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Stability of persistent currents in open dissipative quantum fluids
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The phenomenon of stable persistent currents is central to the studies of superfluidity in a range of physical
systems. While most of the previous theoretical studies of superfluid flows in annular geometries concentrated on
conservative systems, here we extend the dynamical stability analysis of persistent currents to open dissipative
exciton-polariton superfluids. By considering an exciton-polariton condensate in an optically induced annular
trap, we determine dynamical stability conditions for an initially imposed flow with a nonzero orbital angular
momentum. We show, theoretically and numerically, that the system can sustain metastable persistent currents
in a large parameter region, and describe scenarios of the supercurrent decay due to the dynamical instability.
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I. INTRODUCTION

Superfluidity, which is an ability of a fluid to flow without
friction, has been studied in various systems including the
superfluid helium [1–3], superconductivity [4], Bose-Einstein
condensate (BEC) of dilute atomic gases [5], and, more
recently, exciton-polariton BECs in semiconductor microcav-
ities [6–9].

One of the most important predictions of quantum hy-
drodynamics is the formation of persistent currents of a
superfulid confined in an annular trap with an initially
imposed rotation. Apart from the fundamental interest in
this problem, ultrasensitive interferometric devices based on
persistent currents have been suggested [10–12]. The ability
to use the Laguerre-Gaussian (LG) mode of an optical laser
to trap atomic BECs and transfer orbital angular momentum
(OAM) from photons to atoms [11,13,14] fuelled intensive
studies of persistent currents in atomic condensates. Stability
analysis [15–19] confirmed that persistent currents in ultracold
atomic gases are metastable states with lifetimes limited only
by the longevity of the BEC [14]. Although these theoretical
studies agree with experiments, their scope is limited to
conservative systems at thermal equilibrium.

Applicability of the existing theories to the novel quantum
fluids formed by exciton-polariton condensates is question-
able. Polaritons are quasiparticles arising from strong coupling
between photons confined in a microcavity and excitions
in a quantum well [6,8]. The polariton condensates can
be generated either by coherent (resonant) or incoherent
(off-resonant) optical pumping schemes. While the former
leads to a condensate which is driven directly by the
pumping laser [20], the later relies on nonradiative energy
relaxation processes and stimulated scattering into the lowest
energy state, which leads to a spontaneously established
coherence [21]. Regardless of the excitation scheme, and
in contrast to ultracold atomic gasses, an exciton-polariton
BEC is an intrinsically nonequilibrium system because of
the pumping and radiative decay of polaritons. With the
growing experimental effort on creating persistent flows of
open dissipative condensates [22–27], the urgent open question
is how the intrinsic gain and loss would affect their stability.

In this work, we address this problem by constructing a
comprehensive theory of polariton condensates with nonzero
OAM supported by an optically induced annular confinement.
We focus on an incoherent, off-resonant pumping scheme,
which offers the possibility to engineer a trapping potential
landscape by shaping the optical pump beam [25,28–31] and
ensures that the condensate’s phase evolution is not driven
by the pump. We predict that persistent currents of polaritons
with sufficiently high angular momenta are always prone to
oscillatory dynamical instabilities. However, in sizable regions
of the parameter space, the quantized circulation can persist
almost indefinitely.

II. THE MODEL

The off-resonantly pumped polariton condensate can be
described by the mean-field dissipative Gross-Pitaevskii (GP)
equation for the macroscopic wave function ψ , coupled to the
rate equation for the density of the excitonic reservoir nR [32]:

i�
∂ψ

∂t
=

[
− �

2

2M
∇2 + gc|ψ |2 + gRnR + i�

2
(R nR − γc)

]
ψ,

∂nR

∂t
= P − (γR + R|ψ |2)nR, (1)

where P (r,t) is the pumping rate, gc and gR characterize the
polariton-polariton and polariton-exciton interactions, respec-
tively. The relaxation rates γc and γR quantify the finite lifetime
of condensed polaritons and the reservoir, respectively. The
stimulated scattering rate, R, controls the growth of the
condensate density.

