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Dynamic many-body theory: Multiparticle fluctuations and the dynamic structure of 4He
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We present further progress in a systematic approach to the microscopic understanding of the dynamics of
strongly interacting quantum fluids. Employing the concept of dynamic multiparticle fluctuations, we derive
equations of motion for fluctuating n-body densities. We apply the theory to calculate the dynamic structure
function of liquid 4He as a function of density and find, without any phenomenological input, overall excellent
agreement with both experiments and, as far as available, simulation data.
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I. INTRODUCTION

Much of our knowledge of the dynamics of strongly
correlated quantum fluids, including liquid 4He, is obtained
from the liquid’s dynamic structure function S(k,�ω), which
is directly measured by inelastic neutron scattering. In the
linear-response regime, the double-differential cross section

∂2σ

∂� ∂�ω
= b2

(
k1

k0

)
S(k,�ω) (1.1)

for this scattering is proportional to S(k,�ω), where �k and
�ω are the momentum and energy transferred to the system
by the scattered neutron [1], � is the scattering solid angle,
b is the scattering length of the nucleus, and �k0 and �k1 are
the initial and final momenta of the scattered neutron. Reviews
of the experimental, simulation, and theoretical results before
1994 for the liquid 4He S(k,�ω) are given in Refs. [2,3]. More
recent results may be found in Refs. [4–18] and references cited
therein.

In this paper, we report on an extension of our theory for the
dynamics of a Bose quantum fluid and apply the theory to the
dynamic structure function of liquid 4He. We include dynamic
pair [4] and triplet fluctuations using an equation-of-motion
approach for correlated wave functions. This includes results
for well-known features of the excitation spectrum of liquid
4He measured by inelastic neutron scattering, e.g., the phonon,
maxon, roton, and plateau features, illustrated in Fig. 1, as well
as a “multiexcitation” continuum. We also reproduce fainter
features of the dynamic structure function that have so far been
found experimentally [8]. These are an extension of the phonon
line into the continuum in the density regime of anomalous
dispersion; a feature that can be identified as roton-maxon
coupling; and an extension of the “Pitaevskii plateau” [19] to
long wavelengths.

We also compare our theory with the formal results of
a highly resummed version of Brillouin-Wigner perturbation
theory (BW) for the lowest excited state using correlated basis
functions [20,21].

More recently, much progress has been made in the
development of simulation methods for dynamic quantities;
see, e.g., Refs. [17,22]. These are very important algorithmic
developments that will ultimately permit the very demanding
elimination of background and multiple-scattering events from
the raw data. The aim of our work is somewhat different: It is

generally agreed upon that the model of static pair potentials
such as the Aziz interaction describes the helium liquids
accurately. Hence, given sufficiently elaborate algorithms and
sufficient computing power, such calculations must reproduce
the experimental data. The identification of different effects
such as phonon-phonon, phonon-roton, roton-roton, maxon-
roton,...couplings is only possible a posteriori whereas the
semianalytic methods pursued here permit a direct identifica-
tion of these effects and their physical mechanisms from the
structure of the theory.

The well-known fact that the dynamic structure function
couples to the excitation spectrum is clear from the zero-
temperature relationship [23]

S(k,�ω) = 1

N

∑
n

|〈�n|ρk|�0〉|2δ(�ω − εn), (1.2)

where the sum is over all of the fluid’s eigenstates, |�0〉
is the (normalized) ground state of the N -particle system,
and εn is the exact excitation energy of eigenstate |�n〉
(i.e., eigenvalue En = E0 + εn, where E0 is the ground-state
energy). ρk is the density fluctuation operator, which in
coordinate representation is

ρk ≡
N∑


=1

exp(ik · r
), (1.3)

where {r
} are the coordinates of the N particles of the fluid.
Thus, all excited states which have nonzero weight in the
density fluctuation state ρk�0 contribute to S(k,�ω).

The earliest theory of the excitation spectrum, due to
Feynman [24], is equivalent to a single resonance ansatz for
S(k,�ω):

S0(k,�ω) = 1

N

∣∣〈�(0)
k

∣∣ρk|�0〉
∣∣2

δ[�ω − ε0(k)]

= S(k)δ[�ω − ε0(k)]. (1.4)

In this approximation, the only state in the sum is the
Feynman state �

(0)
k ≡ ρk�0/

√
NS(k), which, however, is

an exact eigenstate only in the long-wavelength limit. The
corresponding excitation energy is the Bijl-Feynman energy

ε0(k) ≡ �
2k2

2mS(k)
, (1.5)

1098-0121/2015/91(18)/184510(23) 184510-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.184510


C. E. CAMPBELL, E. KROTSCHECK, AND T. LICHTENEGGER PHYSICAL REVIEW B 91, 184510 (2015)

 0.0

 0.5

 1.0

 1.5

 2.0

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

ε(
k)

   
(m

eV
)

k   (Å−1)

h 
c k

 

Ref. [29]
Ref.  [8]
Ref. [30]
Ref.  [9]
Eq. (1.5)

FIG. 1. The figure shows experimental data for the elementary
excitations in 4He at saturated vapor pressure (SVP): boxes from
Ref. [29], circles from Ref. [8], stars from Ref. [30], and diamonds
from Ref. [9]. Also shown is the Feynman spectrum ε0(k) [Eq. (1.5)]
(solid line) and the phonon line �ck, where c is the experimental
speed of sound.

where m is the atomic mass, and S(k) is the liquid structure
factor

S(k) = 〈�0| ρkρ−k |�0〉
N

. (1.6)

S(k) has been independently measured using elastic neutron
scattering and x-ray scattering [5,25–27]. In the Feynman ap-
proximation [Eqs. (1.4) and (1.5)], the excitation is undamped
at all wave numbers.

It is well known that there is indeed a sharp elementary
excitation spectrum ε(k) measured in the dynamic structure
function of liquid 4He; this is shown in Fig. 1, where
it is seen that ε0(k) is in quantitative agreement with the
measured dispersion relationship ε(k) at long wavelengths,
i.e., in the phonon region. However, ε0(k) is only qualitatively
correct at shorter wavelengths, including the maxon and roton
regions, and fails even qualitatively in the higher-momentum
“Pitaevskii plateau” [19] region.

It is customary to parametrize the dispersion relation of
the collective mode in the vicinity of its minimum around

q ≈ 2 Å
−1

(the roton minimum) as [28]

εR(k) = �R + �
2

2μR
(k − kR)2, (1.7)

where �R is the roton energy, kR the wave number of the
roton minimum, and μR the so-called roton mass. Moreover,
there is a broad continuum in S(k,�ω), at energies above ε(k),
which is generally attributed to multiexcitation contributions,
not shown in Fig. 1. Accounting for these and other features
of S(k,�ω) has been the objective of much of the subsequent
theoretical work, including the work that we present herein.

In most reports it has been found convenient to decompose
the dynamic structure factor into a single pole term at �ω =
ε(k), and a continuum component Sm already found in the
earliest experiments [29,31]:

S(k,�ω) = Z(k)δ[�ω − ε(k)] + Sm(k,�ω). (1.8)

Z(k), the strength of the single excitation pole, is obviously
less than or equal to S(k), the difference being accounted for
by the energy integral of Sm(k,�ω). It has been observed that
Z(k) becomes negligible in the Pitaevskii plateau region above

approximately 3.5 Å
−1

for liquid 4He at equilibrium density,
and similarly at higher pressures [7,9].

