å, corresponding to the
ferromagnetic state at room temperature.

We consider first the results for the orbital-resolved
temperature-dependent local static spin susceptibility
χloc,mn = 4μ2

B

∫ β

0 〈sz
i,m(τ )sz

i,n(0)〉dτ , where sz
i,m is the z pro-

jection of the spin of d electrons, belonging to the orbitals
m = t2g,eg at a given lattice site i; see Fig. 1 (for completeness,
we also show the total susceptibility χloc = ∑

mn χloc,mn, which
also includes the off-diagonal t2g-eg contribution). The tem-
perature dependence of the static inverse local susceptibility
is linear (as was also observed in previous studies [7–9,13]);
however being resolved with respect to orbital contributions
(see Fig. 1) it appears to manifest a very different nature of eg

and t2g moments. The inverse eg orbital contribution behaves
approximately linearly with T in a broad temperature range
[8,9]. At the same time, analyzing low-temperature behavior,
we find that χ−1

loc,t2g-t2g
demonstrates a crossover at T ∗ ∼ 1500 K

between two linear dependences with the low-temperature part
having higher slope (i.e., smaller effective moment). Note that
this feature was not obtained in a previous study [8] because
of considering only temperature range T > 1000 K. The scale
T ∗ corresponds to the crossover to non-Fermi-liquid behavior
of t2g states; see below.
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FIG. 2. (Color online) Temperature dependence of the effective
magnetic moment and instantaneous average 〈(sz)2〉 and μ2

eff in
α-iron, extracted from the temperature dependence of local suscepti-
bility, together with the contribution of the eg and t2g orbitals.

To get further insight into the local magnetic properties
of α-iron, we consider the temperature dependence of the
effective magnetic moment μ2

m,eff = 3/(dχ−1
loc,mm/dT ) and the

instantaneous average 〈(sz
i,m)2〉, corresponding to different

orbital states; see Fig. 2. We find that for eg electrons
both moments saturate at temperatures T < 1500 K and
remain approximately constant up to sufficiently low tem-
peratures. Comparing the value of the square of the moment
μ2

eg,eff/(3μ2
B) = 1.2, extracted from the Curie-Weiss law for

local susceptibility, and the instantaneous average 4〈(sz
i,eg

)2〉 =
1.8 with the corresponding filling neg

� 2.6, we find that the
major part of eg electrons determine the instantaneous average
〈(sz

i,eg
)2〉, and at least half of them contribute to the sufficiently

long-living (on the scale of 1/T ) local moments. At the same
time, for t2g electronic states the abovementioned crossover
between the high-temperature value μ2

t2g,eff/(3μ2
B) ≈ 1.95 and

the low temperature value μ2
t2g,eff/(3μ2

B ) � 0.82 is present,
which, comparing to nt2g

� 4.4, shows that at least 20% of t2g

electrons participate in the effective local moment formation
at low temperatures. Yet, the corresponding low-temperature
effective moments μ2

eg,eff and μ2
t2g,eff are comparable (each of

them is approximately 3μ2
B, corresponding to the effective

spin s � 1/2), showing the important role of t2g electrons in
the formation of the total spin S = 1 state.

Although the self-energy calculations [8,9] yield a quasi-
particlelike form of t2g electron self-energy, the low-frequency
and low-temperature dependence of self-energy shows pro-
nounced deviations from the Fermi-liquid behavior; see
Fig. 3. To analyze the frequency dependence of the self-
energy on the imaginary frequency axis, we fit the obtained
results by the Fermi-liquid dependence −Im�(iν) = �(T ) +
[Z−1(T ) − 1]ν + σ (T )ν2, where �(T ) is the damping of
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FIG. 3. (Color online) Frequency dependence of Im�t2g (iν)
(black solid lines), calculated at Matsubara frequencies νn =
πT (2n + 1) (marked by dots) at temperatures (from top to bot-
tom) T = 1/5,1/10,1/20,1/30,1/40 eV. The green dot-dashed line
presents fits to the Fermi-liquid dependence in the range νn < 1 eV,
while blue dashed lines present fits to the non-Fermi-liquid depen-
dence (see text).

electrons at the Fermi level and Z(T ) is the temperature-
dependent quasiparticle residue. Alternatively, we consider
the fit −Im�(iν) = �1(T ) + β1(T )να + σ1(T )ν2 with some
exponent α < 1. The latter dependence corresponds to the
non-Fermi-liquid behavior of t2g electrons. The obtained
results are presented in Table I.

The linear-quadratic fits are applicable only at ν < 1 eV; at
sufficiently small ν they also do not fit the obtained results
well. We find that the spectral weight Z(T ) pronouncely
decreases with decrease of temperature, and the coefficient
�(T ) obviously does not obey the Fermi-liquid dependence
�(T ) ∝ T 2. These observations show that sizable deviations
from the Fermi-liquid picture can be expected.

