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Lasing in circuit quantum electrodynamics with strong noise
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We study a model which can describe a superconducting single-electron transistor or a double quantum dot
coupled to a transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which
couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition
is established and study the dependence of the average photon number in the resonator on the spectral function
of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with
a small cutoff frequency, a structured environment peaked at a specific frequency, and 1/f noise. We find that
the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in
general broadened and additional resonances can appear.
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I. INTRODUCTION

In recent experiments [1,2] an effective single-atom maser
was realized using a superconducting single-electron transistor
(SSET), which is essentially a charge qubit with an additional
applied transport voltage. The two qubit states are coupled to a
transmission-line resonator and a third state plays a role in the
pumping cycle [Fig. 1(a)]. This system has been theoretically
studied [3–7] and it has been experimentally shown [1,2]
that lasing can be achieved. Theoretically it has also been
shown that an SSET can be used to create a nonclassical
photon distribution in a resonator [8,9]. The same design
can be used with a mechanical oscillator [10,11] instead of
a transmission-line resonator and has been considered as one
of the possibilities to observe nonclassical states in such a
macroscopic object [12]. If a Josephson junction is directly
shunted by a resonator it is also possible to observe enhanced
photon creation [13], multistability [14], and nonclassical
effects [15–17].

A very similar situation has been studied using a double
quantum dot coupled to a transmission-line resonator [18,19]
[Fig. 1(b)]. Here an applied transport voltage drives a current
through a double dot, where the energy difference between left
and right dot can be used to create photons. The correlation of
photon emission and transport properties has been extensively
studied [20–23]. It has also been theoretically shown that lasing
can be achieved [20,24]. Already, in experiments a linewidth
narrowing has been observed [25] and even clear experimental
evidence for lasing has been shown [26]. Many theoretical
studies have been performed for this setup. It has, e.g., been
used as a toy model for the quantum photovoltaic effect [27]
and it has been considered as a hybrid microwave-cavity heat
engine [28].

In both cases, SSET and double dot, we consider the
charge degree of freedom. Charge is strongly coupled to any
perturbation from the environment. The charge variable of the
SSET is strongly coupled to fluctuations in the background
charge and the electromagnetic environment [29,30]. In the
double dot, the electron is strongly coupled to phonons [31].
In most theoretical studies the effects of noise are modeled

by using a lowest order master equation, which assumes a
smooth spectral function and relatively weak coupling to the
environment. However, it has already been shown that if strong
coupling to the bath and higher order transition processes are
considered, new effects such as enhanced photon emission [32]
and inversionless lasing [33] can appear.

We are going to consider strong coupling to the environment
with a structured spectral function. The approach used in this
paper is similar to the description of strong dephasing in a
quantum dot coupled to a cavity [34]. However we consider
a system where noise creates both dephasing and relaxation,
depending on the bias point. Additionally we consider charge
tunneling (either quasiparticles for the SSET or electrons
for the double dot), which serves as a pumping mechanism
for the three-level maser. We will focus on three specific
examples of noise spectral densities: low-frequency noise
created by a strong external resistor [35], finite-frequency
resonances [36,37], and 1/f noise [38–40]. Our results suggest
that low-frequency noise was an important factor in the
realization of the single artificial atom maser using an SSET [1]
and that spurious resonances can lead to additional resonance
peaks. In certain limiting cases it is possible to describe the
system by a Markovian master equation that treats photon
creation as a stochastic process. Despite the fact that in this
case all quantum coherence is lost, the classical coherence of
radiation, which is the hallmark of lasing, is still preserved,
and we will explicitly show the connection of our approach to
a standard description of the laser [41] in Sec. V.

In the next section we will explain in detail the model
we use to describe the SSET coupled to the resonator and to
strong charge noise. We write the Hamiltonian in the basis
of the charge qubit eigenstates and use a standard description
of a bosonic reservoir, coupled to the island charge. Then
we discuss the consequences of strong charge noise and
introduce the diagonalization of the longitudinal charge noise
component. Noise creates transitions between the states of our
system. We will discuss these rates and introduce a master
equation in the Lindblad form which governs the dynamics
of our system. In a short section we will than show how
exactly the same model can be used to describe a double
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FIG. 1. (Color online) A schematic depiction of the lasing cycle
for the SSET and for the double dot. (a) A Cooper pair tunnels trough
the left junction onto the island and via two consecutive single-charge
tunneling events into the right lead. The energy for the process is
provided by the transport voltage V , and the gate voltage VG can
be used to change the gate charge δNG. The energy of the island
with two additional charges is tuned to be smaller than the state with
zero additional charges. The energy difference is approximately in
resonance with a cavity coupled to the island. (b) An electron tunnels
from the left lead into the left dot. Then the electron tunnels from left
to right dot, emits a photon, and finally tunnels into the right lead.

dot coupled to a resonator. The next two sections will be
used to describe the effects of coupling to a strong external
resistor, to a single mode in equilibrium, and to 1/f noise.
In the end we summarize our results and we briefly discuss
their consequences in regard to experiments on mechanical
oscillators coupled to single-charge devices and for further
work on lasing.

II. MODEL HAMILTONIAN

In this section we will first discuss the Hamiltonian of an
SSET in great detail. The SSET consists of two superconduct-
ing leads coupled by tunnel junctions to a superconducting
island. A gate voltage VG shifts the electrostatic energy of
the island and controls, together with the transport voltage V ,
the current through the device. The Josephson coupling EJ of
the junctions should be weak compared to the charging energy
scale, EC = e2/2C� (C� is the total capacitance of the island),
and the superconducting energy gap �. It leads to coherent
Cooper pair tunneling, with pronounced consequences when
two charge states differing by one Cooper pair are nearly

degenerate. In addition, quasiparticles tunnel incoherently
(with rate ∝ V/eR, where R is the normal-state resistance on
the junction) when the energy difference between initial and
final state is sufficient to create a quasiparticle excitation, i.e.,
when it exceeds twice the gap (assumed equal for electrodes
and island), |�E| � 2� [42].

The gate charge NG = CGVG/e is chosen to be close to
1, δNG = NG − 1 < 1/2. This means that we tune the SSET
close to the JQP cycle where current is transported in the
following way: A Cooper pair tunnels through the left junction
onto the island, increasing the island charge N by 2. This is
followed by two quasiparticle tunneling events through the
right junction, which brings the island back to its original
configuration [43] [Fig. 1(a)].

To create a laser-like situation in the SSET we utilize
two charge states |N = 0〉 and |N = 2〉. These two states are
coupled by Josephson tunneling through the left junction. The
similarities to quantum optical systems becomes more obvious
in the base of the charge qubit, where we diagonalize the
coupled charge states. Additionally it is necessary to create
population inversion. This is achieved by using a third state,
the odd charge state |N = 1〉.