In order to obtain the dynamic structure function from first
principles, we have employed linear-response theory adapted
for strongly correlated systems [4,32–34]. The dynamic
response of the fluid’s one-body density to a weak, time-
dependent, external potential δVext(r,t) is expressed in terms
of the dynamic density-density response function χ (r,r′; t) of
the unperturbed fluid:

δρ1(r,t) =
∫

d3r ′dt ′ χ (r,r′; t − t ′)δVext(r′,t ′), (1.9)

where δρ1(r,t) is the time-dependent part of the one-body
density. The dynamic structure function is given by the imagi-
nary part of frequency and wave-number Fourier transform of
χ (r,r′; t):

S(k,�ω) = − 1

Nπ
Im

∫
d3r d3r ′eik·(r−r′)χ (r,r′; �ω). (1.10)

[Here and elsewhere, it is most convenient to formally include
the possibility that the density of the fluid is inhomogeneous,
as we have in Eqs. (1.9) and (1.10).]

The equations of motion (EOM) for δρ1(r,t) and other
necessary multiparticle density fluctuations are obtained using
the principle of least action [35,36]

0 = δS = δ

∫ t2

t1

dt L(t)

= δ

∫ t2

t1

dt〈�(t)|H0 + δHext(t) − i�
∂

∂t
|�(t)〉, (1.11)

where L(t) is the Lagrangian,

δHext(t) =
∑

i

δVext(ri ; t) (1.12)

is a small, time-dependent perturbation, and |�(t)〉 is the
perturbed wave function. The latter can be written in complete
generality as

|�(t)〉 = e−iE0t/� e
1
2 δU (t)|�0〉

[〈�0|eRe δU (t)|�0〉]1/2
, (1.13)

where E0 is the ground-state energy, and δU (t) is the complex
excitation operator. In coordinate representation, it is conve-
nient to express this excitation operator as a time-dependent
Feenberg function

δU (t) =
∑

i

δu1(ri ; t) +
∑
i<j

δu2(ri ,rj ; t) + · · ·

≡ δU1(t) + δU2(t) + · · · , (1.14)

where the sums in the first line are over all of the particles.
The Feynman approximation is obtained by including

only δU1(t) in the excitation operator, i.e., δUn(t) = 0 for
n � 2 [32]. Significant improvement was achieved by also
including dynamic two-body fluctuations δU2(t) [4,33,34,37].
For fermions, the restriction of U (t) to one-body fluctuations
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leads to a generalization of the time-dependent Hartree-
Fock approximation to strongly interacting systems [38,39],
similarly the inclusion of pair excitations provides a sig-
nificant improvement of the agreement between theory and
experiment [40,41]. In this work, we extend this theory to
include dynamic three-body fluctuations by simultaneously
determining δUn(t), n = 1,2,3, achieving excellent agreement
with experimental results extrapolated to zero temperature.

The concept of dynamic multiparticle fluctuations has been
discussed in the past in various places; see, for example,
Ref. [42]. At the level of dynamic pair fluctuations, the
most complete solution of the equations of motion, which
involved a solution of the full, linearized hypernetted chain
Euler-Lagrange equations (HNC-EL) for the pair fluctuations,
has been presented as the first paper of this series [4]. However,
in that work it was found that such a fully self-consistent
calculation does not lead to a significant improvement of
the excitation spectrum over that obtained with the relatively
simple convolution approximation [43–46].

To proceed with the inclusion of dynamical three-particle
fluctuations, it is necessary to have accurate information about
the ground-state wave function in the form of its multiparticle
density functions ρn(r1, . . . rn):

ρn(r1, . . . ,rn)

= N !

(N − n)!

∫
d3rn+1 . . . d3rN |�0(r1, . . . ,rN )|2∫
d3r1 . . . d3rN |�0(r1, . . . ,rN )|2 (1.15)

and the corresponding dimensionless multiparticle distribution
functions

gn(r1, . . . ,rn) = ρn(r1, . . . ,rn)

ρ1(r1) . . . ρ1(rn)
(1.16)

for n = 1, . . . ,5.
While information about the ground-state wave function of

liquid 4He, including some low-order distribution functions,
is available from quantum Monte Carlo simulations, presently
it seems not to be possible to extract sufficiently high-
order correlation functions with sufficient accuracy for the
implementation of our theory. However, functional varia-
tion methods, such as the Feenberg-Jastrow-Euler-Lagrange
(FJEL) theory, have been developed over the past three decades
to a level where the quantitative prediction of ground-state
properties of strongly interacting bulk Bose liquids is a routine
matter [39].

The FJEL theory for the ground state of a strongly
interacting system of N identical bosons conventionally begins
with an empirical Hamiltonian

H0 =
N∑

i=1

{
− �

2

2m
∇2

i + V1(ri)

}
+

∑
1�i<j�N

V2(|ri − rj |),

(1.17)

where V1(r) is an external potential, and V2(|ri − rj |) is the
two-particle interaction. The strong, short-ranged repulsion
in V2(|ri − rj |) is readily dealt with in the FJEL theory.
The ground-state wave function for a system of N identical
bosons with coordinates r1, . . . ,rN is written in the Feenberg

form [47–49]

�0(r1, . . . ,rN )

= N−1/2 exp
1

2

⎧⎨
⎩

∑
i

u1(ri) +
∑
i<j

u2(ri ,rj ) + · · ·
⎫⎬
⎭ ,

(1.18)

where N is the normalization integral, and the static corre-
lation functions un(r1, . . . ,rn) are real and symmetric under
particle exchange. These functions may be obtained by simul-
taneously solving the set of Euler-Lagrange (EL) equations
that minimize the energy expectation value E0 [47,50–53]:

δE0

δun(r1, . . . ,rn)
= 0, (1.19)

where

E0 = 〈�0| H0 |�0〉. (1.20)

If all N of these EL equations were solved, �0 would be the
exact ground state and E0 the exact ground-state energy. This
is, of course, impractical; however, it has proven unnecessary
to go beyond n = 3 to obtain excellent agreement with exper-
iments for bulk liquid 4He as well as inhomogeneous systems
such as adsorbed films [54–56]. The one-body function u1(ri)
determines the spatial structure of the system, and the two-
body function u2(ri ,rj ) describes the short- and long-range
correlations between pairs of particles. Triplet correlations in
the form of u3(ri ,rj ,rk) are needed to provide quantitative
agreement between theoretical predictions and the very low-
temperature experimental equation of state [47,52,53]. Three-
body correlations contribute visibly to the nearest-neighbor
peak of the pair distribution function g2(ri ,rj ), the maximum
of the liquid structure factor, and the density dependence of
the roton [46].

In the following, we detail our theory of S(k,�ω) including
dynamic three-body fluctuations. In Sec. II, we formulate
the general concept of dynamic multiparticle fluctuations and
derive relationships for the fluctuating densities and currents.
A key aspect of this analysis is a transformation to a more
convenient set of independent functional variables. Section III
derives the Lagrangian and brings it into a form that is
suitable for deriving the equations of motion. The general
equations of motion are derived in Sec. IV and, from these,
the density-density response function. In that section, we will
utilize the convolution approximation [43,57,58] to formulate
a compact and practical theory. Some of the more technical
aspects of our derivations are contained in the Appendices.

An alternative approach to the theory of the excitation
spectrum that has been utilized in the past [20,43–46] is
Brillouin-Wigner (BW) perturbation theory in a correlated
basis. We discuss the relationship of the EOM method and
the BW expansion in Sec. V. The BW expansion will
provide justification for some of the generalizations of our
working formulas which would be very tedious to derive from
multiparticle fluctuations. In turn, the EOM method provides
justification for generalizing the BW working formulas, which
are, strictly speaking valid only for the lowest-lying excitation,
to the full density-density response function.
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The concluding Sec. VI first discusses a sequence of
comparisons of our ground-state results with experiments
and simulation data. We then present results on generic
properties of the excitation spectrum: the strength (1.8) of
the single-phonon pole, the energy, momentum, and effective
mass of the roton excitation, and the static density-density
response function. A very useful reference on this point is the
compilation of experimental and simulation data of Caupin
et al. [5]. We then proceed to discuss our results for the
dynamic structure function S(k,�ω) in the fluid density regime

between ρ = 0.021 and 0.025 Å
−3

and mention some finer
details that might be experimentally visible. We conclude by
briefly discussing high-lying excitations.