The power-law fits yield much better agreement in a broad
range of frequencies ν < 5 eV, describing at the same time
correctly the low-frequency behavior. The coefficients β1, σ1

of these fits show very weak temperature dependence (the
contribution σ1 is almost negligible), while the damping �1(T )
and the exponent α slightly decrease with temperature, being
related by �1(T ) ∼ T α . These observations imply that t2g

electronic subsystem is better described by non-Fermi-liquid
behavior at low temperatures, which reflects its participation
in the formation of local moments in α-iron. Remarkably,

TABLE I. Parameters of the fits of frequency dependence of
Im�(iν) to the Fermi-liquid and non-Fermi-liquid forms at different
temperatures.

β = 1/T � Z−1 − 1 σ �1 β1 σ1 α

20 0.20 0.22 −0.09 0.17 0.18 −0.006 0.51
30 0.18 0.29 −0.19 0.15 0.19 −0.005 0.48
40 0.17 0.37 −0.32 0.13 0.20 −0.005 0.44

-0.8

 0

 0.8

 1.6

 2.4

 3.2

 4

 4.8

χir
r

q
 (

μ B2
 /e

V
)

P Γ H P N Γ

χd

χe g-eg

χt 2g -t2g

χe g-t 2g

LDA
DMFT

FIG. 4. (Color online) Orbital-resolved momentum dependence
of χ 0,mn

q at T = 290 K calculated in high symmetry directions of

the Brillouin zone. The contributions χ0,d
q , χ

0,t2g -t2g
q , χ

0,eg -eg
q , and the

hybridization part χ
0,eg -t2g
q are shown by black, red, green, and blue

lines, respectively. Solid (dashed) lines correspond to LDA+DMFT
(LDA) results. The LDA+DMFT estimate for J (1)

q (μB/I )2 is shown
by magenta short-dashed line.

consideration of the three-band model in Ref. [12] showed
similar dependence of the self-energy � ∼ ν1/2 due to Hund
exchange interaction, which allows us to attribute the t2g

subsystem in iron as close to the “spin freezing” transition,
according to the terminology of Ref. [12].

To get further insight into the formation of effective local
moments and extract corresponding exchange integrals, we
calculate the momentum dependence of particle-hole bub-
ble χ0,mn

q = −(2μ2
B/β)

∑
l,k,m̃∈m,̃n∈n Gk,m̃ñ(iνl)Gk+q,̃nm̃(iνl),

which is obtained using paramagnetic LDA and LDA+DMFT
electronic spectrum [Gk,m̃ñ(iνl) is the corresponding electronic
Green function for the transition from the orbital state m̃ to ñ,
and νl is a fermionic Matsubara frequency; for more details on
the calculation procedure see Ref. [13]]. The results for LDA
and LDA+DMFT approaches at T = 290 K are presented
in Fig. 4 (we find that the LDA+DMFT results are almost
temperature independent at low T ). For the bubble, calculated
using purely LDA spectrum (i.e., with the assumption that
all electrons are itinerant), the maximum of χ0

q is located
at the point q = qP = (π,π,π )/a, while the ferromagnetic
instability in α-iron requires a maximum of χ0

q at q = 0
and low T , if one neglects the nonlocal vertex corrections.
One can observe that the main contribution to this behavior
of the bubble originates from the eg electron part, χ

0,eg -eg

q .

Both χ
0,eg-eg

q and χ
0,eg -t2g

q contributions are however strongly
influenced by the account of the local self-energy corrections
to the Green’s function in the DMFT approach, which
correspond physically to the account of partial localization
of d electrons. These corrections mainly change χ

0,eg -eg

q and
shift the maximum of χ0

q to � point (q = 0). Note that within

LDA+DMFT, intraorbital contributions to χ
0,eg -eg

q and χ
0,t2g -t2g

q
are only weakly momentum dependent; they also behave
similarly, varying “counterphase.” According to the general
ideas of spin-fluctuation theory [14], this weak momentum
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dependence can be ascribed to the formation of the effective
moments from eg and t2g states. In agreement with the above

discussed consideration, the χ
0,eg -eg

q contribution has even

weaker dispersion than the χ
0,t2g -t2g

q part. At the same time,

strongly dispersive χ
0,eg-t2g

q contribution, which is assumed
to correspond to the (remaining) itinerant degrees of freedom,
provides the maximum of the resulting χ0

q at q = 0 and appears
to be the main source of the stability of the ferromagnetic
ordering in iron within LDA+DMFT approximation. The
obtained results do not change qualitatively for the other choice
Hubbard interactions (as we have verified for U = 4.0 and
I = 1.0 eV); see Appendix A.