We describe the system by the following Hamiltonian,

H = Hsys + Henv + Hqp + Hdiss + Vcoupl + Vqp + Vdiss. (1)

The system is given by a qubit and a single-mode oscillator in
the electromagnetic resonator, Hsys = Hqbit + Hosc. The first
contribution, Hqbit, describes an isolated qubit in the form

Hqbit =
2∑

N=0

EC(NG − N )2PN,N − EJ

2
(P2,0 + P0,2), (2)

where we introduced projection operators,

PN,M = |N〉〈M|, (3)

and |N〉 are the charge states of the island.
The two charge states N = 0 and N = 2 are coupled by

Josephson tunneling through the left junction with strength EJ

[Fig. 1(a)]. Across the right junction we apply a large voltage
drop; therefore the Josephson tunneling for this junction
can be neglected [43]. We diagonalize the qubit part of the
Hamiltonian Hqbit by introducing the states

|↑〉 = cos
ξ

2
|N = 0〉 + sin

ξ

2
|N = 2〉,

|↓〉 = sin
ξ

2
|N = 0〉 − cos

ξ

2
|N = 2〉, (4)

tan ξ = EJ

4 δNGEC

.

The states |↑〉 and |↓〉 play the essential role to generate lasing
and |N = 1〉 is needed to create population inversion. It is
convenient to introduce Pauli matrices,

σz = |↑〉〈↑| − |↓〉〈↓|, σx = σ+ + σ−,
(5)

σ+ = σ
†
− = |↑〉〈↓|,
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and the diagonal Hamiltonian of the qubit in this basis,

Hqbit = �Eσz

2
− EC P1,1,

(6)
�E =

√
E2

J + 4(ECδNG)2,

where we shifted the origin of energy. The Hamiltonian of the
electromagnetic resonator is

Hosc = ω0 a†a. (7)

The eigenstate of the system Hamiltonian Hsys is characterized
by the qubit states, σ = ↑,↓,1, and the number of photons n

as |σ,n〉 with the energy Eσ + nω0, where E↑/↓ = ±�E/2
and E1 = −EC . For lasing, the qubit is operated around the
resonant condition,

δω = 0, δω ≡ ω0 − �E, (8)

so that the states |↓,n + 1〉 and |↑,n〉 are degenerate [Fig. 2(a)]
and thus coherent emission or absorption of photons can be
induced.

For photon emission, population inversion has to be created
by quasiparticle tunneling [3,4]. The Hamiltonian of the
quasiparticles reads

Hqp =
∑

r=R,I

∑
i

εi,r c
†
i,r ci,r , (9)

where the subscript R denotes the right lead, while the
subscript I denotes the superconducting island. We only apply
a large voltage drop across the right junction; therefore we
neglect quasiparticle tunneling through the left junction [43].
The effect of the tunneling of quasiparticles on the qubit is
described by the following Hamiltonian:

Vqp = Tqp (P2,1 + P1,0) + H.c.,

Tqp =
∑
i,k

tqp c
†
i,I ck,R. (10)

The quasiparticles obey the Fermi distribution

f +(ω) = 1

eβeω + 1
, (11)

with inverse electron temperature βe. The density of states of
quasiparticles is gapped,

ρ(ω) =
∑

i

δ(ω − εi,r ) = ρ0
θ (1 − �2/ω2)√

1 − �2/ω2
, (12)

and thus only for eV > 2� quasiparticle tunneling and
simultaneous change in the charge states occurs. In the qubit
basis, it can be rewritten as

Vqp = Tqp

[
cos

ξ

2
(−P↑,1 + P1,↓) + sin

ξ

2
(P↓,1 + P1,↑)

]
+ H.c.

(13)

For δNG > 0, the condition cos(ξ/2) > sin(ξ/2) is satisfied
and the probability for the pumping process |↓,n〉 → |1,n〉 →
|↑,n〉 [Fig. 2(b), left panel] is higher than that for the
antipumping process |↑,n〉 → |1,n〉 → |↓,n〉 [Fig. 2(b), right
panel]. At the symmetry point, δNG = 0, both processes occur

δNG

Vch
Vg

Vz
, n↑

, n↓

, n+1↑

, n+1↓

, n1

, n+11

δNG

E(a)

E

δNG

, n↑

, n↓

, n1

cos ξ
2

∝

δNG

sin ξ
2

∝

(b)

VqpVqp

FIG. 2. (a) Energy diagram for the SSET and the electromagnetic
resonator with n (left panel) and n + 1 photons (right panel) at
the resonance condition δω = ω0 − �E = 0. Two states |↑,n〉 and
|↓,n + 1〉 are energetically degenerate. The odd charge states |1,n〉
and |1,n + 1〉 are shown at the energy −EC + eV . The longitudinal
coupling to the bosonic bath Vz, which causes dephasing, increases
away from the symmetry point δNG = 0. It may spoil the transverse
coupling to the oscillator Vg crucial for coherent lasing. The impact
of the longitudinal coupling to the bosonic bath Vch, which causes
relaxation, will be small since the states |↓,n〉 and |↑,n〉 are
energetically separated by the gap �E. (b) Creation of population
inversion by quasiparticle tunneling. For δNG > 0, the condition
cos(ξ/2) > sin(ξ/2) is satisfied. The probability for the pumping-up
process |↓,n〉 → |1,n〉 → |↑,n〉 (left panel) is higher than that for
the pumping-down process |↑,n〉 → |1,n〉 → |↓,n〉 (right panel).
At the symmetry point, δNG = 0, both processes occur equally,
cos(ξ/2) = sin(ξ/2) = 1/

√
2, and thus no population inversion is

created.

equally, cos(ξ/2) = sin(ξ/2) = 1/
√

2, and thus no population
inversion is created.

The qubit is capacitively coupled with the transmission-
line oscillator. It is also coupled with environmental charge
fluctuations. These couplings appear in the same form as

Vcoupl = [g (a† + a) + x] (P0,0 − P2,2),

x =
∑

i

ti

2
(b†i + bi), (14)

where we introduce another oscillator bath to model the
environmental charge fluctuations,

Henv =
∑

i

ωib
†
i bi . (15)
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The bosonic bath is characterized by the correlation function,

〈x(t)x(0)〉 = 1

4

∫
dω

2π
N (ω) n−(ω) e−iωt . (16)

The equilibrium distribution function for bosons reads

n−(ω) = 1

1 − e−βω
, (17)

where β = 1/kBT and T is the noise temperature. The spectral
density,

N (ω) = 2π
∑

i

|ti |2[δ(ω − ωi) − δ(ω + ωi)], (18)

can be arbitrary. This model is versatile and able to describe
a variety of charge noise sources in equilibrium. For example,
if the source of the environmental charge fluctuation is the
external circuit, the spectral function is given as

N (ω) = ωReZ(ω)/RK, (19)

where Z(ω) is the effective impedance as seen from the quan-
tum system [44,45], and RK is the resistance quantum. The
electromagnetic environment is known to have a significant
impact for single-charge devices [46]. This model is also able
to describe the coupling to another mode in the electromagnetic
resonator with frequency ωL, which is off-resonant and thus
in equilibrium. The spectral density is

N (ω) = ωLεC[δ(ω − ωL) − δ(ω + ωL)], (20)

where εC characterizes the coupling strength. For an extensive
discussion of the form of the effective impedance and its
relation to the coupling to the electromagnetic environment,
see Ref. [45].

