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Cluster density matrix embedding theory for quantum spin systems
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We applied cluster density matrix embedding theory, with some modifications, to a spin lattice system. The
reduced density matrix of the impurity cluster is embedded in the bath states, which are a set of block-product
states. The ground state of the impurity model is formulated using a variational wave function. We tested this
theory in a two-dimensional spin-1/2 J1-J2 model for a square lattice. The ground-state energy (GSE) and
the location of the phase boundaries agree well with the most accurate previous results obtained using the
quantum Monte Carlo and coupled cluster methods. Moreover, this cluster density matrix embedding theory is
cost effective and convenient for calculating the von Neumann entropy, which is related to the quantum phase
transition.
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I. INTRODUCTION

The central difficulty of solving a many-body system is
that the number of degrees of freedom exponentially increases
with the size of the system. Most quantum many-body systems
cannot be solved exactly, with the exception of a few simple
cases. Many numerical simulation approaches have been
proposed to resolve this difficulty in various ways. However,
in many cases, it is not necessary to address all degrees of
freedom. For many lattice systems with spatial symmetries,
the degrees of freedom of the subsystem can capture the most
important properties of the entire system. For example, for a
system with long-range order, the properties of the basic cell
can be used to infer the properties of the system, whereas
for a system with long-range fluctuations, the reduced density
matrix of the subsystem contains a large amount of valuable
information. However, obtaining the reduced density matrix of
the subsystem in a many-body problem remains a challenging
task.

A typical method that reduces the number of degrees of
freedom is dynamical mean-field theory (DMFT) [1–8]. This
method maps a lattice system onto an impurity model with
self-consistent bath states, which is represented by a matrix
of impurity hybridizations. Following the self-consistency
condition for DMFT, the impurity Green’s function reproduces
the local Green’s function of the lattice through an effective
mean field. In other words, this method treats the impurity
degrees of freedom exactly and approximates the bath states at
the mean-field level. The degrees of freedom of the subsystem
(impurity), namely, the local Green’s function, represent the
system properties.

Very recently, density matrix embedding theory (DMET)
[9–11], an alternative to DMFT, has been proposed to compute
frequency-independent quantities in Hubbard models. In this
method, the reduced density matrix of the impurity is embed-
ded in a bath state that consists of a single bath site per impurity
site. The exact embedding of the Hamiltonian is replaced
with one that is exact for a one-particle mean-field lattice
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Hamiltonian. This method reproduces the ground-state energy
curves with high accuracy compared with the Bethe ansatz
for the one-dimensional (1D) Hubbard model and compared
with quantum Monte Carlo methods for the two-dimensional
(2D) case. In general, the embedded theory divides the
degrees of freedom of the lattice system into two compo-
nents, with the impurity treated exactly and the bath treated
approximately.

To date, the embedded theory has been used predominantly
in fermion models. DMFT has been used successfully in den-
sity functional theory and typical band-structure calculations
as well as for determining the electronic structures of strongly
correlated materials. DMET yields highly accurate results for
the ground-state energy (GSE) and correlation function in the
Hubbard model. However, in only a few studies [12] has a spin
system been mapped onto an impurity model. Furthermore,
the treatment of the bath state in Ref. [9] is not suitable
for a spin lattice system. These difficulties motivate us to
study how the embedded theory can be used in a spin lattice
system.

In this study, we apply DMET, with some modifications, to a
spin lattice system. We use a spin-1/2 antiferromagnetic J1-J2

model for a square lattice as an example to demonstrate the use
of DMET. It is straightforward to extend this method to other
2D quantum spin systems on typical types of lattices (triangu-
lar, honeycomb, kagome). The antiferromagnetic J1-J2 model
is the canonical model for studying the interplay of frustration
effects and quantum phase transitions, and this model has
attracted considerable attention over the past two decades
[13–33]. It is well accepted that the ground state of this model
exhibits two long-range-ordered phases, namely, a Néel phase
for J2 < 0.4 and a collinear phase for J2 > 0.6, separated by
a disordered quantum paramagnetic (QP) phase. The primary
interest in the antiferromagnetic J1-J2 model is focused on
the properties of the intermediate phase corresponding to
0.4 < J2 < 0.6, which remain a topic of debate. The results of
series expansions [14], large-N expansions [15], the projected
entangled-pair states method [29], and the coupled cluster
method [28] are believed to indicate the emergence of a valence
bond state. By contrast, the density matrix renormalization
group [32] and spin-wave calculations [13] suggest that the
intermediate phase is a spin liquid state. The Hamiltonian of
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this model is given by