II. MULTIPARTICLE FLUCTUATIONS

A. Fluctuating densities and distribution functions

The time-dependent parts of the correlations
δun(r1, . . . ,rn; t) are determined by the action principle (1.11).
Expanding the Lagrangian to second order leads to [4]

L(t) = 1
8 {〈�0|[δU ∗,[T ,δU ]]|�0〉
−i�〈�0|[δU̇δU ∗ − c.c.]|�0〉}
+ 1

2 〈�0|[δU ∗(t)δHext(t) + δHext(t)δU (t)]|�0〉
= Lint(t) + Lt (t) + Lext(t), (2.1)

where |�0〉 is normalized, and it has been assumed, without
loss of generality, that the fluctuating part of the wave function
is orthogonal to the ground state: 〈�0|δU (t)|�0〉 = 0.

In this section, we consider a truncated form of the
excitation operator (1.14) that includes up to three-body
fluctuations. Central quantities for the description of the
physics are fluctuations of the n-body densities corresponding
to the above wave function. It is convenient and useful
for the definitions of these fluctuations and the one-particle
current to be generalized complex functions, where the physical
fluctuations are their real parts.

Formally we make no assumptions yet about specific
symmetries such as translational invariance or isotropy; in
cases where one has to deal with multiparticle densities, such
assumptions provide practically no formal simplifications.

The complex fluctuations δun(r1, . . . ,rn; t) induce a time
dependence of the n-body densities (1.15). We can generally
write the time-dependent parts of the densities in terms of
functional variations of the ground-state densities (1.15) with
respect to the correlation amplitudes un(r1, . . . ,rn) and the
fluctuations δun(r1, . . . ,rn; t). When doing these variations, it
is useful to take the un(r1, . . . ,rn) as independent functions,

subsequently evaluating them at their optimal ground-state
forms. For example, the time-dependent part of the one-body
density is

δρ1(r; t) =
∫

d3r1
δρ1(r)

δu1(r1)
δu1(r1; t)

+
∫

d3r1d
3r2

δρ1(r)

δu2(r1,r2)
δu2(r1,r2; t)

+
∫

d3r1d
3r2d

3r3
δρ1(r)

δu3(r1,r2,r3)
δu3(r1,r2,r3; t),

(2.2)

where ρ1(r) is a functional of the set of real functions {un} but
not a functional of {δun ,δu∗

n}. The physical one-body density
fluctuation is the real part of Eq. (2.2) and thus contains both
δun and δu∗

n.
Using the symmetry

δρ1(r)

δun(r1, . . . ,rn)
= 1

n!

δρn(r1, . . . ,rn)

δu1(r)
, (2.3)

we can rewrite Eq. (2.2) as

δρ1(r; t) =
∫

d3r1
δρ1(r1)

δu1(r)
δu1(r1; t)

+ 1

2!

∫
d3r1d

3r2
δρ2(r1,r2)

δu1(r)
δu2(r1,r2; t)

+ 1

3!

∫
d3r1d

3r2d
3r3

δρ3(r1,r2,r3)

δu1(r)
δu3(r1,r2,r3; t)

. (2.4)

A key step in the derivation of the equations of motion is
to introduce a new set of independent dynamical variables
δvn(r1, . . . ,rn; t) in the action principle (1.11). The one-body
function δv1(r1; t) is defined by

δρ1(r; t) ≡
∫

d3r ′ δρ1(r)

δu1(r′)
δv1(r′; t)

=
∫

d3r ′ δρ1(r′)
δu1(r)

δv1(r′; t), (2.5)

where
δρ1(r)

δu1(r′)
= ρ1(r)δ(r − r′) + ρ2(r,r′) − ρ1(r)ρ1(r′)

≡ ρ1(r)S(r,r′)ρ1(r′) (2.6)

and S(r,r′) is the coordinate representation of the static
structure function.

From Eq. (2.4) we find the relationship between δu1(r; t)
and δv1(r; t):

δv1(r; t) = δu1(r; t) +
∫

d3r ′ δu1(r′)
δρ1(r)

[
1

2!

∫
d3r1d

3r2
δρ2(r1,r2)

δu1(r′)
δu2(r1,r2; t) + 1

3!

∫
d3r1d

3r2d
3r3

δρ3(r1,r2,r3)

δu1(r′)
δu3(r1,r2,r3; t)

]

= δu1(r; t) + 1

2!

∫
d3r1d

3r2
δρ2(r1,r2)

δρ1(r)
δu2(r1,r2; t) + 1

3!

∫
d3r1d

3r2d
3r3

δρ3(r1,r2,r3)

δρ1(r)
δu3(r1,r2,r3; t). (2.7)
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How the variation with respect to the one-body density
is done must be explained. A priori, the two-body density
and/or pair distribution function can be expressed as a dia-
grammatic expansion in terms of n-body correlation functions
un(r1, . . . ,rn), the fundamental diagrammatic elements being
eu1 and, for n > 1, eun − 1. These diagrams contain articula-
tion points. Diagrams containing such articulation points are
called point reducible. These reducible diagrams can all be
eliminated by re-interpreting each point as a density factor
ρ1(ri); therefore, we may think of ρ2(r1,r2) and ρ3(r1,r2,r3)
also as expansions in terms of the one-body density ρ1(ri)
and pair and triplet correlations u2(ri ,rj ) and u3(ri ,rj ,rk).
These expansions are represented by the same sets of diagrams
as before, with the additional dictum that they contain no
point-reducible diagrams, and individual points are interpreted
as carrying a factor ρ1(ri) instead of eu1(ri ). The variation with
respect to the density is done on these expansions.

As in Ref. [4], we use δv1(r; t) as an independent one-body
function in the action principle (1.11). However, since there is
a one-to-one relationship between δv1(r; t) and δρ1(r; t), this
is the same as keeping the latter as the independent one-body
function.

Operationally, one proceeds for the two-body fluctuations
as follows: The point-reducible diagrams contributing to
g2(r1,r2) can again be summed to give the density factors
ρ1(ri) at each diagram point ri . Consequently, we can consider
the pair distribution function as a functional of the one-body
density ρ1(ri) and pair and triplet correlations u2(ri ,rj ) and
u3(ri ,rj ,rk). The time-dependent part is then, to linear order,

δg2(r1,r2; t)

=
∫

d3r ′
1
δg2(r1,r2)

δρ1(r′
1)

δρ1(r′
1; t)

+
∫

d3r ′
1d

3r ′
2
δg2(r1,r2)

δu2(r′
1,r

′
2)

δu2(r′
1,r

′
2; t)

+
∫

d3r ′
1d

3r ′
2d

3r ′
3

δg2(r1,r2)

δu3(r′
1,r

′
2,r

′
3)

δu3(r′
1,r

′
2,r

′
3; t)

≡
∫

d3r ′
1
δg2(r1,r2)

δρ1(r′
1)

δρ1(r′
1; t)

+
∫

d3r ′
1d

3r ′
2
δg2(r1,r2)

δu2(r′
1,r

′
2)

δv2(r′
1,r

′
2; t). (2.8)

The last line defines δv2(r1,r2; t). For a consistent notation we
shall also identify δv3(r1,r2,r3; t) ≡ δu3(r1,r2,r3; t).

To proceed further, we can make use of symmetry relations
for the functional derivatives of gn similar to those for
ρn [Eq. (2.3)]. These are obtained by first noting that the
logarithm of the ground-state normalization integral lnN ,
defined by Eq. (1.18), is a functional of the set of the
static correlation functions {un}, which may be used as the
generator of the ground-state distribution functions ρn by
functional differentiation with respect to un. The symmetry
relations for the functional derivatives of the n-body densities
given in Eq. (2.3) is due to the commutativity of the second
functional cross derivatives of lnN with respect to {un} and
{um} with n 
= m. The corresponding symmetry relations for
the dimensionless distribution functions gn [Eq. (1.16)] are

obtained by a functional Legendre transformation of lnN to
a new generating functional of the functions {ρ1,u2,u3, . . .}.
The equality of the second cross derivatives of this generating
functional, together with the definition of the multiparticle
distribution functions (1.16), gives the desired symmetry
relations

ρ1(r1)ρ1(r2)
δg2(r1,r2)

δu2(r′
1,r

′
2)

= ρ1(r′
1)ρ1(r′

2)
δg2(r′

1,r
′
2)

δu2(r1,r2)
,

(2.9)
ρ1(r1)ρ1(r2)

δg2(r1,r2)

δu3(r′
1,r

′
2,r

′
3)

= 2!