In the basis of the diagonal qubit Hamiltonian, the couplings
between the qubit and the oscillator consist of a longitudinal
and a transverse part, Vcoupl = Vz + V⊥. The longitudinal
coupling reads

Vz = [g (a† + a) + x] cos ξσz, (21)

and we separate the transverse coupling into two parts V⊥ =
Vch + Vg with

Vch = x sin ξσx,

Vg ≈ g(a†σ− + aσ+) sin ξ, (22)

where we performed the rotating-wave approximation;
namely, we neglect terms a†σ+ and aσ− connecting the states
|↑,n〉 and |↓,n − 1〉 energetically separated by �E + ω0. Now
Vg induces transitions between the qubit states |↑,n〉 and
|↓,n + 1〉 [Fig. 2(a)]. The transverse coupling to the bosonic
bath Vch causes relaxation [Fig. 2(a)], while the longitudinal
coupling Vz causes dephasing. The relaxation effect Vch

is weak since the states |↑,n〉 and |↓,n〉 are energetically
separated by the gap �E and the relevant frequencies of
the spectral densities considered in this paper are all smaller
than �E. Further by tuning to the symmetry point δNG = 0
(ξ = π/2), the longitudinal coupling Vz disappears. However,
for lasing, in order to create population inversion, the qubit has
to be tuned away from symmetry, δNG > 0.

Finally, we also account for the mixing of the single mode
in the resonator with an external circuit again modeled by

oscillators,

Hdiss =
∑

i

ωd
i d

†
i di,

(23)
Vdiss =

∑
i

t di d
†
i a + H.c.

Since the precise form of the spectrum is not relevant we simply
assume it smooth around the frequency of the resonator, which
leads to a decay rate of the form

κ =
∫

dt
∑

i

∣∣tdi ∣∣2〈di(t)d
†
i (0)〉 eiω0t . (24)

The temperature in the oscillator reservoir does not have to
coincide with the noise temperature and since it does not
substantially effect our results we choose the temperature in
the oscillator to be small.

A. Lasing-like behavior in incoherent photon emission

In order to generate lasing, first the qubit is tuned to the res-
onant condition, where |↑,n〉 and |↓,n + 1〉 are energetically
degenerate [Fig. 2(a)], and then photon emission or absorption
is possible. This condition must be fulfilled at a bias point
δNG > 0, such that population inversion is created. At the
same time, it inevitably creates longitudinal coupling between
the qubit and charge noise Vz. The size of the fluctuations is
characterized by

cos2 ξ 〈x(t)2〉 = cos2 ξ

4

∫
dω

2π
N (ω)n−(ω). (25)

Then the longitudinal coupling with the bosonic field Vz

competes with the transverse coupling with the oscillator Vg.
We consider the case when the fluctuations in the level splitting
can be larger than the Rabi frequency, the transverse coupling
between oscillator and SSET,

g
√

〈n〉 sin ξ <
√

〈x(t)2〉 cos ξ, (26)

where 〈n〉 = 〈a†a〉 is the average number of photons in the
system. As we tune away from degeneracy the transverse
coupling to the oscillator that is needed to create photons
decays as sin ξ ; at the same time, the fluctuations in the level
splitting grow as cos ξ . We diagonalize the longitudinal part
Vz, using a polaron transformation [47,48],

U = exp[−i cos ξ (p + p′) σz]. (27)

Here, in order to write the resulting Hamiltonian in a compact
form we introduce the operators

p = i
∑

i

ti (b†i − bi)

2 ωi

, p′ = i
g (a† − a)

ω0
. (28)

After the transformation the coupling between the SSET, the
oscillator, and the charge noise takes the form

Ṽcoupl = UVcouplU
† = Ṽch + Ṽg, (29)

where Ṽg and Ṽch are now dressed by polarons as

Ṽg ≈ g sin ξe−iSe−iS ′/2 a e−iS ′/2σ+ + H.c.,
(30)

Ṽch = sin ξe−iS ′
e−iS/2 δu e−iS/2σ+ + H.c.,
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where S = p cos ξ and S ′ = p′ cos ξ . Here Ṽg may be treated
as the perturbation. Ṽch may be also treated as the perturbation
because the relevant frequencies of the spectral functions
considered are smaller than the energy splitting �E. The
quasiparticle tunneling is dressed with polarons as well and
the transformed Hamiltonian reads

Ṽqp = Tqp

[
cos

ξ

2

( − e−i(S+S ′)/2P↑,1 + P1,↓e−i(S+S ′)/2
)

+ sin
ξ

2

(
ei(S+S ′)/2P↓,1 + P1,↑ei(S+S ′)/2

)] + H.c. (31)

However, quasiparticle tunneling processes are dominated
by the energy scale of the transport voltage eV and phase
fluctuations cause only minor effects as we will discuss later.

Here at this point we summarize the nonperturbative part
H0 and the perturbative part H ′,

H0 = Hsys + Henv + Hqp + Hdiss,
(32)

H ′ = Ṽg + Ṽch + Ṽqp + Vdiss.

Then the reduced density matrix is obtained by tracing over all
reservoir degrees of freedom, consisting of the charge noise,
quasiparticles, and dissipation in the oscillator Henv + Hqp +
Hdiss:

ρ(t) = TrR
[
e−i(H0+H ′)t ρ0e

i(H0+H ′)t],
(33)

ρ0 ∝ e−βH0 ,

where the initial density matrix is normalized as Trρ0 = 1.
Under the situation we are considering, because of strong

environmental noise, the coherent coupling between the states
|↑,n〉 and |↓,n + 1〉 is lost and transitions among different
photon states becomes stochastic. The quantities of interest
are the average number of photons 〈n〉 = 〈a†a〉 and the Fano
factor

F = 〈n2〉 − 〈n〉2

〈n〉 . (34)

The Fano factor defines the width of the photon number
distribution. In a pumped oscillator one would expect a photon
number distribution, similar to a Poisson distribution; in this
case the Fano factor should be close to F = 1. If we only
heat the oscillator and we have a thermal photon number
distribution the Fano factor should be close to F = 〈n〉 + 1.