H = J1

∑
〈i,j〉

SiSj + J2

∑
〈i,k〉

SiSk, (1)

where J1 and J2 are the (positive) nearest-neighbor (NN)
coupling and next-NN (NNN) coupling, respectively. The
sums 〈i,j 〉 and 〈i,k〉 run over the NN and NNN pairs,
respectively. We set J1 ≡ 1 in the following calculation. The
GSE is determined by the bond energy 〈�|SiSj |�〉; therefore,
we use the cluster embedding scheme, which is similar to
cluster DMFT.

The remainder of this study is organized as follows. In
Sec. II, we demonstrate the application of cluster DMET to
the 2D antiferromagnetic J1-J2 model for a square lattice and
demonstrate the optimization of the impurity wave function.
In Sec. III, we present the GSE for J2 = 0 and GSE curves
for J2 �= 0. These results agree well with those obtained
using several other methods. Moreover, we demonstrate
the embedding effect of the approximate bath states. The
reduced density matrix of the impurity spin cluster can be
easily calculated using this cluster-DMET approach. The von
Neumann entropy is used to determine the quantum phase
transitions. Finally, a summary is presented in Sec. IV.

II. CLUSTER DENSITY MATRIX EMBEDDING THEORY

When a spin lattice system is mapped to an impurity
problem, the ground-state wave function |�〉 can always be
expressed as

|�〉 =
∑

i

ai |α〉i |β〉i , (2)

where the {|α〉i} denote the basis sets of the impurity spin
sites, the {|β〉i} denote the states of the remaining lattice
sites, and the ai represent the expansion coefficients. Here,
the bath states represent an exact embedding for the impurity
spin cluster. However, the problem of obtaining the bath states
remains a many-body problem. Following the basic concept
of the embedded theory, we must use an approximate bath
state to replace the exact embedding bath states. However,
if we follow the original DMET as presented in Ref. [9],
replacing the bath states with a one-particle mean-field
state, the result is a hierarchical mean field [34]. Thus, the
treatment of the bath states that applies for the Hubbard
model is not suitable for the spin system. We must find
new alternative methods of approximating the bath states
for the spin lattice system. The interaction between the
impurity cluster and the bath sites should be contained in
the impurity wave function. Thus, we replace the exact
embedding bath state |β〉i with a set of block-product states
|βBPS〉i . The wave function of the impurity model is

|�〉imp =
∑

i

ai |α〉i |βBPS〉i . (3)

The number of block-product states equals the number of
basis sets of the impurity cluster, thereby indicating that the
bath states are approximated beyond the mean-field level.
Then, the impurity ground-state wave function is easily
computed using the linear iteration optimization algorithm
[35,36].

FIG. 1. A square lattice under periodic boundary conditions is
divided into 2 × 2 spin clusters, where A is treated as an impurity
cluster and the remaining spin clusters are treated as bath states.

For simplicity, we divide a finite square lattice under
periodic boundary conditions into 2 × 2 spin clusters, as shown
in Fig. 1, and arbitrarily select one cluster A as the impurity
cluster. The remaining spin clusters are treated as bath states.
The shape is selected such that the equivalence of all sites in
the impurity cluster is preserved. The wave vectors of the
Néel state and the collinear state are (π,π ) and (π,0) [or
(0,π )], respectively. The 2 × 2 spin clusters match the C4

rotational symmetry of the Néel state and the C2 rotational
symmetry of the collinear state. In Ref. [34], 2 × 2 spin clusters
were demonstrated to be suitable for application to a square
J1-J2 lattice. It is clear that considering a larger spin cluster
could improve the results. However, the number of bath states
exponentially increases with the size of the spin cluster. The
ground-state wave function of the impurity model is given by

|�〉imp = a0 |0000〉 |βBPS〉0 + a1 |0001〉 |βBPS〉1 + · · ·
+ a15 |1111〉 |βBPS〉15, (4)

where |βBPS〉 = ∏
i=bath clusters(bi0|0000〉 + bi1|0001〉 + · · · +

bi,15|1111〉). The approximation of the bath state is identical
to the hierarchical mean-field theory with spin cluster 2 × 2.
However, we use 16 block-product states to represent the
bath state. We will demonstrate in the following that these
block-product states reproduce the interaction between the
impurity sites and bath sites.