3!
ρ1(r′

1)ρ1(r′
2)ρ1(r′

3)
δg3(r′

1,r
′
2,r

′
3)

δu2(r1,r2)
.

As in the transition from Eqs. (2.2) to (2.4), we use these
symmetry relations to solve for δv2(r1,r2; t):

δv2(r1,r2; t) = δu2(r1,r2; t)

+
∫

d3ρ ′
1d

3ρ ′
2d

3ρ ′
3G23(r1,r2; r′

1,r
′
2,r

′
3)

× δu3(r′
1,r

′
2,r

′
3; t), (2.10)

where

G23(r1,r2; r′
1,r

′
2,r

′
3) ≡ 1

3ρ1(r1)ρ1(r2)

δg3(r′
1,r

′
2,r

′
3)

δg2(r1,r2)
(2.11)

and we have introduced the notation d3ρi ≡ ρ1(ri)d3ri .
We will also use the notation G32(r′

1,r
′
2,r

′
3; r1,r2) ≡

G23(r1,r2; r′
1,r

′
2,r

′
3) to specify the order of the coefficients.

We must again specify how the variation of g3(r′
1,r

′
2,r

′
3) with

respect to g2(r1,r2) is done: One first derives a diagrammatic
expansion in terms ρ1(ri) and un(r1, . . . ,rn) (n � 2). Then,
one identifies all diagrams that can be separated from the
rest by cutting two points. Reinterpreting the single line as
h2(ri ,rj ) ≡ g2(ri ,rj ) − 1, one can now rewrite the expansion
for g3(r′

1,r
′
2,r

′
3) as a functional of g2(ri ,rj ), ρ1(ri), and

u3(ri ,rj ,rk) (Abe expansion [59]). The procedure is the
same as going from “elementary” to “basic” diagrams in
the hypernetted theory (HNC) of classical fluids [60]. The
variation with respect to g2(r1,r2) is then derived from this
expansion.

B. One-body current

For the one-body equation, we need to express the expec-
tation value of the one-body current operator in terms of the
new variables δvn(r1, . . . ,rn; t). Beginning with

j(r; t) = �

2mi

[
ρ1(r)∇δu1(r; t) +

∫
d3r1ρ2(r,r1)∇rδu2(r,r1; t)

+ 1

2

∫
d3r1d

3r2ρ3(r,r1,r2)∇rδu3(r,r1,r2; t)

]
,

(2.12)
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we eliminate the δu1(r; t) and δu2(r,r′; t) in favor of δv1(r; t)
and δv2(r,r′; t), using Eqs. (2.7) and (2.10):

j(r; t) = �

2mi
ρ1(r)

[
∇δv1(r; t)

− 1

2

∫
d3ρ1d

3ρ2W2(r; r1,r2)δv2(r1,r2; t)

− 1

3!

∫
d3ρ1d

3ρ2d
3ρ3W3(r; r1,r2,r3)

× δv3(r1,r2,r3; t)

]
, (2.13)

where

W2(r; r1,r2) ≡ δ(r1 − r)

ρ1(r)
∇rg2(r,r2) + δ(r2 − r)

ρ1(r)
∇rg2(r1,r)

+∇r
δg2(r1,r2)

δρ1(r)
(2.14)

and

W3(r; r1,r2,r3) ≡ δ(r1 − r)

ρ1(r)
∇rg3(r,r2,r3) + cycl.

− 2

ρ1(r)

∫
d3r ′∇rg2(r,r′)

δg3(r1,r2,r3)

δg2(r,r′)

+∇r
δg3(r1,r2,r3)

δρ1(r)

∣∣∣∣
g2(r,r′)

. (2.15)

We will show in Appendix A1 that W3(r; r1,r2,r3) vanishes
for a Jastrow wave function. The current then assumes the
simple form

j(r; t) = �

2mi
ρ1(r)

[
∇rδv1(r; t)

− 1

2

∫
d3ρ1d

3ρ2W2(r; r1,r2)δv2(r1,r2; t)

]
(2.16)

≡ jF (r; t) + jp(r; t). (2.17)

In an obvious decomposition, Eqs. (2.16) and (2.17) define
a “Feynman current” jF (r; t) and a “pair induced current”
jp(r; t). The name “Feynman current” indicates that this term
survives in the Feynman approximation δu2(r1,r2; t) = 0.
Note again that we have defined jF (r; t) and jp(r; t) as complex
quantities; the real part of j is the physical one-body current.

Although triplet correlations are routinely included in
ground-state calculations, we will neglect these effects in order
to simplify the further analysis; i.e., we shall from here on use
Eqs. (2.16) and (2.14) for the current.

III. LAGRANGIAN

The individual terms of the Lagrangian (2.1) have been
derived in many places; see, for example, Refs. [4,42]. We
only need to spell out the changes due to our new choice
of independent variables and the inclusion of three-body
fluctuations.

A. External field term

The term involving the external potential is, to first order in
the fluctuations,

Lext(t) = 〈�0|
∑

i

δVext(ri ; t)|�0〉

=
∫

d3r δVext(r; t)δρ1(r; t). (3.1)

In our choice of independent functions, this term is simply

Lext(t) = 1

2

∫
d3r d3r ′ δVext(r)

δρ1(r)

δu1(r′)
[δv1(r′; t) + δv∗

1 (r′; t)].

(3.2)

B. Time-derivative term

For the time-derivative term in the action integral (1.11),
we obtain, through second order in δU (t),

Lt (t) = − i�

8
[〈�0|δU̇δU ∗|�0〉 − c.c.]. (3.3)

Because of the relation

δLt (t)

δu∗
n(r1, . . . ,rn; t)

= − i�

8n!
δρ̇n(r1, . . . ,rn; t), (3.4)

we have

Lt (t) = − i�

8

∑
n

1

n!

∫
d3r1 . . . d3rn[δρ̇n(r1, . . . ,rn; t)

× δu∗
n(r1, . . . ,rn; t) − c.c.]. (3.5)

Working with the fluctuations δun(r1, . . . ,rn; t), one would
now have to expand the δρ̇n(r1, . . . ,rn; t) in terms of ground-
state densities and one-, two-, and three-body fluctuations.
For three-body fluctuations, this can lead to up to six-body
distribution functions. The expression forLt (t) is considerably
simplified by rewriting it in terms of the new variables δv1(r; t),
δv2(ri ,rj ; t), and δv3(ri ,rj ,rk; t). The relevant derivations are
carried out in Appendix A2; we can summarize our results as

δLt (t)

δv∗
n(r1, . . . ,rn; t)

= − i�

4n!

∫
d3r ′

1 . . . d3r ′
n

δρn(r1, . . . ,rn)

δun(r′
1, . . . ,r′

n)
δv̇n(r′

1, . . . ,r
′
n; t).

(3.6)

The two expressions (3.2) and (3.6), together with the result
of Sec. II B that, for a Jastrow wave function, the one-body
current j(r; t) has the form (2.17) even if fluctuating triplet
correlations are included, are the key reason for introducing
the new variables δvn(r1, . . . ,rn; t).