B. Transition rates

Let us take a closer look at few selected transition rates.
We do this to make the connection between our microscopic
Hamiltonian and our Markovian master equation clear. First,
let us consider the quasiparticle tunneling processes for
generating the population inversion. The transition rate of
the process |1,n〉 → |↓,n〉 within Fermi’s golden rule in Ṽqp

reads

�|↓,n〉←|1,n〉 = 2 cos2 ξ

2
Re

∫ ∞

0
dt γ +−

qp (t) Cn
n,1/2

×Cg(t)1/4 ei(E↓,n−E1,n−eV )t , (35)

where the particle-hole propagator is given by

γ +−
qp (ω) = 〈Tqp(t)T †

qp〉 = 2π |tqp|2
∫ ∫

dω′dωρ(ω′)

×ρ(ω + ω′)f −(ω + ω′)f +(ω′)ei(ω+ω′)t , (36)

where f − = 1 − f + and f + is the Fermi distribution. The
matrix element is given by Cn

n,λ = |〈n|e−iλS ′ |n〉|2 ≈ 1 up to
the order of (g/ω0)2. For all further purposes we will ignore
the effect of higher orders of (g/ω0)2 on the quasiparticle
tunneling rate, since it has no significant impact in our regime.
For a discussion of the effects this coupling to the oscillator
can have, see, e.g., Ref. [49]. The correlation function Cg(t) is
well known from P (E) theory [44]:

Cg(t) = 〈eiS(t)e−iS〉

= exp

(
cos2 χ

π

∫ ∞

0
dω

N (ω)

ω2

×{[1 − cos(ωt)] coth(βω/2) − i sin(ωt)}
)

. (37)

It causes a broadening in the energy dependence of the
tunneling rate by ∼

√
〈x(t)2〉. However, we will always

operate in the regime eV − 2� � cos ξ
√

〈x(t)2〉; therefore
the broadening effect can be neglected. Further, since the bias
voltage is much larger than the energy difference, which is of
the order of the charging energy EC , eV � |E↓,n − E1,n|, the
transition rate is approximately

�|↓,n〉←|1,n〉 ≈ cos2(ξ/2) �qp, �qp = Gqp V, (38)

where Gqp = 2π |tqp|2ρ2
0 is the quasiparticle tunnel conduc-

tance.
The crucial part in our theory is the photon absorption

and emission rates induced by Ṽg. Although these rates are
governed by the charge fluctuations x, it turns out that an
incoherent pumping by quasiparticle tunneling also creates
additional dephasing and modifies these rates considerably.
Therefore, we consider second-order perturbation theory in
g sin ξ , but infinite order in powers of the quasiparticle
tunneling rate �qp. The photon absorption rate is given by

�|↑,n〉←|↓,n+1〉 = 2g2 sin2 ξ Re
∫ ∞

0
dt Cg(t) f n+1

n

×iπ
|↑,n〉
|↓,n+1〉(t). (39)

The matrix element reads f n+1
n = |〈n + 1|eiS ′

a†eiS ′ |n〉|2 ≈
n + 1 up to the order of (g/ω0)2. From Eq. (39), we can see that
the correlator Cg(t) causes a broadening of the resonance of
SSET and oscillator. Therefore we will get direct information
about the photon emission from the correlator.

The propagator π
|↑,n〉
|↓,n+1〉 describes the time evolution of

the off-diagonal component of the reduced density matrix
〈↑,n|ρ|↓,n + 1〉, i.e., the dephasing. For zeroth order, it
simply oscillates with frequency δω as π

|↑,n〉
|↓,n+1〉(t) = −ieiδωt .

One should keep in mind that in our system �qp is the
strength of an incoherent pumping that creates an additional
dephasing. We have to consider the broadening effects by
this additional dephasing when the correlator Cg(t) decays
weakly or does not decay as is the case when we later relate
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π =

t 0

σ = +

t 0

σ+

+

, n↑

, n+1↓

σ σ +

(a)

(b)

, n1

, n+1↓ , n+11

, n↑

σ γ+− γ +−

FIG. 3. (Color online) (a) The propagator describing the time
evolution of the off-diagonal component of the reduced density matrix
〈↑,n|ρ|↓,n + 1〉. (b) The leading diagrams for the self-energy. The
two diagrams are second-order expansions in Ṽqp.

the environment with another mode in an electromagnetic
resonator. The dephasing can be treated conveniently using the
real-time diagrammatic technique [50–52]. The propagator,
diagrammatically expressed as Fig. 3(a), is written in the
Fourier space as

π
|↑,n〉
|↓,n+1〉(ω) = 1

ω + δω − σ
|↑,n〉
|↓,n+1〉(ω)

. (40)

The self-energy can be expanded again in powers of Ṽg, Ṽch,
and also Ṽqp. We account for the leading terms of the expansion
in Ṽqp, corresponding to two diagrams in Fig. 3(b), which
actually cause the dephasing [52]:

σ
|↑,n〉
|↓,n+1〉 ≈ [

sin2 ξ γ +−(t)ei(E↑−E1−eV )tCg(t)1/4 + cos2 ξ

×γ +−(−t)Cg(−t)1/4ei(E↓−E1−eV )t
]

×ei(δω+�E/2)t θ (t) + O
(
g2/ω2

0

)
. (41)

As we discussed when we derive Eq. (38), the charge
noise does not influence quasiparticle tunneling for large
bias voltage eV . Then the self-energy can be approximated
as Im σ

|↑,n〉
|↓,n+1〉(−δω) ≈ −�qp/2, which is independent of the

gate charge δNG. By neglecting the real part, which gives
the renormalization of the frequency δω, we obtain the
approximate form,

π
|↑,n〉
|↓,n+1〉(t) ≈ −ieiδωt−�qpt/2. (42)

Within this approximation, we obtain

�|↑,n〉←|↓,n+1〉 ≈ (n + 1) Sg(δω) = 2(n + 1) g2 sin2 ξ

×
∫ ∞

0
dt Cg(t) eiδωt−�qp t/2, (43)

where the dephasing effects of the incoherent pumping can be
simply included via an exponential decay with the decay rate
�qp/2.

Within the same approximation, the rate of relaxation from
|↑,n〉 state to |↓,n〉 state caused by Ṽch is calculated as

�|↓,n〉←|↑,n〉 = 2 sin2 ξ Re
∫ ∞

0
dt Cch(t) Cn

n,1 iπ
|↑,n〉
|↓,n〉 (t),

(44)

where the correlation function reads (see Appendix)

Cch(t) = 〈(
e−iS/2xe−iS/2

)
(t)

(
eiS/2xeiS/2

)
(0)

〉
= Cg(t) sin2 ξ [〈x(t)x(0)〉 − cos2 ξ 〈p(t)x(0)〉2], (45)

and

〈x(t)p(0)〉 = i

∫
dω

2π

N (ω)n−(ω)

ω
e−iωt . (46)

Up to the order (g/ω0)2 the relaxation rate becomes

�|↓,n〉←|↑,n〉 ≈ Sch(�E) = 2

×Re
∫ ∞

0
dt Cch(t) ei�Et−�qp t/2. (47)

The contribution of this term is often small because of rapid
oscillations with frequency �E, which is of the order of ω0

and larger than any other energy scale but eV . Therefore the
integral is convergent for t � 1/�E.