The mean-field model (1) is phenomenological, and cannot
properly describe the condensation dynamics because it is not
frequency selective [33]. Its limitations and connections with
other models will be discussed in Sec. VI. Nevertheless, here
we focus on the problem of stability of a formed condensate
with a certain angular momentum, and therefore the assump-
tion of a macroscopic polariton occupation in a condensed
state is appropriate. Furthermore, the model conforms to
the assumption that the far-off-resonant, incoherent optical
cw excitation prohibits transfer of the pump phase to the
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condensate due to the accompanying phonon and exciton
relaxation processes.

In what follows, we will consider the dimensionless form
of Eq. (1) obtained by introducing the characteristic time T =
γ −1

c , length L = √
�/(Mγc), and energy E = �γc scales [34].

Optical trapping techniques [22–24,28–31] rely on effective
trapping potentials for polaritons created due to polariton
flows and interaction with the reservoir. In the spirit of
this approach, the annular condensate can be supported by
the LG pump beam, with the LG mode intensity defining
the spatial distribution of the condensed state. The OAM
carried by the LG beam will not be transferred to the
condensate because it is replenished from the incoherent
excitonic reservoir, which “scrambles” the phase. Within the
homogeneous approximation, the threshold of pumping rate to
build up a nonzero condensate density is Pth = γRγc/R [32].

III. STEADY CURRENTS

Equations (1) with the radially symmetric
pump, P (r), admit steady states of the form:
ψ = �(r,θ ) exp(imθ ) exp(−iμt), where μ is the energy
(chemical potential) of the steady state, (r,θ ) are the polar
coordinates, and m is the phase winding number [35]
(topological charge of a vortex) with the ground state
corresponding to m = 0. Such steady states can be found by
solving (1) numerically, with the initially imposed vorticity
ψ(0) = Ar |m| exp(imθ ), and some examples for m = 0 and
m �= 0 are presented in Fig. 1. Remarkably, the radial profiles
of the condensate show an extremely weak dependence on
m [Fig. 1 (c)]. In experiment, the initial vorticity can be
imprinted, e.g., by a pulsed resonant transfer of the orbital
angular momentum onto an established m = 0 state [36].

Within the pump area, quantized superfluid flows are
supported purely by the balance of gain and loss, and therefore
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FIG. 1. (Color online) (a) Schematics of the radial structure of
a LG pump beam; steady-state (b) density and (d) phase of the
condensate for m = 2; (c) radial profiles of the condensate steady
states with m = 0,2,10 supported by the LG50 mode with the pump
rate profile P (r) (dashed line).

resemble dissipative vortex solitons in a focusing optical
media [37]. At the same time, the steady state maintains
inward and outward polariton flows outside the pump area,
which creates an effective trapping potential in the radial
direction [38,39].

In numerical simulations, the steady states are characterized
by the conserved real part of the full energy functional E0 and
angular momentum Lz:

E0 =
∫ [

1

2
|∇ψ |2 + gR nR |ψ |2 + gc

2
|ψ |4

]
rdrdθ, (2)

Lz = i

2

∫ (
ψ

∂ψ∗

∂θ
− ψ∗ ∂ψ

∂θ

)
rdrdθ. (3)

For a steady state with azimuthally homogeneous density,
the normalised angular momentum is equal to the topological
charge of the vortex: Lz/

∫ |ψ |2rdrdθ = m.
When the radius of the LG beam is much larger than

the width of the annulus, i.e., r0 � a, one can separate
the radial and azimuthal dependence of the condensate
wave function [15,18,40,41] and derive a one-dimensional
model, which was shown to agree with its higher-dimensional
counterparts in the conservative case [16]. To this end, we set
ψ(r,θ ) = �0(r)ψ(θ,t), where r ∈ [r0 − a,r0 + a] and �0(r)
is assumed to take a constant value over the width of the ring,
2a. Substituting this ansatz into our model, and integrating out
the radial dependence, we arrive at the reduced 1D model:

i
∂ψ(θ,t)

∂t
=

{
− 1

2r2
0

∂2

∂θ2
+ gcn

0
c |ψ(θ,t)|2 + gRnR(θ,t)

+ i

2
[RnR(θ,t) − γc]