C. Interaction Lagrangian

The interaction Lagrangian requires the largest amount of
work. We evaluate this term in three steps: The first step is to
calculate directly Lint(t) from Eq. (3.7). In the second step, we
eliminate δu1(ri ; t) in favor of δv1(ri ; t) using Eq. (2.7), and
in the third, we also eliminate δu2(ri ,rj ; t) using Eq. (2.10).
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Generally, we can write

Lint(t) = 1

8
〈�0|[δU ∗,[T ,δU ]]|�0〉 =

3∑
i,j=1

L(ij )
int (t), (3.7)

where the L(ij )
int (t) contains one i-body fluctuation and one

j -body fluctuation and L(ij )
int (t) = L∗(ji)

int (t). The general form
of these terms is

L(ij )
int (t) = �

2

8m

∫
d3ρ1d

3ρ2 . . . d3ρid
3ρ ′

2 . . . d3ρ ′
jL

(ij )

× (r1; r2 . . . ri ; r′
2 . . . r′

j )∇1δu
∗
i (r1,r2 . . . ri ; t)

·∇1δuj (r1,r′
2 . . . r′

j ; t). (3.8)

The coefficient functions L(ij )(r1; r2 . . . ri ; r′
2 . . . r′

j ) are ex-
pressed in terms of ground-state distribution functions, as
spelled out in Appendix A3. Next, we collect all terms that
contain δu1(r; t) into the current (2.12). With the abbreviation

v(r; t) ≡ j(r; t)

ρ1(r)
(3.9)

for the velocity field, the interaction Lagrangian becomes

Lint(t) = m

2

∫
d3ρ|v(r; t)|2 +

3∑
i,j=2

L′(ij )
int (t), (3.10)

where the individual terms have again the
structure (3.8) but with different coefficient functions
L

′(ij )(r1; r2 . . . ri ; r′
2 . . . r′

j ).
The last step is to eliminate the δu2(ri ,rj ; t) using

Eq. (2.10). The general structure of the result is

Lint(t) = m

2

∫
d3ρ|v(r; t)|2 +

3∑
i=2

L′′(ii)
int (t), (3.11)

where the L′′(ii)
int (t) are now functionals of δv2(ri ,rj ; t) and

δv3(ri ,rj ,rk; t). We use Eq. (2.10) to simplify this expression
and obtain the form

L′′(2,2)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2d
3ρ ′

2F22(r1; r2,r′
2)δQ(r1,r2; t)

· δQ∗(r1,r′
2; t), (3.12)

where F22(r1; r2,r′
2) is given in Eq. (A11) [4] and

δQ(r1,r2; t) ≡ ∇r1δv2(r1,r2; t)

−
∫

d3ρ ′
1d

3ρ ′
2d

3ρ ′
3δv3(r′

1,r
′
2,r

′
3; t)

×∇r1G23(r1,r2; r′
1,r

′
2,r

′
3), (3.13)

where G23 is defined in Eq. (2.11).
Finally,

L′′(3,3)
int (t) = �

2

16m

∫
d3ρ1 . . . d3ρ ′

3F33(r1; r2,r3; r′
2,r

′
3)∇r1

× δv3(r1,r2,r3; t) · ∇r1δv
∗
3 (r1,r′

2,r
′
3; t) (3.14)

and the function F33(r1; r2,r3; r′
2,r

′
3), defined in Eq. (A16), is

a combination of ground-state distribution functions that will
have to be dealt with in a diagrammatic analysis.

IV. EQUATIONS OF MOTION

A. General structure

We make the standard decomposition

δVext(r; t) = δVext(r)[eiωt + e−iωt ],

δvn(r1, . . . ,rn; t) = v(+)
n (r1, . . . ,rn)e−iωt

+ v(−)
n (r1, . . . ,rn)eiωt , (4.1)

δρ1(r; t) = δρ
(+)
1 (r)e−iωt + δρ

(−)
1 (r)eiωt .

j(r; t) = j(+)(r)e−iωt + j(−)(r)eiωt

We can do the harmonic decomposition of all time-
dependent functions at this point whereby the i�∂/∂t is
replaced by �ω when acting on e−iωt , etc. In particular, one
can think of all pair and triplet fluctuations as functions of
only one frequency because the pair equations with positive
and negative frequency decouple. Only the one-body equation
will eventually give us a superposition of positive and negative
frequencies.

The next steps in our derivations are largely independent
of the actual approximations used for calculating the combi-
nations of distribution functions entering the Lagrangian; in
fact, we will see that we can reduce the equations of motion
to a form that is almost identical to that of the pair fluctuation
version of the theory [4]. The one-body equation is simply the
continuity equation

∇ · j(r; t) + ρ̇(r; t) = 2

i�
ρ1(r)

∫
d3ρ ′S(r,r′)δVext(r′; t),

(4.2)

where the current is given by Eq. (2.17), S(r,r′) is defined in
Eq. (2.6), and the relationship between ρ̇(r; t) and δv̇1(r; t)
is given by the time derivative of Eq. (2.5). The equations
for the pair and triplet fluctuations are derived by variation
of the Lagrangian; in particular, the general form of the three-
body equation is quite complicated and calls for simplifications
which we will outline in the next section and carry out in detail
in Appendix B. It is important to note that the one-body current
does not contain three-body fluctuations. This means we can
express the three-body fluctuations in terms of pair fluctuations
alone.

B. Convolution approximation

It still takes a number of manipulations to derive a set
of equations of motion in a form that is both structurally
plausible and numerically practical. HNC equations for all
the basic ingredients of the theory were solved in Ref. [4].
This required, among others, the calculation of the three-
point function F22(r1; r2,r′

2) and the four-point function
δg2(r1,r2)/δu2(r′

1,r
′
2). That calculation was feasible in a partial

wave expansion; however, trying to do the same at the
three-body level would imply dealing with six-point functions.
Before entering such a tedious calculation, the inclusion of
three-body fluctuations should be attempted at a much simpler
level. Therefore, the first objective is to include triplet fluc-
tuations in the convolution approximation [43,57,58]. We use
the convolution approximation as the simplest approximation
that ensures that the long-wavelength behavior is correct. This
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r1

r2 r3

FIG. 2. Diagrammatic representation of the three-body distri-
bution function. The upper two lines constitute the convolution
approximation. The solid line represents a function h(ri ,rj ) defined
in Eq. (4.4) and the shaded triangle in the third line represents
the nonnodal three-body function X3(r1,r2,r3). In leading order,
this function is approximated by the triplet correlation function
u3(r1,r2,r3). Not all diagrams that can be generated by symmetry
operations are shown.

is also the simplest approximation that satisfies the sequential
relations between the n-body densities.

The reassuring result of Ref. [4] was that the convolution
approximation is, in fact, quite good when used in conjunction
with the “unrenormalized” form of the self-energy. We shall
see that the implementation of our present theory is, at this
level, also quite feasible and permits, unlike the full theory, an
intuitive physical interpretation.

In order to calculate the ingredients of the diagonalized
interaction Lagrangian [Eqs. (3.11)–(3.14)], we need to eval-
uate the two-point vector fluctuation function δQ(r1,r2; t)
[Eq. (3.13)] and two static functions depending only on
ground-state distributions: F33(r1; r2,r3; r′

2,r
′
3), defined in

Eq. (A16), and G23(r1,r2; r′
1,r

′
2,r

′
3), defined in Eq. (2.11). In

addition, for the triplet variation of the time-dependent term
in the Lagrangian [Eq. (A8)], we need the six-point static
function δg3(r1,r2,r3)/δu3(r′

1,r
′
2,r

′
3).

Let us first look at the second term in Eq. (3.13). The di-
agrammatic expansion of the three-body distribution function
is shown in Fig. 2; the convolution approximation constitutes
the set of diagrams shown in the first two rows. The graphical
representation of the function G23(r1,r2; r′

1,r
′
2,r

′
3) is obtained

by removing, in turn, a line from the graphical representation
of the three-body function. If the line is connected to one of
the external points r′

i , i = 1 . . . 3, a δ(r′
i − rj )/ρ(rj ) is added.