The effects of the environment are contained in two noise
correlators, Cch and Cg [Eqs. (37) and (45)]. Both correlators
depend on the rotation of the qubit. At the degeneracy point,
ξ = π/2, they are reduced to

Cg = 1, Cch = 〈x(t)x(0)〉. (48)

The first result means that the charge qubit is protected against
dephasing. The second result means that the relaxation from
the |↑〉 state to the |↓〉 state is caused by the charge fluctuations.
We will discuss these correlators and the corresponding
spectral functions, Sg(δω) and Sch defined in Eqs. (43) and (47),
respectively, for explicit choices of noise spectra later.

The spectral functions tell us at which energy absorption
(emission) is most effective; however one should note that
the effect each of these spectra has on the lasing properties
of the system is markedly different. The spectral function
Sg(δω) describes the dephasing effects, which lead to an overall
broadening of the resonance between oscillator and SSET. The
corresponding operator σ−a† flips the qubit state, and creates
a photon at the same time. Therefore the effectiveness of the
creation of photons is proportional to the size of Sg(δω). Only
for large Sg(δω) we will have a significant number of photons
in the oscillator. In contrast to this Sch(�E) has a detrimental
effect on the creation of photons. The relaxation operator σ−
allows transitions between the states |↑〉 and |↓〉. If therefore
Sch(�E) is large we have another efficient channel that closes
the lasing cycle shown in Fig. 1, and only a few photons will
be created.
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C. Master equation

To find the density matrix in the stationary limit, we describe the system by a master equation. We expand the time evolution
in orders of the coupling to the reservoirs. Dissipation and quasiparticle tunneling can be considered to be in the Born-Markov
limit; therefore we truncate the expansion at lowest nonzero order. For the charge noise we can truncate at lowest order and
perform the Markov approximation for

Sg(δω) < �qp, Sch(�E) < �E. (49)

Then the master equation reads

ρ̇ = −i [Hsys,ρ] + (Lg + Lch + Lqp + Ldiss) ρ, (50)

where the Lindblad operator is separated into 4 parts. The coupling between oscillator and SSET is described by

Lgρ = Sg(δω)

2
(2aσ+ρσ−a† − σ−a†aσ+ρ − ρσ−a†aσ+) + Sg(−δω)

2
(2σ−a†ρaσ+ − aσ+σ−a†ρ − ρaσ+σ−a†). (51)

Qubit relaxation is contained in the superoperator Lch, which reads

Lch ρ = Sch(�E)

2
(2σ+ρσ− − σ−σ+ρ − ρσ−σ+) + Sch(−�E)

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−) . (52)

Incoherent-pumping processes by the quasiparticle tunneling are contained in

Lqpρ = �qp

2

∑
n=0,1

(2P
†
n+1,nρPn+1,n − Pn+1,nP

†
n+1,nρ − ρPn+1,nP

†
n+1,n), (53)

and dissipation in the oscillator part reads

Ldissρ = κ

2
(2aρa† − a†aρ − ρa†a). (54)

Here the Hamiltonian Hsys and the Lindblad operator do not mix the off-diagonal and diagonal components of the reduced density
matrix. Therefore, the system is described by the diagonal components and evolves stochastically. In the basis |σ,n〉 we can then
write the equations of motion as

ρ̇1,n = �qp sin2(ξ/2)ρ↑,n + �qp cos2(ξ/2)ρ↓,n + κ(n + 1)ρ1,n+1 − (κn + �qp)ρ1,n,

ρ̇↑,n = �qp cos2(ξ/2)ρ1,n + Sg(δω)(n + 1)ρ↓,n+1 + S(−�E)ρ↓,n + κ(n + 1)ρ↑,n+1

− [�qp sin2(ξ/2) + Sg(δω)(n + 1) + S(�E) + κn]ρ↑,n, (55)

ρ̇↓,n = �qp sin2(ξ/2)ρ1,n + Sg(δω)nρ↑,n−1 + Sch(�E)ρ↑,n + κ(n + 1)ρ↓,n+1

− [�qp cos2(ξ/2) + Sg(δω)(n + 1) + S(−�E) + κn]ρ↓,n,

where we used the notation ρσ,n = 〈n,σ |ρ|σ.n〉. As we will
show in Sec. V, we can rewrite this master equation using
standard methods and obtain a form which is formally
equivalent to the equation of motion for a laser [41].

In the next three sections we will discuss the stationary
solutions of the master equation, first for low-frequency noise
[see Eq. (65)], then for coupling to a spurious resonance [see
Eq. (68)], and at last for 1/f noise. One should note here that
we assume that 1/f noise can be described as Gaussian and
ergodic noise, which is not necessarily true and depends on
the microscopic model [53–55]. We discuss the distribution
probability of photons,

ρn =
∑

σ=↑,↓,1

〈σ,n|ρ|σ,n〉, (56)

the average number of photons 〈n〉 = ∑
n nρn, etc. We will

also investigate the current through the SSET, which is given
by

I = e�qp

(
ρ1 + sin2 ξ

2
ρ↑ + cos2 ξ

2
ρ↓

)
, (57)

where the density matrix for the qubit states is obtained by
tracing out the photon number state as

ρσ =
∑

n

〈σ,n|ρ|σ,n〉. (58)

III. THE DOUBLE DOT

In a double dot we consider a situation where a single charge
can either sit on the left or right dot or both dots are unoccupied.
Therefore we can write the double-dot Hamiltonian as

Hqbit = εL|1,0〉〈1,0| + εR|0,1〉〈0,1| + ε0|0,0〉〈0,0|
+ t (|1,0〉〈0,1| + |0,1〉〈1,0|) . (59)

Here the eigenstates of the double dot are given by |1,0〉 (left
dot occupied), |0,1〉 (right dot occupied), and |0,0〉 (both dots
unoccupied). To map this case to the SSET we replace the states
of the SSET with the double-dot states using the following
rules: |0,1〉 → |N = 2〉, |1,0〉 → |N = 0〉, and |0,0〉 → |N =
1〉. All energies have to be mapped accordingly. The coupling
between the dots is equivalent to the Josephson coupling,
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t = EJ /2. A detailed discussion of the lasing cycle in the
case of the coupled dots can be found in Refs. [20,24].

For the double dot it is also reasonable to diagonalize the
subspace which contains the charge states |1,0〉 and |0,1〉. This
gives us states which act in an equivalent fashion to the states
defined in Eq. (4),

|↑〉 = cos
ξ

2
|1,0〉 + sin

ξ

2
|0,1〉,

|↓〉 = sin
ξ

2
|1,0〉 − cos

ξ

2
|0,1〉, (60)

tan ξ = 2t

εR − εL

.

This allows us to write the Hamiltonian of the double dot in
the form

Hqbit = �Eσz

2
+ ε0 |0,0〉〈0,0|,

(61)
�E =

√
4t2 + (εL − εR)2.

The terms in the master equation, which affect the photon
creation (51) and decay (52), can then be adapted directly
for the states |↑〉 and |↓〉 of the double dot. The pumping
rates, which create the population inversion, are described by
Eq. (53). These terms can be adapted for the double dot, using
the substitution rules discussed above.