Now, the ground-state wave function is determined by
a set of block-product states {|βBPS〉i}, and the expansion
coefficients {ai} can be obtained using the linear iteration
optimization algorithm. The core concept of this algorithm
is to optimize the impurity wave function such that the
eigenvalue of the impurity model Eimp = 〈�|H |�〉imp tends
toward a minimum. For each step of iteration, we optimize
one spin cluster of the block-product states; the variational
parameters contain normalization coefficients of the bath states
and original parameters of the spin cluster. We first randomly
generate a wave function of the impurity model. The kth cluster
of the ith block-product states of the bath states is optimized
as follows. First, we express the ith block-product states αiβi
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TABLE I. GSEs of the 2D Heisenberg model for an L×L square lattice obtained using cluster DMET. The impurity scheme is a 2 × 2 spin
cluster. The extrapolated result, E = −0.669 42, is very close to the most accurate results obtained using other methods.

L 8 12 16 � QMC CCM

E0 −0.669176 −0.669392 −0.669412 −0.66942 −0.66944 −0.66936

as

αiβi = bik0 |0000〉αiγ + bik1 |0001〉 αiγ + · · ·
+ bik,15 |1111〉 αiγ, (5)

where γ = ∏
j �=k(bij0|0000〉+bij1|0001〉+· · ·+bij15|1111〉).

Then, the matrix elements of the Hamiltonian are calcu-
lated in the subspace spanned by {α0β0,α1β1,αi−1βi−1, . . . ,

αi+1βi+1,α15β15,|0000〉αiγ,|0001〉αiγ, . . . ,|1111〉.αiγ }. The
eigenstate {b0,b1, . . . ,b30} and the corresponding eigenvalue
Eimp can be obtained by solving the generalized eigen-
value problem. The normalization coefficients and origi-
nal parameters of the kth cluster of the ith block-product
states {a0,a1, . . . ,ai−1,ai+1, . . . ,a15,bik0,bik1, . . . ,bik,15} are
replaced with {b0,b1, . . . ,b30}. By optimizing the spin clusters
of the bath states individually and repeating this iterative
procedure until the eigenvalues converge, we can obtain the
ground-state wave function and GSE of this impurity model.
The rate of convergence depends on the truncation error
τ = �E/E. We take τ = 10−6 to ensure the convergence of
the ground-state wave function. The number of iterations used
in our calculation is generally approximately 103, which can
be easily performed by a PC.

In general, our method offers several features that are
different from those of the original DMET in Ref. [9]. First,
we use a set of block-product states to approximate the bath
states. Second, we use the variational method to optimize the
wave function of the impurity model. This implementation is
stable and efficient.

III. RESULTS

In the following, we discuss how to extract the bulk
properties from the ground state of the impurity model. We
focus primarily on the GSE. Note that the GSE of the spin
lattice system is determined by the bond energy. For J2 = 0,
the J1-J2 model simply reduces to the 2D Heisenberg model,
which exhibits rotational and translational invariance. All NN
bond energies are identical. Therefore, we use the bond energy
e′
i = 2〈�|S1S2|�〉 in the impurity cluster to represent the GSE

of the 2D Heisenberg model.
Table I lists the GSEs obtained by calculating the impurity

model for various lattice sizes. The extrapolated result is E =
−0.669 42, which is very close to the previous most accurate
results obtained using quantum Monte Carlo (QMC) methods
(E = −0.669 44) [37], the coupled cluster method (CCM)
(E = −0.669 36) [38], and third-order spin-wave theory (E =
−0.669 31) [39]. Note that unlike other simulation methods,
which exhibit remarkable scaling effects, the bond energy of
the impurity cluster is insensitive to the lattice size. This
difference implies that using cluster- DMET, we can obtain
reasonable results in the thermodynamics limit by calculating

only a finite lattice system. The computation cost is lower than
that of other methods.