}
ψ(θ,t), (4)

∂nR(θ,t)

∂t
= P (θ ) − (

γR + Rn0
c |ψ(θ,t)|2)nR(θ,t),

where, assuming our normalization, γc = 1.
For a steady state, which is homogeneous in the radial

direction, gain balances loss: Rn0
R = γc, were n0

R is the
steady-state reservoir density. The chemical potential of
the stationary condensate with the azimuthal wave func-
tion ψ(θ,t) = ψ0

θ = exp(imθ ) exp(−iμt) is given by μ =
m2/(2r2

0 ) + gcn
0
c + gRn0

R , where n0
c = �2

0 = γR(P̄ − 1)/R is
the condensate density, and P̄ = P/Pth.

IV. STABILITY ANALYSIS

The stability of the steady states with nonzero angular mo-
mentum can be analyzed following the standard Bogoliubov-
de Gennes (BdG) approach [5], by calculating the spectrum of
the elementary excitations of the condensate and the reservoir
in our reduced one-dimensional model: ψ(θ,t) = ψ0

θ (1 + δψ),
and nR(t) = n0

R + δnR . The excitations of the steady state and
its reservoir are introduced in the form [32,42]

δψ = u0 eikθ−iωt + v∗
0 e−ikθ+iω∗t ,

δn = w0 eikθ−iωt + w∗
0 e−ikθ+iω∗t .

(5)

Inserting ψ(θ ) and nR into Eq. (4), and keeping only linear
terms, we obtain the BdG equations: Lm(k)U = ωU , where
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FIG. 2. (Color online) Dispersion curves Re[ω(k)] = 
(k) and
Im[ω(k)] = �(k) for fixed P̄ = 2.5, m = 60, and (a) P0 < γc/γR ,
(b) P0 = γc/γR , (c) P0 > γc/γR . Insets show the corresponding
dispersion for m = 0.

U = (u0,v0,w0)T , and

Lm(k) =

⎡
⎢⎣

(
k+ + gcn

0
c

)
gcn

0
c

(
gR + i

2R
)

−gcn
0
c

(
k− − gcn

0
c

) −(
gR − i

2R
)

−iγcn
0
c −iγcn

0
c −i

(
γR + Rn0

c

)

⎤
⎥⎦.

Here, k± = ±(1/2)(k̄2 ± 2k̄m̄) and {k̄,m̄} = {k/r0,m/r0}.
The spectrum of elementary excitations for m = 0 is well

known [8,32,43–45]. For m �= 0, the dispersion relation given
by the BdG equations is

ω3 − ω2(2k̄m̄ − iγ̄R)

−ω
(
ω2

B − k̄2m̄2 + Rγ̄c − 2iγ̄Rk̄m̄
) − f (k̄,m̄) = 0,

where f (k̄,m̄) = γ̄c(igRk̄2 + Rk̄m̄) + iγ̄R(ω2
B − k̄2m̄2), ω2

B =
k̄4/4 + gc�

2
0k̄

2 is the standard Bogoliubov dispersion, and we
introduced the shorthand notations: γ̄c = γc�

2
0 = Pth(P̄ − 1)

and γ̄R = γR + R�2
0 = γRP̄ .

At k = 0, the real part of the excitation frequency ω(0) =

(0) + i�(0) is found as 
2(0) = Rγ̄c − γ̄ 2

R/4. Consequently,
it turns to zero for a critical pumping power P0 ≡ P̄ 2/[4(P̄ −
1)] = γc/γR , and the spectrum near k = 0 resembles the
Bogoliubov dispersion. For P0 < γc/γR , the Goldstone mode
(ω = 0) at k = 0 is separated from the nonzero mode by a gap
of the size 
2(0) > 0 [46]. For P0 > γc/γR , 
2(0) < 0 and the
excitations exhibit a diffusive behavior near k = 0 [32,43,47].
The gapped and diffusive characters of the excitation spectra
can be linked, respectively, to the underdamped and over-
damped oscillations of the reservoir discussed in Ref. [46].
Figure 2 shows typical dispersion curves for the m �= 0 in the
gapped (a) and diffusive (c) regimes and the marginal case
P0 = γc/γR [Fig. 2(b)]. In what follows, without the loss of
generality, we assume the condition m > 0.
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FIG. 3. (Color online) Critical values of k∗
1 and k∗