To see the quantitative implications of the described
physical picture, we consider the effective spin-fermion model

S = 1

2

∑
i,j,q,ωn

χ−1
S (q,iωn)Si(iωn)Sj (−iωn)eiq(Ri−Rj )

+ 2I
∑
i,ωn

Si(iωn)si(−iωn)

+
∑
νnσ ll′

c
†
lσ (iνn) [−iνnδll′ + Hll′ + �ll′(iνn)] cl′σ (iνn)

(1)

(ωn is a bosonic Matsubara frequency; l,l′ combines site and
orbital indices), describing interaction of itinerant electrons
with (almost) local spin fluctuations (in contrast to critical spin
fluctuation in cuprates [15]); see also Ref. [16]. We assume
here that the Coulomb and Hund’s interaction acting within
eg and t2g orbitals results in a formation of some common
local moment (field S), while the remaining itinerant degrees
of freedom are described by the field si = seg

i + st2g

i , formed
from the Grassmann variables cl′σ ; Hll′ and �ll′ are the Hamil-
tonian and local self-energy corrections to the LDA spectrum
(the latter is assumed to be local and therefore diagonal
with respect to orbital indices). The interaction between the
two subsystems (localized and itinerant), which are formed
from the d-electronic states, is driven by Hund’s constant
coupling I .

Considering the renormalization of the propagator χS by
the corresponding boson self-energy corrections, we obtain
for the nonuniform susceptibility (see Appendix B)

χ−1(q,iωn) = χ−1
loc (iωn) − Jq

/(
4μ2

B

)
, (2)

where χloc(iωn) is the local spin susceptibility and Jq
is the exchange interaction, which fulfills

∑
q Jq = 0 (no

spin self-interaction). We find Jq = J
(1)
q + J

(2)
q , J

(1)
q =

(I/μB )2 ∑
m[χ0,mm

q − ∑
p χ0,mm

p ] is the intraorbital part,

while J
(2)
q = 2(I/μB )2χ

0,t2g-eg

q results from the hybridization
of states of different symmetry. The contribution J

(1)
q is

approximately twice smaller than J
(2)
q , and therefore the

main contribution to the magnetic exchange comes from the
hybridization of t2g and eg states. The whole momentum
dependence of J

(2)
q can be well captured by the nearest-

neighbor approximation for effective exchange integrals only,
J

(2)
q = J0 cos(aqx/2) cos(aqy/2) cos(aqz/2), while J

(1)
q has

more complicated momentum dependence.

Restricting ourselves by considering the contribution Jq =
J

(2)
q (we assume that the contribution J

(1)
q is further suppressed

by the nonlocal and vertex corrections), from Fig. 1 we find
at T = 290 K the value Jq=0 = 0.18 eV. This value, as well
as the momentum dependence of J

(2)
q , agrees well with the

result of Okatov et al. [6]. The obtained results together with
μ2

eff = 11.4μ2
B (see Fig. 2) provide an estimate for the Curie

temperature, which can be obtained from the divergence of
χ−1(q,0):

TC = μ2
eff

4μ2
B

J0

3
= 0.17 eV, (3)

and appears comparable with the result of full DMFT calcula-
tion, and therefore shows that the above model is adequate for
describing magnetic properties of the full five-band Hubbard
model. [Note that the overestimation of TC in DMFT approach
in comparison with the experimental data is due to density-
density approximation for the Coulomb interaction [17] and
due to the presence of nonlocal fluctuations, not accounted for
by DMFT.]

Neglecting longitudinal fluctuations of field S we can map
the model (1) to an effective S = 1 Heisenberg model HH =
(1/2)

∑
ij Jij SiSj to estimate the spin-wave spectrum:

ωq = S(J0 − Jq) = S(I/μB )2
(
χ

0,eg -t2g

0 − χ
0,eg -t2g

q
)
. (4)

We obtain the corresponding spin stiffness D =
limq→0(ωq/q

2) = 290 meV Å
2

in a good agreement

with the experimental data D = 280 meV Å
2

(Ref. [18]).
In conclusion, we have considered the problem of the

description of effective local moments in α-iron based on
the electronic spectrum in a paramagnetic phase within the
LDA+DMFT approximation. We find that local moments are
formed by both eg and t2g orbital states, each of them contribut-
ing a half of the total moment S = 1. For t2g electronic states
we find pronounced features of non-Fermi-liquid behavior,
which accompanies an earlier observed nonquasiparticle form
of eg states. The local moment and itinerant states interact
with itinerant states via Hund interaction, yielding magnetic
exchange between the local-moment states via the effective
RKKY-type mechanism. The obtained exchange integrals are
well captured by the LDA+DMFT approach. The main origin
of the intersite interaction of these moments is attributed to
the eg-t2g hybridization, which yields magnetic exchange,
dominating on the nearest-neighbor sites. Contrary to the
previous studies [6,19], we do not however assume some
magnetic ordering for the electronic system.