For J2 �= 0, it is not appropriate to use the intercluster bond
energy to represent the GSE of a lattice system because the
rotational and translational invariance is broken. In this case,
we sum all the bond energies that link the impurity sites and
take half of the resulting value:

ei = 1

2
J1

∑
〈i,j 〉

〈SiSj 〉 + 1

2
J2

∑
〈i,k〉

〈SiSk〉, (6)

where the sums 〈i,j 〉 and 〈i,k〉 run over the NN and NNN pairs,
respectively, of site i. This approach will clearly lead to a loss
of precision because some bonds that link the impurity and bath
sites are considered. From this perspective, the ideal impurity
cluster scheme employs a 4 × 4 spin cluster and calculates
the average value of the site energies of the central 2 × 2 spin
cluster. However, the bath states consist of 216 block-product
states in this scheme, which is difficult to optimize. In fact, the
GSE calculated using (6) is E0 = −0.6659 for J2 = 0, which
still indicates high accuracy.

Figure 2 presents the GSE curves obtained for the 2 × 2
impurity cluster (empty squares) for various J2. For compar-
ison, we also present the extrapolated result obtain using the
CCM (empty triangles) [28,30]. We observe that our results
agree well with those of the CCM for small J2 and large J2.
However, the accuracy is lower in the intermediate regime.
As noted above, by increasing the size of the embedded
cluster, one can obtain more accurate results. Therefore, we

FIG. 2. (Color online) Energy curves for various values of J2; the
impurity schemes are a 2 × 2 spin cluster (empty squares), a 2 × 4
spin cluster (empty circles), and only the central (2 × 2) half of the
2 × 4 spin cluster (full circles); the reference data are extrapolated
results obtained using the CCM (empty triangles).
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embed a 2 × 4 spin cluster (empty circles) as impurity sites
and calculate the average value of the site energies of the
impurity cluster. The block-product states of the 2 × 2 spin
cluster are still employed for the bath states. For each step of
iteration, the number of the variational parameters is 271 for
this impurity scheme. The accuracy improves slightly in the
QP phase. Note that the 2 × 4 impurity cluster results degrade
in the collinear phase because this cluster no longer exhibits
fourfold lattice symmetry. Moreover, the equivalence of the
sites in the 2 × 4 impurity cluster is broken. This shape of
the impurity cluster causes the accuracies of the impurity sites
to be unequal from each other. We can calculate the average
energy of the central 2 × 2 spin sites, representing half of the
total cluster (full circles). For this calculation, the accuracy
in the intermediate regime increases remarkably. From many
previous studies [28,29,31,32], we know that the intermediate
phase exhibits no magnetic order but does exhibit long-range
fluctuations, unlike the Néel and collinear phases. This finding
may be the reason that the accuracy is lower in the QP phase
for the 2 × 2 impurity cluster.

To illustrate the cluster-DMET approach in the spin lattice
system, we present the site energies of the impurity model for
J2 = 0 [see Fig. 3(a)] and J2 = 0.5 [see Fig. 3(b)]. According
to our calculations, the system is rotationally invariant in the
Néel phase and the QP phase; therefore, we select only one
row of the square lattice that crosses the impurity cluster. It is
apparent that the site energy curves exhibit the same features
for J2 = 0 and J2 = 0.5. Specifically, in cluster DMET, the
square lattice system is divided into three regions based on the
site energy values: the impurity cluster, the adjoining region
that surrounds the impurity cluster, and the remaining outer
spin clusters. The impurity cluster has the lowest site energy
values, which correspond to the GSE of the spin lattice system
in the thermodynamic limit. The site energy of the outer spin
clusters is approximately −0.584 05, which is very close to
the GSE obtained using the hierarchical mean-field method
with a 2 × 2 cluster [34]. These results clearly demonstrate
the embedding effect of the impurity model. The outer spin
clusters produce a mean-field environment, and the adjoining
region mimics an exact embedding of the impurity cluster. It
is known that DMFT maps a lattice system onto an impurity
model. The Hamiltonian of the impurity model is divided into
three components: the noncorrelated bath sites, the impurity
sites, and the hybridizations between the impurity and bath
states. In the original DMET, the impurity Hamiltonian is
approximated as

H = HA + hAB + hB, (7)

where HA represents the exact embedded impurity and hB

represents the mean-field embedding of the bath Hamiltonian.
The form of this Hamiltonian suggests that the site energy
obtained using our variational wave function is identical to
the approximations of DMFT and the original DMET. The
accuracy of the impurity site energy is dependent on the
effective width of the square ring surrounding the impurity
sites. Because of the mean-field approximation of the bath
state, the impurity site energy is insensitive to the lattice size.