2 defining the
modulational instability domains (shaded) in the regimes (a) I and
(b) II corresponding to Figs. 2(a) and 2(c), respectively. (c) Phase
diagram of mds/r0. Dashed line, P̄ = (gR/gc)(γc/γR), separates the
MI regimes I and II . Solid line is given by P0 = γc/γR (see text);
(d) stability domains in the m vs r0 plane. Dots correspond to
the 2D numerical simulations, the boundary (dashed), mds, of the
dynamically stable (shaded) region is given by the 1D theory.

When the imaginary part of the excitation frequency
becomes positive, �(k) > 0, for an interval k∗

2 < k < k∗
1 , the

corresponding steady state experiences modulational (dynam-
ical) instability (MI). Although the rotationally symmetry of
the flow is preserved [48], its instability stems from the open
dissipative nature of the polariton system [32]. As seen from
Fig. 2, for m �= 0, the corresponding real part of the excitation
frequency is always nonzero, 
(k) �= 0, which indicates the
oscillatory nature of the instability. The polariton current
exhibits MI only above certain critical OAM, m > mds, which
is defined by �(k) crossing into the positive half-plane, at
which point k∗

1 = k∗
2 �= 0. Two regimes of instability can be

identified.
Regime I corresponds to mds = 0 and is defined by the

condition P̄ < (gR/gc)(γc/γR) [45]. In this regime, the ground
state m = 0 is modulationally unstable, and k∗

2 = 0, as shown
in the inset on the right panel of Figs. 2(a) and 3(a). The real part
of the corresponding excitation frequency is zero, 
(k) = 0,
so that perturbations of the m = 0 state grow exponentially and
lead to fragmentation of the azimuthally homogeneous steady
state. In this parameter range, due to the saturable nature of gain
in this system, the effective nonlinearity becomes attractive
for low condensate densities [45]. As seen from Fig. 3(c)
(below dashed line), this regime mostly overlaps with the
gapped domain of the excitation spectra (below the solid line).
Physically, this behavior appears to be most relevant near the
condensation threshold, P̄ ∼ 1 due to the long lifetimes of the
reservoir compared to condensate polaritons γR/γc < 1.

Regime II corresponds to mds > 0 and P̄ > (gR/gc)(γc/γR)
[Fig. 3(c), above dashed line]. In this regime, the ground
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state m = 0 is dynamically stable, and the 1D theory predicts
dynamical stability of the flow against azimuthal density
modulations up to reasonably high values of mds [Figs. 3(b)
and 3(c)].

V. DYNAMICS OF THE PERSISTENT CURRENTS

Numerical simulations of the full 2D model (1) with a weak,
incoherent perturbation applied to the steady current, show
remarkable agreement with the predictions of the 1D stability
theory. Indeed, in the regime II , for m > mds, the initial stage
of the instability development manifests in oscillating and
rapidly growing density perturbations [Fig. 4(d)], whereby
the condensate fragments [Fig. 4(b)]. Fluctuations around
the steady state grow without the formation of surface
modes [49,50], confirming the validity of our 1D approxi-
mation. During the long-term, nonlinear stage of instability
development, the azimuthal flow “heals” [Fig. 4(c)], and
the system attains a new, dynamically stable steady state
[Fig. 4(a)]. Figure 4 shows a typical scenario of the oscillatory
instability development causing the system to enter a steady
state with a reduced OAM and energy.

In contrast, in the regime I , where mds = 0, once the
dynamical instability of the persistent current is triggered, the
steady flow never recovers [Fig. 5]. The rate of instability-
triggered decay depends on the maximum instability growth
rate, max(�), which accounts for the broad transition region
from dynamically unstable to stable regime depicted in
Fig. 3(d).