IV. THE ELECTROMAGNETIC ENVIRONMENT

In this section we will consider two examples that have
been considered previously within the context of tunneling
in small junctions [44]. The first case is coupling to a large
ohmic impedance. We have chosen this example because it
gives results similar to 1/f noise. In fact, as we will show in
Sec. V, one can see 1/f noise as the classical limit of a large
ohmic impedance. The second example is coupling to a single
mode in equilibrium. Effects of this have been measured for
a single-charge device with a well-characterized environment,
e.g., in Ref. [37].

A. High impedance environment

If the qubit is coupled to an ohmic resistor the effective
impedance in Eq. (19) takes the form [44]

ReZ(ω)

RK

= εCωR

ω2 + ω2
R

, (62)

where ωR = 1/RCeff is the RC-cutoff frequency, εC =
e2/Ceff , and Ceff is a capacitance that depends on the details of
the coupling to the external resistor with ohmic resistance R.
We consider noise sharply peaked for low frequencies, such
that ωR � kBT . In this case the dephasing correlator becomes

Cg(t) = exp

[
εC cos2 ξ (kBT − iωR)(1 − e−ωRt )

2ω2
R

− εCk cos2 ξkBT t

2ωR

]
. (63)

The decay time cannot be larger than t = 1/�qp. Therefore
we can expand the exponent in this correlator in the short-time

limit for ωR � �qp and get

Cg(t) = exp(−εC cos2 ξ [it + kBT t2]). (64)

While we will not explicitly consider the opposite limit ωR �
�qp, one should note that in this case our theory reproduces
the standard quantum optics results expected for a smooth
spectral noise density. However, we will discuss this transition
for small charge noise strength εC � �qp.

The limit considered here corresponds to a large resistor,
R → ∞, in the effective impedance [44],

ReZ(ω)/RK ≈ εCδ(ω). (65)

The dephasing spectral function at the energy δω becomes

Sg(δω) = 1

2

√
π

εC cos2 ξkBT

× exp

[
[�qp − i(δω + εC cos2 ξ )]2

4ε̃CkBT

]

× erfc

[
�qp − i(δω + εC cos2 ξ )

2
√

εC cos2 ξ kBT

]
+ c.c., (66)

where erfc[x] is the complementary error function. We can
immediately analyze two important limits of this spectral
function,

Sg(δω) ∝
⎧⎨
⎩exp

[
− (δω+εC cos2 ξ )2

4εC cos2 ξ kBT

]
, cos ξ

√
εCkBT � �qp,

2�qp

�2
qp+δω2 , cos ξ

√
εCkBT � �qp.

(67)

If we have strong noise we have a Gaussian spectral function
with a width defined by cos ξ

√
εCkBT . The Gaussian function

is peaked at �E − ω ≈ cos ξεC . This corresponds to the fact
that in each qubit flip, a photon is created and additionally the
energy εC cos ξ is transferred to the environment. Previously
it has been shown that in a similar situation, such a shift of
the resonance can be used to create inversionless lasing [33]
or enhanced photon emission in a double dot [32].

Note that the width and center of Sg(δω) depend on
the rotation of the qubit. Directly at the degeneracy point,
δNg = 0, we have cos ξ = 0 and therefore Sg is simply a
Lorentzian with the width being determined by �qp. Overall
we see that for strong low-frequency noise we get, as one
would expect, a Gaussian resonance peak, and for weak noise
we get a Lorentzian resonance peak.

The spectral function Sch(�E) is proportional to the
relaxation rate. However, for any given configuration of our
system this correlator will be evaluated for energies larger
than the Josephson coupling, �E � EJ . Generally for low-
frequency noise this means that the correlator has already
decayed for relevant frequencies and can be ignored. However,
one should note that we have a significant broadening, because
of the dephasing caused by �qp, and as we move away
from degeneracy, cos ξ > 0, we get an additional broadening
through cos ξ

√
εCkBT and an overall frequency shift εC cos ξ

[see Eq. (64)]. In Fig. 4 we can see a plot of the correlator
Sch(�E). For this plot we have chosen a fixed value for the
noise width

√
εCkBT and than changed the coupling strength

εC . One can see that for large coupling the frequency shift has
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FIG. 4. (Color online) The correlator Sch(�E) as a function of
the energy splitting �E for a fixed noise width

√
kBT εC = 0.07 (all

energies are given in units of the charging energy EC). Blue, εC =
0.05; magenta, εC = 0.03; brown, εC = 0.01. For the parameters
EJ = 0.2, �qp = 0.0325.

a significant impact and the spectral function has a peak for
�E > EJ . However, if the width is mostly caused by the noise
temperature the correlator decays monotonically.

That means that the effect of transverse coupling for low-
frequency noise is only important for a very strong coupling to
the environment. Therefore in our discussion of 1/f noise (see
Sec. V), where we make the formal transition to the classical
high-temperature limit, we can ignore transverse coupling
because we keep εC and therefore the frequency shift small.

In Fig. 5 we show the average number of photons for high
ohmic impedance, calculated by numerically solving Eq. (55)
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n
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3
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E

F

FIG. 5. (Color online) The average number of photons 〈n〉 and
the Fano factor as a function of the energy splitting �E (all energies
are given in units of the charging energy EC). Blue, εC = 0.005;
magenta, εC = 0.01; brown, εC = 0.015. For the parameters EJ =
0.2, kBT = 0.5, ω0 = 0.4, �qp = 0.0325, κ = 0.0006, g = 0.004.

in the stationary limit. As predicted from Eq. (67) we see
that the resonance peak changes from a Lorentzian to a more
Gaussian form for increasing noise coupling εC . Nonetheless,
we still have a significant Lorentzian component given by �qp.
One should also note that the maximum shifts to energies
smaller than the oscillator frequency, �E < ω. The reason for
this is the decrease of the coupling strength as we tune away
from the degeneracy point. We will discuss this in more detail
in Sec. V. We also show the Fano factor which shows the
standard behavior for a laser. When we start to populate the
oscillator, the distribution has a thermal shape, and therefore
the Fano factor is large. As we move closer to resonance the
number of photons grows and the distribution takes a form
similar to a Poisson distribution, which means the Fano factor
moves closer to 1.

B. Coupling to a single mode

In the limit of coupling to a single mode, the effective
impedance is reduced to [44]

ReZ(ω)/RK = εC[δ(ω − ωL) + δ(ω + ωL)]. (68)

In this case the dephasing spectral function becomes [44]

Sg(δω) = exp (−[η+ + η−])

×
∑
n,m

ηn
+ηm

−
n!m!