In the results presented above, we observe that the 2 × 2
impurity scheme is sufficient to obtain the high accuracy GSE
for the Néel state; however, the accuracy is lower for J2 =

FIG. 3. (Color online) The position distributions of site energies
for J2 = 0 (a) and J2 = 0.5 (b) obtained using cluster-DMET with
2 × 4 (squares) and 2 × 2 (circles) impurity clusters. Ri is the position
of site i; the lowest values of the curves correspond to the impurity
sites; the surrounding spins produce an embedding effect on the
impurity cluster; and the remaining bath spins produce a 2 × 2 cluster
mean field.

0.5, which corresponds to the QP phase. In an attempt to
address this shortcoming, we consider a larger 2 × 4 impurity
cluster. We select one row across the long edge of the 2 × 4
impurity cluster. In this case, the GSEs of the four impurity
sites are observed to be nearly equal for J2 = 0 [see Fig. 3(a)].
Compared with the 2 × 2 impurity scheme, the 2 × 4 impurity
cluster does not yield any improvement to the GSE for the Néel
state. However, for J2 = 0.5, the GSEs of the central two sites
are significantly improved in the disordered phase, whereas
those of the two sites at the cluster edge are not improved
[see Fig. 3(b)]. In other words, although a 2 × 4 spin cluster is
embedded in the bath states, we still treat only the central 2 × 2
spin cluster as an impurity. In this embedding implementation,
the ground-state wave function of the cluster impurity model
has the following form:

|�〉 =
∑
m

(
am |αm〉

∑
n

un |μn〉 |β ′
BPS〉mn

)
, (8)

where the {αm} denote the basis set of the central 2 × 2
impurity cluster and the {μn} denote the basis set of the
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remaining four spin sites of the 2 × 4 spin cluster. In fact, if
we repeat this procedure, we ultimately obtain the exact wave
function of the lattice system. This finding can be explained
by the fact that the bath states are treated as more accurate,
robust, and accommodative. Specifically, several spin sites that
surround the impurity cluster are treated exactly. However,
the outer spin clusters are still block-product mean-field
approximations. As observed in Fig. 3, the effect of this
embedding method is to enlarge the adjoining region that
mimics exact embedding. This finding suggests that the
accuracy of the impurity sites is dependent on the effective
width of the adjoining region surrounding the impurity sites.

We know that the Néel phase is an ordered crystal state
and that the spin-spin fluctuation decays rapidly with distance;
therefore, it is sufficient for the adjoining region that produces
the embedding effect to consist of two rows of spins. However,
the QP phase exhibits long-range fluctuations, and therefore,
in this case, the adjoining region needs more spins. When
we treat the central 2 × 2 spin sites as an impurity cluster, the
remaining four spin sites at the edge of the 2 × 4 cluster, which
will also be treated exactly, are counted as bath sites. Thus, the
accuracy of the impurity site energy increases.

In general, compared with other high accuracy methods,
such as density matrix renormalization group, QMC, and
CCM, this cluster-DMET approach also provides an efficient
method of obtaining accurate results for a lattice system in
the thermodynamic limit. The most attractive feature of this
cluster-DMET approach is that the multiple block-product
bath states are sufficient to obtain high accuracy GSEs for
an ordered magnetic phase. The cluster-DMET calculations
for optimizing the wave function are much less expensive. For
a disordered state, we can use Eq. (8) to make the bath states
much more accurate. It offers a good compromise between
accuracy and computational cost. These capabilities make
cluster DMET more powerful. Moreover, this cluster DMET
works in the thermodynamic limit. The properties of impurity
cluster represent the cluster sites in an infinite lattice system,
although we just calculate a finite impurity model.