We also emphasize that nonlocal self-energy corrections,
as well as vertex corrections, missed in our investigation,
can make the described physical picture more precise. In
particular, nonlocal effects allow for the nonzero nondiagonal
eg-t2g self-energy matrix elements and therefore possibly
renormalize the strength of exchange interaction, as well as
the self-energy of t2g electronic states. The role of the vertex
corrections, only roughly accounted for in the considered
approach, also requires additional study. Therefore, further
investigation using powerful theoretical techniques of dynamic
vertex approximation [20], dual fermion [21], or other nonlocal
approaches is of certain interest.
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APPENDIX A: LOCAL AND NONUNIFORM
SUSCEPTIBILITIES FOR U = 4 eV

We test below the stability of our results to change of
model parameter values: results of the calculations by using
the same method as in the main text but the other choice
of parameters (U = 4.0 and I = 1.0 eV), which are close to
those of Ref. [22]. The results for the temperature dependence
of the inverse local magnetic susceptibility are shown in
Fig. 5. We find the crossover discussed in the main text at
lower T ∗ ∼ 1050 K. The calculation of momentum dependent
irreducible susceptibility yields only the uniform (with respect
to q) renormalization without change of qualitative tendencies
(see Fig. 6; cf. Fig. 4 of the main text). We have recalculated
exchange interactions from these results and obtain J

(2)
q=0 =

0.13 eV vs 0.18 eV in the main text. This implies lowering
of the Curie temperature, which agrees with approximate
renormalization of T ∗ by 1.5 times (cf. Fig. 1 of the main text).
The qualitative conclusions of the paper remain unchanged for
these parameter values.

APPENDIX B: CALCULATION OF EXCHANGE
INTERACTION FROM THE SPIN-FERMION MODEL

To obtain exchange interaction, we first determine the
bare propagator of magnetic degrees of freedom χS(q,iωn)
by requiring that the dressed propagator of S field is equal
to the susceptibility of the itinerant subsystem. Using the
random-phase-type approximation, which reduces the orbital
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FIG. 5. (Color online) The same as in Fig. 1 of the main text for
U = 4.0 and I = 1.0 eV.
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FIG. 6. (Color online) The same as in Fig. 4 of the main text for
U = 4.0 and I = 1.0 eV.

and frequency dependence of the bubble and vertex to the
respective frequency and orbital “averaged” quantities, χ0

q =∑
mn χ0,mn

q (where q = (q,iωn)) and �(iωn), we obtain

χ−1
S (q,iωn) = 4μ2

B

(
χ0

q

)−1 − 2�(iωn) + (I/μB)2χ0
q , (B1)

where the last term is added to cancel the corresponding
bosonic self-energy correction from itinerant degrees of
freedom to avoid double-counting; cf. Ref. [23]. We represent
χ0

q = χ0(iωn) + δχ0
q with momentum-independent χ0(iωn);

without loss of generality, we can assume
∑

q δχ0
q = 0, such

that χ0(iωn) = ∑
q χ0

q . From the results of Fig. 4 of the main
text it follows that δχ0

q � χ0(iωn). Expanding Eq. (B1) to first
order in δχ0

q , we obtain

χ−1
S (q,iωn) = 4μ2

Bχ−1
loc (iωn) + (I/μB)2χ0(iωn)

+ [
(I/μB)2 − 4μ2

B/χ2
0(iωn)

]
δχ0

q , (B2)

where χ−1
loc (iωn) = 1/χ0(iωn) − 2�/(4μ2

B ) is the inverse lo-
cal susceptibility. In practice, the frequency dependence
χloc(iωn) = μ2

eff/(3(T + θ )(1 + |ωn|/δ)) can be obtained from
the dynamic local spin correlation functions, which are
characterized by the temperature-independent moment μeff,

its damping δ ∝ T , and the corresponding Weiss temperature θ

(see Refs. [8,13]), the latter can be neglected at T � TC . Since
χ0 � 2μ2

B/eV and I � 1 eV the momentum dependence is
almost canceled, and we obtain the local bare propagator of
spin degrees of freedom,

χ−1
S (q,iωn) � χ−1

S (iωn) = 4μ2
Bχ−1

loc (iωn) + (I/μB)2χ0(iωn).

(B3)

Considering the renormalization of the propagator χS by the
corresponding boson self-energy corrections (cf. Ref. [23]),
we obtain for the nonuniform susceptibility

χ−1(q,iωn) = 1

4μ2
B

[
χ−1

S (q,iωn) − I 2

μ2
B

∑
mn

χ0,mn
q

]
, (B4)

which yields Eq. (2) of the main text (we use also here that by
symmetry

∑
p χ

0,t2g-eg

p = 0).
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