2�qp

�2
qp + [δω + (n + m)ωL]2

,

η± = εC cos2 ξ

ωL

±1

e±βωL − 1
. (69)

This gives us several peaks in the photon number. However
one should note that the largest peak is still located at �E −
ω0 = 0. Additionally we have peaks at �E − ω0 = m̄ωL,
with m̄ = ±1, ± 2, . . . . For small temperatures, β → ∞, the
environment can only absorb energy and we only have peaks
at m̄ � 0.

The relaxation spectral function can be be written in a
compact way by defining

Sch,eff(ω) = 2�qpω
2
L

π2
tan2 ξ

(
πη−

�2
qp + (ω − ωL)2

+ πη+
�2

qp + (ω + ωL)2
+ η2

+
�2

qp + (ω + 2ωL)2

+ η2
−

�2
qp + (ω − 2ωL)2

− η−η+
�2

qp + ω2

)
. (70)

If we convolve this spectral function with Eq. (69), we obtain
the relaxation spectral function

Sch(�E) = exp (−[η+ + η−])

×
∑
n,m

ηn
+ηm

−
n!m!

Sch,eff(�E + (n + m)ωL). (71)

Here we can see that the total spectral density Sch will
consist of multiple peaks which are repeating with distance ωL.
This means relaxation will be strong always for �E = m̄ωL,
with m̄ = ±1, ± 2, . . .. Each maximum in the relaxation rate
will decrease the number of photons at that particular qubit
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FIG. 6. (Color online) The correlators Sg(δω) and Sch(�E) as a
function of the energy splitting �E, for coupling to a single mode
(all energies are given in units of the charging energy EC). Brown,
εC = 0.05; magenta, εC = 0.075; blue, εC = 0.1. For the parameters
EJ = 0.2, kBT = 0.02, �qp = 0.0325, ω0 = 0.4, ωL = 0.075, g =
0.004.

splitting. At the same time incoherent Cooper-pair tunneling
is possible and we get an additional maximum in the current.
Together with the maxima which are caused by the lasing
transition it is possible that we see several peaks in the current.

In Fig. 6 one can see an example for Sg(δω) and Sch(�E)
for the case of coupling to a single mode. If the system is
strongly coupled (εC is large) we get several resonance peaks in
the coupling between the SSET and oscillator. However, these
peaks decay very quickly as εC becomes smaller. To see clearly
visible peaks in the relaxation spectral function Sch(�E) we
would have to choose very large εC . This is because we choose
an off-resonant mode ωL < EJ .

Similarly to the case for low-frequency noise, relaxation
decays quickly for coupling to a single mode. But it can
still have a significant impact. In Fig. 7 we see the average
number of photons 〈n〉 and the current I through the SSET as
a function of the energy splitting. As the coupling to the noise
εC increases we see the maximum number of photons decrease.
However, the second resonance peak for �E − δω = ωL

becomes comparable to the first resonance. For large εC the
second peak is even higher than the first peak. This is the case
because the contribution of Sch(�E) has decayed. The current
shows a peak for every peak in the photon number. One can
also see additional structures in the current which are a result
of the incoherent Cooper-pair tunneling caused by Sch(�E).

V. 1/ f NOISE

The existence of noise with a 1/f -type spectrum seams
to be universal to all physical systems and has been an
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FIG. 7. (Color online) The average number of photons 〈n〉 and

the current I as a function of the energy splitting (all energies in units
of the charging energy EC). Blue, εC = 0.05; magenta, εC = 0.075;
brown, εC = 0.1. For the parameters ωL = 0.1, EJ = 0.2, g = 0.004,
�qp = 0.0325, κ = 0.00005, kBT = 0.02, ω0 = 0.4.

object of intense study [35,38,53–55]. Generally 1/f noise
is considered classical noise; therefore we will consider the
dephasing correlator in the classical limit

Cg = exp

(
cos2 ξ

π

∫ ∞

0
dω S(ω)

cos(ωt) − 1

ω2

)
, (72)

where we defined S(ω) = N (ω) coth(ω/2kBT ). This is equiv-
alent to replacing the coupling to a bosonic reservoir in
Eq. (14) with a coupling to a classical fluctuating variable.
Formally, we can make the transition to the classical case by
choosing the spectral function to be constant, N (ω) = N , and
the temperature to be large. In this case the spectral function
becomes

S(ω) = kBTN
ω

. (73)

The factor N kBT characterizes, together with the low-
frequency cutoff ωmin, the strength of 1/f noise. The resulting
dephasing correlator reads

Cg = exp

(
kBTNRe ln(ωmint)

2π
t2

)
. (74)

The decay rate of the correlator is much larger then the cutoff
frequency; this means that the logarithmic time dependence
ln(ωmint) has no impact on the decay of Cg. We define a new

constant εC = NRe ln(ωmin/�qp)
2π

to describe the noise strength.
Here we replaced the time t in the ln function with the time
scale given by 1/�qp. From this we get the dephasing spectral
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function

Sg(δω) = 1

2

√
π

εC cos2 ξkBT
exp

[
(�qp − iδω)2

4εC cos2 ξkBT

]

×erfc

[
�qp − iδω

2
√

εC cos2 ξkBT

]
+ c.c., (75)

which is the classical limit of Eq. (66).
For classical low-frequency noise relaxation will be rather

small and decay quickly, as �E increases (see Sec. IV A).
Additionally our dephasing spectral function is symmetric,
Sg(δω) = Sg(−δω). In this case we can derive an approximate
analytical solution for the density matrix in the stationary limit.

We want to derive an effective equation for the probability
distribution of the number of photons in the oscillator ρn =∑

σ ρσ,n. We do this by tracing out the degrees of freedom of
the SSET in the equation of motion given by Eq. (55). Using
the relation ρn = ρ1,n + ρ↑,n + ρ↓,n and the assumption that
the time scales of the SSET are faster than the time scales of
the oscillator we can form a closed set of equations,

d

dt

(
ρ↑,n−1

ρ↓,n

)
=

(
α1,n Sg(δω)n

Sg(δω)n α2,n

)(
ρ↑,n−1

ρ↓,n

)

+
(

β1ρn−1

β2ρn

)
,

α1,n = −�qp(cos 2ξ + 7)

4(cos ξ + 3)
− Sg(δω)n,

α2,n = �qp(cos 2ξ + 7)

4(cos ξ − 3)
− Sg(δω)n,

β1 = 2�qp cos4(ξ/2)

3 + cos ξ
,

β2 = 2�qp sin4(ξ/2)

3 − cos ξ
. (76)

This set of equations can be solved in the stationary limit and
we get an equation for the effect of the artificial atom on the
oscillator

ρ̇n = �+
n ρn−1 − (�+

n+1 + �−
n + κn)ρn

+ [�−
n+1 + κ(n + 1)]ρn+1, (77)

where �+
n = �T,n cos4(ξ/2) is the rate increasing the number

of photons, �−
n = �T,n sin4(ξ/2) is the rate decreasing the

number of photons, and

�T,n = 8�qpSg(δω)n/[�qp(cos ξ + 7) + 24Sg(δω)n]. (78)

For cos(ξ/2) > sin(ξ/2) we have a net increase of the number
of photons and the rate �T,n is directly proportional to Sg(δω).
One should note here that Eq. (77) is formally equivalent to
the equation of motion as it can be derived for the same system
in the case of coherent coupling using standard methods [41].
In fact if we choose the limit of small charge noise, εC → 0,
Eq. (77) is actually exactly equivalent to the standard lasing
result of Ref. [41].