Although this method provides accurate GSE results, its
shortcomings are obvious. Because the bath state is treated
approximately, the spin-spin correlation function between two
spin sites cannot be captured when one site belongs to the
impurity state and the other belongs to the bath state. However,
this cluster-DMET approach nevertheless affords a reasonable
reduced density matrix of the impurity cluster because the bath
states mimic an exact embedding. The density matrix offers
the following advantage over two-site correlation: it encodes
the total amount of information shared between the two sub-
systems. This information is quantified by the von Neumann
entanglement. If the lattice spin system is partitioned into a
subsystem A and its complement B, the von Neumann entan-
glement entropy between subsystems A and B can be defined as

S (ρA) = −Tr (ρA ln ρA) , (9)

where ρA = trB |�〉〈�| is the reduced density matrix. The
relationship between the quantum phase transition and the von
Neumann entanglement entropy has been reported for many
1D systems [40–45]. However, few studies have focused on the
von Neumann entanglement entropy of 2D systems because
of the difficulty of obtaining the reduced density matrix.

FIG. 4. (Color online) The entanglement entropy curves for var-
ious J2; all curves exhibit a discontinuity at J2 = 0.62, indicating a
first-order transition from the QP phase to the collinear phase.

Using this method, we can obtain the reduced density matrix
of the impurity cluster by tracing out the bath states, which
is very convenient for calculating the von Neumann entropy
entanglement. We can also calculate either one-site or two-site
von Neumann entropy entanglement in the impurity cluster.

As is well known [40–45], a discontinuity or singularity in
the entanglement entropy indicates a first-order quantum phase
transition, and a peak in the derivative of the entropy indicates
a continuous quantum phase transition. Thus, we calculate the
one-site, two-site, and plaquette von Neumann entropy entan-
glement of the impurity cluster, which are labeled in Fig. 1. Fig-
ure 4 shows several entanglement entropy values for various
J2: S(ρ1) (full squares), S(ρ12) (empty squares), S(ρ13) (empty
circles), S(ρ14) (empty triangles), and S(ρ1234) (full diamonds).
All curves exhibit a discontinuity or singularity at J2 = 0.62,
which corresponds to a first-order transition from the QP phase
to the collinear phase. A second-order phase transition from
the Néel phase to the QP phase is captured by the derivative
of the entanglement entropy (see Fig. 5). All curves peak at
J2 ≈ 0.42. The location of the phase boundaries is consistent
with the observations of previous studies [28,30–32].

Notably, the four-site block-block entanglement entropy
exhibits some noticeably different features compared with the
other curves presented in Fig. 4. The entanglement entropy
reaches a maximum at J2 ≈ 0.3, which does not correspond
to a phase transition. In addition, the entanglement entropy
values decrease in the intermediate regime, indicating that the
correlation between a plaquette and the remaining lattice sites
is relatively small when J2 is approximately 0.5. This result
suggests that the major contribution to the entanglement of the
QP phase originates from the 2 × 2 spin cluster. The 2 × 2
cluster acts as a unit in the QP phase, which may indicate that
the QP phase has a weak plaquette valence solid state.

IV. SUMMARY

In this study, we apply cluster DMET to spin systems.
In this method, a lattice system is mapped onto an impurity
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FIG. 5. (Color online) The derivative of the von Neumann en-
tanglement entropy dS(ρ)/dJ2 plotted versus J2; all curves peak at
J2 ≈ 0.42, corresponding to a second-order transition from the Néel
phase to the QP phase.

model. We treat the impurity spin sites exactly and the bath
states as a set of block-product states that mimic an exact
embedding of the impurity cluster. The bath state is optimized
using a variational approach. We demonstrate this method
using the 2D spin-1/2 J1-J2 model on a square lattice. It
is straightforward to extend this cluster-DMET approach to
other 2D quantum spin systems on other types of lattices.
For the considered systems, an impurity cluster with a size
of 2 × 2 is sufficient to obtain a highly accurate GSE for the
ordered Néel phase and the collinear phase, with the bath states
approximated by a set of block-product states. For a disordered
QP phase, we can also obtain reasonable results by enlarging
the size of the impurity cluster. This cluster-DMET approach is
very efficient and convenient for calculating the von Neumann
entropy, which provides an entanglement-based view of the
quantum phase transition.
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and J. Richter, Phys. Rev. B 78, 214415 (2008).
[29] V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. B 79, 195119