The representation of the first few diagrams contributing to
G23(r1,r2; r′

1,r
′
2,r

′
3) is shown in Fig. 3.

Adopting the convolution approximation for g3(r′
1,r

′
2,r

′
3),

it is straightforward to calculate the second term in Eq. (3.13)
for δQ:∫

d3ρ ′
1d

3ρ ′
2d

3ρ ′
3δv3(r′

1,r
′
2,r

′
3; t)∇r1G23(r1,r2; r′

1,r
′
2,r

′
3)

≈
∫

d3ρ ′
3∇1h(r1,r′

3)δv3(r1,r2,r′
3)

+ 1

2

∫
d3ρ ′

3d
3ρ ′

4∇1[h(r1,r′
3)h(r1,r′

4)]δv3(r2,r′
3,r

′
4),

(4.3)

FIG. 3. Diagrammatic representation of the function
G23(r1,r2; r′

1,r
′
2,r

′
3). Small circles correspond to the points

rj , j = 1,2, and large circles to the points r′
i , i = 1 . . . 3. If a

small circle and a large circle coincide, it is understood that a
function δ(ri − r′

j )/ρ(r′
j ) is added. The entire expression must

be symmetrized with respect to the points rj , j = 1,2, and
r′
i , i = 1 . . . 3. The first three diagrams shown in the upper row

and the first diagram in the lower row constitute the convolution
approximation.

where

h(r,r′) ≡ g2(r,r′) − 1. (4.4)

We see here the beginning of the series of diagrams repre-
senting the function W2(r1; r′

1,r
′
2) [Eq. (2.14)]. Higher-order

diagrams contributing to W2(r1; r′
1,r

′
2) are generated by the

subset of contributions to g3(r1,r2,r3) that have a node between
one of the external points and the other two. Thus, we can write

δQ(CA)(r1,r2) = ∇r1δv2(r1,r2)

− 1

2

∫
d3ρ ′

3d
3ρ ′

4W2(r1; r′
3,r

′
4)δv3(r2,r′

3,r
′
4).

(4.5)

The calculation of the variation δg3(r′
1,r

′
2,r

′
3)/δu3(r1,r2,r3)

is the most tedious one because this function contains up to six-
body distribution functions. The “convolution approximation”
amounts to keeping all diagrams with a fixed difference
between the number of points and the number of lines.
Specifically, in the six-body distribution function contributing
to δg3(r′

1,r
′
2,r

′
3)/δu3(r1,r2,r3) we keep all diagrams with three

lines h(ri ,rj ), in the five-body term all contributions with two
lines, etc. This amounts to the approximation[

δg3(r′
1,r

′
2,r

′
3)

δu3(r1,r2,r3)

](CA)

= ρ1(r′
1)ρ1(r′

2)ρ1(r′
3)

× [S(r1,r′
1)S(r2,r′

2)S(r3,r′
3) + cycl.].

(4.6)

The calculation of F33(r1; r2,r3; r′
2,r

′
3) is somewhat more

tedious due to the subtraction term spelled out in the last line
of Eq. (A16). To get all five-point diagrams with two lines, one
must also keep all two-line diagrams in F33(r1; r2,r2; r′

2,r3).
Nevertheless, the result is simple and as expected:

F (CA)
33 (r1; r2,r3; r′

2,r
′
3) = S(r2,r′

2)S(r3,r′
3) + S(r2,r′

3)S(r3,r′
2)

(4.7)

The remaining, somewhat complicated, calculations can be
found in Appendix B for the general case of an inhomoge-
neous system. We proceed here to spell out the case of a
translationally invariant geometry.
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The Feynman states, defined in general in Eq. (B2), are
plane waves in the uniform system:

ψn(r) =
√

1

�S(kn)
eikn·r φn(r) =

√
S(kn)

�
eikm·r, (4.8)

where � is the normalization volume. The self-energy matrix
becomes diagonal, and the density-density response function
is

χ (k,�ω) = S(k)

�ω − �(k,�ω)
+ S(k)

−�ω − �(k,−�ω)
, (4.9)

where

�(k,�ω)

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(k − p − q)

× |V3(k; p,q)|2
�ω − �[p,�ω − ε0(q)] − �[q,�ω − ε0(p)]

. (4.10)

V3 is proportional to the two-phonon hybridization vertex,
given in terms of ground-state quantities as [46]

V3(k; p,q)√
N

≡ 〈
�

(0)
k,q

∣∣δH ∣∣�(0)
k

〉

= �
2

2m

√
S(p)S(q)

NS(k)
[k · pX̃(p) + k · qX̃(q)

− k2ũ3(k,p,q)], (4.11)

where

X̃(k) = 1 − 1

S(k)
(4.12)

is the direct correlation function, and ũ3(k,p,q) is the dimen-
sionless Fourier transform of the static three-body correlation
function u3 of Eq. (1.18). If the self-energy is real, the
pole strength of χ (k,�ω) determines the strength Z(k) of
the single-phonon excitation, whereas the imaginary part of
�(p,�ω) characterizes the multiexcitation continuum.

Note that Eq. (4.10) defines an iterative procedure, we have
above proven only the first step. The diagrammatic analysis
in terms of BW perturbation theory in the next section gives
justification for our procedure.

V. BRILLOUIN-WIGNER PERTURBATION THEORY:
AN ALTERNATIVE APPROACH

An alternative method to study the excitations of interest
here is Brillouin-Wigner (BW) perturbation theory in a suit-
ably chosen correlated basis [20,43–46,61]. As applied in these
references, BW perturbation theory provides the energy of
the lowest-lying excitations, whereas the equations-of-motion
method generates the full density-density response function
whose features may be interpreted in terms of single-excitation
and multiexcitation energies of eigenstates which couple to
the correlated density fluctuations [see Eq. (1.2)]. It should be
clear that, to the extent that the same physics is described, BW
perturbation theory and the present EOM approach should lead
to the same results. Specifically, the EOM method gives the full
response function and, consequently, also the lowest-excitation

mode. BW gives only the lowest excitation. On the other hand,
it is relatively simple to extend BW perturbation theory to
higher order [20], whereas the equations-of-motion method
is even at third order rather cumbersome. The equations-
of-motion method leads, at the level elaborated here, to an
expression for the self-energy (4.10) that contains the second-
order approximation [45,46] in the energy denominator. The
analogy with BW perturbation theory provides the justification
for considering Eq. (4.10) as a self-consistency problem.

In our application of BW perturbation theory, the basis
states comprise correlated basis functions generated by re-
peated application of the density fluctuation operator to the
ground state, e.g.,

∣∣�(0)
k

〉 = 1√
NS(k)

ρk|�0〉,
(5.1)∣∣�(0)

k,q

〉 = 1√
N2S(k)S(q)

ρkρq|�0〉.

The first of these states is the single Feynman phonon state,
defined below Eq. (1.4), with corresponding Bijl-Feynman
excitation energy ε0(k) ≡ �

2k2/2mS(k). The second state in
Eq. (5.1) is the primary component of the two-Feynman-
phonon state that has an energy ε0(k) + ε0(q). The obvious

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Beginning of the series of Feynman diagrams repre-
senting the self-energy �(1)(k,�ω) at the triplet level of the EOM.
Diagram (a) corresponds to the self-energy correction to ε0(k) in
�(0)(k,�ω) at the pair level, where an incoming phonon splits into
two that recombine again. Diagrams (b)–(e) indicate the beginning of
the series which renormalizes diagram (a) to �(1)(k,�ω). Dressing
the sub-bubbles of the so-generated diagrams with diagram (a),
examples of which are shown in diagrams (f)–(h), and chains of it
leads to �(2)(k,�ω), and so on. Topologically equivalent diagrams are
omitted.
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generalization of these states to the set of M th-order multinomi-
als in the density fluctuation factors, with M � N , correlated
by |�0〉, forms a complete, correlated basis [23].