Equation (77) can be solved and we get for the density
matrix

ρn = ρ0�
n
i=0

A

B + i
, A = �qp cos4(ξ/2)

3κ
,

(79)

B = �qp sin4(ξ/2)

3κ
+ �qp(cos 2ξ + 7)

24Sg(δω)
,

where ρ0 is a normalization constant.
If cos(ξ/2) > sin(ξ/2) and Sg is not to small this function

has a sharp peak. In this case the average number of photons
is given in good approximation by the position of this peak,

〈n〉 ≈ A − B = �qp

3κ
cos ξ − �qp(cos 2ξ + 7)

24Sg(δω)
. (80)

We see here that the number of photons increases with the size
of Sg(δω), since the second term in Eq. (80) decreases. There
are two key observations we can make from this analytical
equation for 〈n〉.

First one should note that in the limit of strong 1/f noise,
cos ξ

√
εCkBT > �qp, the resonance peak will be shifted to

smaller frequencies. This is the case because of the decay of
the transverse coupling between SSET and oscillator with the
increase of �E. To find the approximate position of the actual
peak we solve ∂�ESg(δω) = 0 for strong 1/f noise and get the
peak position,

�Emax ≈ 1
2

(
ω0 +

√
ω2

0 − 16εCkBT
)
. (81)

This shift can also be observed for coupling to a high-
impedance environment (Fig. 5).

Now let us consider the number of photons for the qubit
close to the symmetry point, ξ = π/2, where we assume that
it is in resonance with the oscillator, �E = ω. In this case we
can expand the number of photons around the symmetry point
and get

〈n〉 ≈ �qp

3κ
(ξ − π/2) − �qp

4g2

(
�qp

2
+ kBT εC

�qp
(ξ − π/2)2

)
.

(82)

We can see here that the second, negative term in this equation
decreases quadratically, as we move closer to symmetry. The
positive first term decreases only linearly. To create coherent
coupling between oscillator and SSET it is very important
to maximize the number of photons. From Eq. (82) we can
immediately see that the number of photons has a maximum
for

(ξ − π/2) = g2�qp

κkBT εC

. (83)

We see here that especially for large charge noise εC it can be
of advantage to stay closer to the symmetry point. The loss
in population inversion is compensated by the suppression of
charge noise.

VI. CONCLUSION

In this paper we discuss the single artificial atom maser
which can be realized using a SSET coupled to an oscillator
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or a double dot coupled to a transmission-line resonator. For
such a system it is necessary to bias the system away from
the symmetry point, to create population inversion, which
makes it susceptible to charge noise. In this case it is a
reasonable approach to describe the system using a polaron
transformation. We have shown the transformation of the
qubit Hamiltonian and the resulting new noise operators. The
relevant noise correlators have been shown in explicit form and
we discuss them for two relevant examples, low-frequency
noise and coupling to a single mode. Then we perform the
transition to the classical case, which describes 1/f noise.

We find that low-frequency noise creates a Gaussian
resonance peak, which is shifted to smaller qubit energy
splitting. Coupling to an additional mode can create additional
resonances in the fundamental mode and in the current. One
should note here that coupling to an additional mode can even
create peaks in the current if there is no excitation in the
oscillator.

For our discussion of 1/f noise we can show that our master
equation is formally equivalent to the standard description of
a laser [41]. We can find an analytical solution for the density
matrix and the average number of photons. We can then show
that it can be of advantage to be closer to the symmetry point,
especially if charge noise is strong. This has direct implications
for experiments on mechanical oscillators coupled to an SSET.
To create coherent lasing, one should tune the system rather
close to the symmetry point, since the reduction in population
inversion affects the photon number only linearly, but the
reduction in charge noise is quadratic.

The model presented in this paper can also describe
many other system that are currently studied. An example
is suspended carbon nanotubes. Electrons can hop onto a
free state of the nanotube, and it has already been shown
that coupling to the mechanical vibration of the nanotube
can be used to create cooling [56–59]. Similarly lasing
could be achieved. Since charge is a relevant degree of
freedom for these systems, strong coupling to noise should be
expected.
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APPENDIX

To find an explicit form for the relaxation correlator (45)
we use the generating function,

F = 〈T ei
∫

dt ′[λ(t ′)p(t ′) cos ξ+μ(t ′)x(t ′) sin ξ ]〉, (A1)

where T is the time-sorting operator. Using the function we
can show that the relaxation correlator is given by

Cch(t) =− d2F

dμ(0)dμ(t)

∣∣∣∣
λ

(t ′)

= [δ(t − t ′ + η) + δ(t − t ′ − η)]/2

− [δ(t ′ + η) − δ(t ′ + η)]/2

μ(t ′) = 0. (A2)

The explicit form of the generating function reads

F = exp

[
−

∫
dt1

∫
dt2F̃ (t1,t2)�(t1 − t2)

]
,

F̃ = [sin2 ξ μ(t1)μ(t2)〈x̃(t1)x̃(t2)〉
+ cos ξ sin ξ μ(t1)λ(t2)〈x̃(t1)p̃(t2)〉
+ cos ξ sin ξ λ(t1)μ(t2)〈p̃(t1)x̃(t2)〉
+ cos2 ξ λ(t1)λ(t2)〈p̃(t1)p̃(t2)〉]. (A3)

We can apply Eq. (A2) to this form of the generating function
and get

Cch(t) = sin2 ξ [〈x(t)x(0)〉 − cos2 ξ 〈p(t)x(0)〉2]〈eip(t)e−ip(0)〉.
(A4)

[1] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Yu. A.
Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449, 588
(2007).

[2] F. Chen, J. Li, A. D. Armour, E. Brahimi, J. Stettenheim, A. J.
Sirois, R. W. Simmonds, M. P. Blencowe, and A. J. Rimberg,
Phys. Rev. B 90, 020506(R) (2014).

[3] D. A. Rodrigues, J. Imbers, and A. D. Armour, Phys. Rev. Lett.
98, 067204 (2007).

[4] M. P. Blencowe, J. Imbers, and A. D. Armour, New J. Phys. 7,
236 (2005).

[5] D. A. Rodrigues and A. D. Armour, New J. Phys. 7, 251 (2005).
[6] A. A. Clerk and S. Bennet, New J. Phys. 7, 238 (2005).
[7] S. Andre, V. Brosco, M. Marthaler, A. Shnirman, and G. Schön,

Phys. Scr. T137, 014016 (2009).
[8] M. Marthaler, G. Schön, and A. Shnirman, Phys. Rev. Lett. 101,

147001 (2008).
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