(2009).
[30] J. Richter, R. Darradi, J. Schulenburg, D. J. J. Farnell, and

H. Rosner, Phys. Rev. B 81, 174429 (2010).
[31] Ji-Feng Yu and Ying-Jer Kao, Phys. Rev. B 85, 094407

(2012).
[32] H. C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424

(2012).
[33] T. Senthil, A. Vishwanath, L. Balent, S. Sachdev, and M. Fisher,

Science 303, 1490 (2004).
[34] L. Isaev, G. Ortiz, and J. Dukelsky, Phys. Rev. B 79, 024409

(2009).
[35] Quan-lin Jie, Phys. Rev. E 77, 026705 (2008).
[36] Z. Fan and Quan-lin Jie, Phys. Rev. B 89, 054418 (2014).
[37] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
[38] J. Richter, R. Darradi, R. Zinke, and R. F. Bishop, Int. J. Mod.

Phys. B 21, 2273 (2007).
[39] C. J. Hamer, Weihong Zheng, and P. Arndt, Phys. Rev. B 46,

6276 (1992).

195118-6

http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1103/PhysRevLett.93.246403
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevB.69.195105
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.101.186403
http://dx.doi.org/10.1103/PhysRevLett.92.226402
http://dx.doi.org/10.1103/PhysRevLett.92.226402
http://dx.doi.org/10.1103/PhysRevLett.92.226402
http://dx.doi.org/10.1103/PhysRevLett.92.226402
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevB.89.035140
http://dx.doi.org/10.1103/PhysRevB.89.035140
http://dx.doi.org/10.1103/PhysRevB.89.035140
http://dx.doi.org/10.1103/PhysRevB.89.035140
http://dx.doi.org/10.1103/PhysRevB.89.165134
http://dx.doi.org/10.1103/PhysRevB.89.165134
http://dx.doi.org/10.1103/PhysRevB.89.165134
http://dx.doi.org/10.1103/PhysRevB.89.165134
http://dx.doi.org/10.1103/PhysRevB.88.024427
http://dx.doi.org/10.1103/PhysRevB.88.024427
http://dx.doi.org/10.1103/PhysRevB.88.024427
http://dx.doi.org/10.1103/PhysRevB.88.024427
http://dx.doi.org/10.1103/PhysRevB.38.9335
http://dx.doi.org/10.1103/PhysRevB.38.9335
http://dx.doi.org/10.1103/PhysRevB.38.9335
http://dx.doi.org/10.1103/PhysRevB.38.9335
http://dx.doi.org/10.1103/PhysRevB.40.10801
http://dx.doi.org/10.1103/PhysRevB.40.10801
http://dx.doi.org/10.1103/PhysRevB.40.10801
http://dx.doi.org/10.1103/PhysRevB.40.10801
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.63.2148
http://dx.doi.org/10.1103/PhysRevLett.63.2148
http://dx.doi.org/10.1103/PhysRevLett.63.2148
http://dx.doi.org/10.1103/PhysRevLett.63.2148
http://dx.doi.org/10.1103/PhysRevB.41.4619
http://dx.doi.org/10.1103/PhysRevB.41.4619
http://dx.doi.org/10.1103/PhysRevB.41.4619
http://dx.doi.org/10.1103/PhysRevB.41.4619
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1103/PhysRevB.54.9007
http://dx.doi.org/10.1103/PhysRevB.54.9007
http://dx.doi.org/10.1103/PhysRevB.54.9007
http://dx.doi.org/10.1103/PhysRevB.54.9007
http://dx.doi.org/10.1103/PhysRevB.60.7278
http://dx.doi.org/10.1103/PhysRevB.60.7278
http://dx.doi.org/10.1103/PhysRevB.60.7278
http://dx.doi.org/10.1103/PhysRevB.60.7278
http://dx.doi.org/10.1103/PhysRevB.60.14613
http://dx.doi.org/10.1103/PhysRevB.60.14613
http://dx.doi.org/10.1103/PhysRevB.60.14613
http://dx.doi.org/10.1103/PhysRevB.60.14613
http://dx.doi.org/10.1103/PhysRevB.62.14844
http://dx.doi.org/10.1103/PhysRevB.62.14844
http://dx.doi.org/10.1103/PhysRevB.62.14844
http://dx.doi.org/10.1103/PhysRevB.62.14844
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevLett.91.197202
http://dx.doi.org/10.1103/PhysRevLett.91.197202
http://dx.doi.org/10.1103/PhysRevLett.91.197202
http://dx.doi.org/10.1103/PhysRevLett.91.197202
http://dx.doi.org/10.1103/PhysRevLett.92.157202
http://dx.doi.org/10.1103/PhysRevLett.92.157202
http://dx.doi.org/10.1103/PhysRevLett.92.157202
http://dx.doi.org/10.1103/PhysRevLett.92.157202
http://dx.doi.org/10.1103/PhysRevB.74.144422
http://dx.doi.org/10.1103/PhysRevB.74.144422
http://dx.doi.org/10.1103/PhysRevB.74.144422
http://dx.doi.org/10.1103/PhysRevB.74.144422
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.79.195119
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1103/PhysRevB.85.094407
http://dx.doi.org/10.1103/PhysRevB.85.094407
http://dx.doi.org/10.1103/PhysRevB.85.094407
http://dx.doi.org/10.1103/PhysRevB.85.094407
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1103/PhysRevB.86.024424
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1103/PhysRevB.79.024409
http://dx.doi.org/10.1103/PhysRevB.79.024409
http://dx.doi.org/10.1103/PhysRevB.79.024409
http://dx.doi.org/10.1103/PhysRevB.79.024409
http://dx.doi.org/10.1103/PhysRevE.77.026705
http://dx.doi.org/10.1103/PhysRevE.77.026705
http://dx.doi.org/10.1103/PhysRevE.77.026705
http://dx.doi.org/10.1103/PhysRevE.77.026705
http://dx.doi.org/10.1103/PhysRevB.89.054418
http://dx.doi.org/10.1103/PhysRevB.89.054418
http://dx.doi.org/10.1103/PhysRevB.89.054418
http://dx.doi.org/10.1103/PhysRevB.89.054418
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1103/PhysRevB.56.11678
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1142/S0217979207043658
http://dx.doi.org/10.1103/PhysRevB.46.6276
http://dx.doi.org/10.1103/PhysRevB.46.6276
http://dx.doi.org/10.1103/PhysRevB.46.6276
http://dx.doi.org/10.1103/PhysRevB.46.6276