The unperturbed state for the elementary excitation of
interest is the Feynman state |�(0)

k 〉. The corresponding
perturbing Hamiltonian is

δH ≡ H − 〈
�

(0)
k

∣∣H ∣∣�(0)
k

〉 = H − E0 − ε0(k), (5.2)

where the subtraction of ε0(k) accounts for the nonorthogo-
nality of the one-phonon (Feynman) state to the two-phonon
states in Eq. (5.1). The zeroth-order excitation energy is just the
Feynman energy ε0(k); the first-order contribution vanishes. In
second order, one finds the well-known relationship

ε(k) = �(0)[k,ε(k)]

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(k − q − p)

× |V3(k; p,q)|2
ε(k) − ε0(p) − ε0(q)

, (5.3)

where V3 is defined in Eq. (4.11). We have used here the
notation used in previous work [20,43–46,61]. It is understood
that Eq. (5.3) is to be solved self-consistently for ε(k).

The second-order expression for the excitation energy is
represented in terms of Feynman diagrams by Fig. 4(a).
This is equivalent to the excitation energy obtained from the
unrenormalized self-energy �(0)(k,�ω) at the level of pair
fluctuations in the convolution approximation.

In order to make connection to the result of the EOM
at the triplet level described here, one has to sum diagrams
containing three phonon vertices of the type in Eq. (4.11).
Examples are shown in Fig. 4. Due to the appearance of
�(0)(k,�ω) in the calculation of the self-energy �(1)(k,�ω)
at the triplet level, we find that the corresponding infinite
class of Feynman diagrams can be obtained by replacing the
intermediate phonons in Fig. 4(a) with the diagram itself and
chains of it, respectively. The beginning of this series is given
by diagrams in Figs. 4(b)–4(h) and can be summed easily.
The energy contribution of Fig. 4(a) is called εa(k,�ω), that of
Fig. 4(b) εb(k,�ω), and so on. One finds

�(1)(k,�ω) = ε0(k) + εa(k,�ω) + εb(k,�ω) + · · ·
≡ ε0(k) + ε(1)

a (k,�ω)

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(p + q + k)

|V3(k; p,q)|2
�ω − ε0(p) − ε0(q)

∑
M=0

∑
n=0

(
M

n

)
εM−n

a [p,�ω − ε0(q)]εn
a [q,�ω − ε0(p)]

[�ω − ε0(p) − ε0(q)]M

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(p + q + k)

|V3(k; p,q)|2
�ω − ε0(p) − ε0(q)

∑
M=0

(
εa[p,�ω − ε0(q)] + εa[q,�ω − ε0(p)]

�ω − ε0(p) − ε0(q)

)M

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(p + q + k)

|V3(k; p,q)|2
�ω − ε0(p) − ε0(q) − εa[p,�ω − ε0(q)] − εa[q,�ω − ε0(p)]

= ε0(k) + 1

2

∫
d3p d3q

(2π )3ρ
δ(p + q + k)

|V3(k; p,q)|2
�ω − �(0)[p,�ω − ε0(q)] − �(0)[q,�ω − ε0(p)]

, (5.4)

which is exactly our result from the EOM method at the triplet
level.

Due to the intuitive formulation of perturbation theory in
terms of Feynman diagrams, one can now easily prove the
generalization of Eq. (5.4) to an implicit relation for the self-
energy. Instead of dressing the first diagram in Fig. 4 with
itself, one can dress it with a sum of diagrams, e.g., ε(1)

a (k,�ω).
Restricting the set of diagrams to those where no two dressed
sub-bubbles exist at the same time, this procedure does not
alter the form of Eq. (5.4), i.e., the weight factors stay the
same so that the sum can be carried out to give

�(i) = �(i)[�(i−1)] (5.5)

with the same form as the EOM result for i = 1. Taking the
limit i → ∞ leads to Eq. (4.10) for the self-energy.

VI. RESULTS AND DISCUSSION

As mentioned above, we use the “unrenormalized” version
of our theory together with the convolution approximation in
our calculation of the dynamic structure function. From our
previous work [4], we have determined that this approximation

is an acceptable compromise between predictive power and
numerical effort. In particular, we shall see that includes
all those features in a quantitative manner that can be
clearly identified in experiments. There are undeniable effects
coming from multiphonon excitations. These are, however,
mostly structureless and do not lend themselves to a clear
identification of individual physical processes.

The input of all of our calculations are ground-state
quantities for 4He interacting via the phenomenological Aziz
II potential [62]. With one adjustable parameter to correct for
the poor convergence of the series of “elementary diagrams,”
the HNC-EL theory reproduces the experimental equation of
state at the percent level [42,53]. More details on how we have
dealt with ground-state triplet correlations may be found in
Ref. [51].

To compare with experiments and with quantum Monte
Carlo simulation data, we rely heavily on a recent study [5]
which compares several quantities that are either experi-
mentally accessible, can be calculated by simulations, or
both. To demonstrate the quality of our ground-state calcu-
lation, we begin with a comparison of the pressure-density
relationship. Such a comparison is important because the
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FIG. 5. The figure shows the first diagram that is not included in
the convolution approximation.

experimentally adjustable parameter is usually the pressure,
whereas theoretical calculations are carried out at fixed density.
Figure 6 shows the pressure-density relationship obtained
from experiments [63,64], simulations [65], and our HNC-EL
calculations [51]. Caupin et al. [5] find a very good fit to
the equation of state using a cubic function suggested by
Maris [66] for the pressure-density relationship of the form

p = ps + b2

27
(ρ − ρs)

3, (6.1)

where ps and ρs are the pressure and the density at the spinodal
point. Although the analytic form of the relationship (6.1) is
incorrect in the vicinity of the spinodal point [51], it gives
a good representation [5] of the experimental data [63,64]
and diffusion Monte Carlo (DMC) simulations [65] in the
experimentally accessible regime, as seen in Fig. 6. The FJEL
results can be brought to a match with the other data by a slight

horizontal displacement δρ = 0.0003 Å
−3

(approximately 1%
); we demonstrate this by shifting the pressure-density relation-
ship from our FJEL calculation horizontally by that amount in
Fig. 6.

−1

 0

 1

 2

 3

 4

 0.018  0.020  0.022  0.024  0.026  0.028

p 
(M

Pa
)

ρ    (Å−3)

JF−EL
DMC [62] fit
JF−EL shifted
Expt. [60,61]

FIG. 6. (Color online) The figure shows several calculations and
experiments of the pressure-density relationship of 4He: our FJEL
calculations (red upper curve); the fit (6.1) to the pressure derived
from the DMC simulation equation of state of Ref. [65] (dark blue
curve); the experimental pressure-density results of Refs. [63,64]
(circles); and the FJEL relationship shifted by a density offset δρ =
0.0003 Å

−3
(light blue curve). The dotted horizontal lines at p =

0,0.5,1.0,1.5, and 2.0 MPa are drawn into the figure to depict the
densities where experimental data for the dynamic structure function
are available.
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Robkoff and Hallock [26]
Cowley and Woods [29]
Gibbs [8]

FIG. 7. (Color online) The figure shows calculations and exper-
iments of the static structure function of 4He at SVP: our FJEL
calculations (blue upper curve); the experiments of Svensson et al.
(Ref. [25], filled dots) and of Robkoff and Hallock (Ref. [26], circles);
and simulation data (Ref. [65], red squares). We also show the strength
of the single-phonon excitation (1.8) from our FJEL calculations (blue
lower line), and from the experiments of Cowley and Woods [29]
(boxes) and of Gibbs et al. [8] (squares).

The static structure function S(k) is the most important
ground-state quantity for the purpose of calculating the dynam-
ics of the system; therefore, it is important that our ground-state
theory provides reliable information. Figures 7 and 8 provide
a comparison of our results with experimental and simulation
results close to SVP, and at 2.0 MPa, corresponding to densities
of ρ = 0.022 and 0.025 Å

−3
, respectively. Our results at SVP

are compared with the experimental data of Refs. [25,26] as
well as the simulation data reviewed in Ref. [65]. In these
two figures we also show a comparison of our results for the
strength of the single-phonon excitation Z(k) (1.8) from our
FJEL calculations and experiments; we shall return to these
results in our discussion of the dynamics.