In the annular geometry, steady-state transitions can be
observed only in the MI domain, m > mds. Indeed, in
this parameter domain, the modulationally unstable current
undergoes fragmentation and experiences phase slips, thus
enabling the condensate to reduce its OAM (see Fig. 4).
Outside the MI domain, the exponential decay of excitations
suppresses the development of instability, and the vortex flow
remains dynamically stable. Indeed, for m 
 mds [red dots in

60 100 150 200 250
1
2
3
4
5
6
7

20

40

60

80

60 100 150 200 250
0

100

200

300

|ψ
|

(f)(e)(d)

(a) (b) (c)

E L

t

t

b

c

FIG. 4. (Color online) Evolution of a dynamically (modulation-
ally) unstable state with m > mds in the regime II . (a) Energy
and (normalised) angular momentum evolution during steady state
switching triggered by the oscillatory instability; (b) and (c) density
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(c) and (f) final stages of evolution. (d) Peak density evolution at an
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weak pulsed perturbation.
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arbitrary point. Dashed line in (a) and (d) indicates the introduction
of a weak pulsed perturbation.

Fig. 3(d)], we do not observe decay of the persistent flow in
our full 2D numerical simulations of the model.

The above reasoning is consistent with the previous
numerical study of a single charge polariton vortex in a wide
annulus geometry [51]. The loss of the spatial coherence of
the condensate shown to be associated with the decay of the
circulation [51], is a typical signature of the MI triggered by
fluctuations [52].

VI. CONCLUSIONS

We have analyzed the dynamical (modulational) instability
of the persistent currents in dissipative polariton condensates
confined by all-optical annular traps and predicted that a
current with an orbital angular momentum within the modula-
tionally stable domain will persist. Above the critical values of
the OAM, the flows suffer from oscillatory instabilities, which
leads to either dynamical switching to a new metastable steady
state with a lower OAM, or to fragmentation and destruction
of the superfluid flow. Within the framework of our model,
the transition between different steady states is triggered by
the dynamical instability, whereas possible investigations of
energetic instability [19,56] should additionally account for
energy relaxation processes in the exciton-polariton system.

Owing to the complexity of the open dissipative nature of
polariton systems, there exist several different phenomeno-
logical models that feature complex pumping and decay
mechanisms [44]. It is therefore instructive to discuss the
relevance of our results to specific features of our model.

First, the influence of the reservoir on the condensate
dynamics gives rise to the appearance of regime I , in which
even the ground state with zero orbital angular momentum
is modulationally unstable. As argued in Ref. [32], and
supported by later studies [45,52,53], when the reservoir
mode participates fully in the dynamics, the gain saturation
(the so-called hole-burning effect) will take place and lead
to the fragmentation of the condensate. This can be seen in
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Fig. 2(a) where the instability is indeed driven by the reservoir
mode (green curves). When the γR/γc ratio or the P̄ value is
increased, however, the reservoir has little influence on the con-
densate dynamics. It can be seen in Fig. 2(c) that the reservoir
mode is more (dynamically) stable than the condensate ones. In
this regime, the reservoir can be regarded as indifferent to small
perturbations and can be treated as static. This regime roughly
corresponds to the area above both the solid line and the dashed
line in the phase diagram Fig. 3(c). Many models [42,44,54,55]
adopted the static reservoir assumption. The stability analysis
in the framework of these models corresponds to our regime
II or to the boundary area [Fig. 3(c) solid curve], where
the Bogoliubov-like dispersion of elementary excitation is
obtained [44].

Secondly, the stability of the persistent current is dramati-
cally influenced by the open dissipative nature of the polariton
system. The transition to a lower OAM steady state in our
model (Fig. 4), is driven by the dynamically unstable modes
that enable condensate fragmentation. This result can also be
obtained by using models that account for energy relaxation,

such as that in Ref. [42], since the dispersion curves for the
elementary excitations are similar to those found in our model.

In conclusion, our results predict measurable limits of
the dynamical stability of the persistent currents, which
would affect their observability and possible utilization in
polaritonic devices. The possibility to create a polariton
condensate in an optically induced annular trap has already
been explored experimentally [22–24,27]. Provided that the
coherent imprinting of the orbital angular momentum [36]
can be realized for these systems, experimental tests of our
predictions are feasible.
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