CLUSTER DENSITY MATRIX EMBEDDING THEORY FOR . . . PHYSICAL REVIEW B 91, 195118 (2015)

[40] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 (2003).

[41] S.-S. Deng, S. J. Gu, and H.-Q. Lin, Phys. Rev. B 74, 045103
(2006).

[42] O. Legeza and J. Solyom, Phys. Rev. Lett. 96, 116401 (2006).

[43] J.-L. Song, S.-J. Gu, and H.-Q. Lin, Phys. Rev. B 74, 155119
(2006).

[44] P. Lou and J. Y. Lee, Phys. Rev. B 74, 134402 (2006).
[45] J. Ren and Shiqun Zhu, Phys. Rev. A 79, 034302

(2009).

195118-7

http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevB.74.045103
http://dx.doi.org/10.1103/PhysRevB.74.045103
http://dx.doi.org/10.1103/PhysRevB.74.045103
http://dx.doi.org/10.1103/PhysRevB.74.045103
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/10.1103/PhysRevB.74.155119
http://dx.doi.org/10.1103/PhysRevB.74.155119
http://dx.doi.org/10.1103/PhysRevB.74.155119
http://dx.doi.org/10.1103/PhysRevB.74.155119
http://dx.doi.org/10.1103/PhysRevB.74.134402
http://dx.doi.org/10.1103/PhysRevB.74.134402
http://dx.doi.org/10.1103/PhysRevB.74.134402
http://dx.doi.org/10.1103/PhysRevB.74.134402
http://dx.doi.org/10.1103/PhysRevA.79.034302
http://dx.doi.org/10.1103/PhysRevA.79.034302
http://dx.doi.org/10.1103/PhysRevA.79.034302
http://dx.doi.org/10.1103/PhysRevA.79.034302