The simulation data of Vranješ et al. [67] for S(k) in Fig. 8,
although at a slightly higher density than our FJEL calculation,

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0

S(
k)

, Z
(k

)

k  (Å−1)

DMC [64]
HNC−EL
Gibbs [8]

FIG. 8. (Color online) The figure shows FJEL calculations of
the static structure function S(k) of 4He at a pressure of 2 MPa
(upper blue curve) and the simulation data of Vranješ et al. [67]
at a slightly higher density. We also show the strength of the
single-phonon excitation (1.8) from our FJEL calculations (blue lower
line) compared with the results of Gibbs et al. [8] (squares) at 2 MPa
pressure.
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FIG. 9. (Color online) The figure shows a comparison of some
of the experimental data [8,26,27,69], simulations [15,70], and our
FJEL calculations for the peak of S(k) as indicated in the inset.

predict a peak that is less than that predicted by the FJEL
theory; the effect is even more visible when one compares
with FJEL data at the same density. We have recently observed
the same effect in 3He in two dimensions [68], and will find
a similar feature in the peak of the static response function
below. The peak in S(k) is related to long-ranged oscillations
in the pair distribution function g(r), caused by the impending
liquid-solid phase transition. [We remind the reader that, in an
isotropic, homogeneous fluid, the dimensionless pair density is
the pair distribution function: g2(r1,r2) = g(r12); and S(k) − 1
is the dimensionless Fourier transform of g(r) − 1.] To get
this peak right, one must have the pair distribution function
at rather large distances; our FJEL calculations were carried
out in a box of 200 Å. Replacing g(r) for r > 10 Å with its
asymptotic value of 1 and calculating the Fourier transform,
this peak is much lowered. We are at this time not prepared to
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FIG. 10. (Color online) The figure shows color-coded (grayscale) plots of the dynamic structure function S(k,�ω) for six different densities.
Using a logarithmic scale, areas of high value of S(k,�ω) are dark (orange to red), areas of low strength are light (yellow to white). Circles are
experimental data for the phonon-roton dispersion relation from Ref. [29] in (b) and Ref. [8] at the higher densities where available. Squares
in (e) are data from Ref. [7]. The red line is the solution of the dispersion relation (6.2) where it can be determined in a meaningful way.
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FIG. 11. The figure shows the roton energy � as a function of
pressure obtained from our calculations (solid line) and a compilation
of experimental data from Gibbs et al. [8] (circles), Dietrich et al. [71]
(crosses), and Stirling [72] (diamonds).

attribute significance to this observation but the issue should
be kept in mind.

A systematic account of the density/pressure dependence of
the peak height of S(k) is shown in Fig. 9. Most of the data have
been taken from the compilation of earlier results provided in
Ref. [5]; we have included our FJEL results with the simulation
data and the selected experimental data as indicated in the
figure. Evidently, our results fall well within the regime of
different experiments and simulations.

Let us now turn to a discussion of our main results for
the dynamics. A first account of our results can be seen from
the maps of S(k,�ω) shown in Figs. 10 for a sequence of
densities. Also shown in the plots is the calculated phonon-
roton dispersion relation (solid line) which is obtained by
solving the nonlinear equation

ε(k) = �[k,ε(k)] . (6.2)

We also show experimental data from Refs. [7,8,29] when
available at that density.

A key quantity in the discussion of the excitations in 4He
is, of course, the “roton” [see Eq. (1.7)]. A compilation of
experimental results and a comparison with the predictions
of our calculations is shown in Figs. 11–13. As already
seen from Fig. 10, the theoretical value of the roton energy
is still a bit above the experimental value; this is to be
expected from the correlated basis function BW calculations
of Lee and Lee [20]. Their calculations did not use optimized
correlation functions, nor ground-state correlations beyond
n = 2. They should nevertheless give a reasonable estimate
of the importance of higher-order diagrams, in particular the
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FIG. 12. Same as Fig. 11 for the roton momentum kR.
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FIG. 13. Same as Fig. 11 for the roton “mass” μR in units of the
4He mass.

diagram shown in Fig. 5. The first diagram that goes beyond the
convolution approximation, shown in Fig. 5, is not contained
in our calculation. According to Lee and Lee’s estimates,
the contribution of this diagram lowers the roton energy by
about 0.05 meV. The apparent improvement of the agreement
between theory and experiment with increasing density should
be seen in the light of that estimate: We expect that the
inclusion of such effects would shift the whole curve down
by that amount, improving the agreement at lower densities
and making it worse at higher densities.

The agreement between theory and experiment for both the
roton wave number and the “mass” is quite satisfactory (see
Figs. 12 and 13). Among those results, the roton “mass” has
the largest uncertainty: All three quantities �R, kR, and μR are
obtained by fitting the calculated spectrum in the vicinity of
the roton minimum by the form (1.7). It turns out that μR is
the most sensitive quantity of these three. Some smoothing of
our results has, therefore, been done.

We have already above shown some results for the strength
factor Z(k) of the single-phonon excitation in Figs. 7 and 8. At
different densities, the function Z(k) looks similar; typically,
the relative strength of the single-phonon excitation increases
with pressure. Figure 14 shows our results and a comparison
with some experimental and simulation data. It appears that
our results are somewhat below the experimental values of
Gibbs et al. [8] but above the simulation data of Ref. [73],
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Moroni [15]
Dietrich [68]

FIG. 14. (Color online) The figure shows a comparison of some
of the experimental data [8,71] (circles and boxes), simulations of
Boronat and Casulleras [73] (blue line), and Moroni et al. [15] (stars)
with our FJEL calculations for the peak of Z(k) as indicated in the
inset.
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FIG. 15. (Color online) The figure shows a comparison of some
of the experimental data with our EOM calculations of the static
response function as a function of pressure and density as indicated
in the inset. The simulation data of Ref. [74] are practically identical
to the experimental data and not shown.

whereas the calculations of Moroni et al. [15] appear to predict
a peak value of Z(k) that is visibly higher. The issue definitely
deserves further investigation.

Another simple quantity is the static response function
χ (k,�ω = 0). This quantity can be obtained directly from our
theory, setting ω = 0 in Eq. (4.9); there is no need for using
sum rules. Figure 15 shows a family of our results for χ (k)
from our calculations; an extensive comparison of the peak
height of χ (k,�ω = 0) is shown in Fig. 16.

Turning to the full S(k,�ω) maps shown in Fig. 10 we
see, of course, the well-known features: the phonon-roton
spectrum turning eventually into the “Pitaevskii plateau.” We
display in these figures experimental data for the phonon-roton
spectrum as far as available [7,8,29]. Looking only at these
figures, we see that the agreement between experiments and
theory is actually quite impressive. However, the S(k,�ω)
maps show more features: At long wavelengths, we see some
strength along a line extrapolating from the phonon. Moreover,
the “plateau” seems to have an extension towards longer
wavelengths. Finally, we see some strength well above the
maxon.
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FIG. 16. (Color online) The figure shows a comparison of some
of the experimental data [8,71,75] (circles, boxes, and stars),
simulations of Boronat and Casulleras [5,73] (blue line) with our
FJEL calculations for the peak of the static response function as a
function of pressure as indicated in the inset.
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FIG. 17. (Color online) The figure shows the low-energy portion
of the dynamic structure function at p = 20 Atm from Ref. [8]. The
red lines in the figure are the roton data taken from Table 1 of [8], the
maxon data fit to Fig. 10 of that paper, and the threshold energy (6.6).
The grayscale data are reproduced from Ref. [8] with the permission
of IOP Publishing and the authors.

Some of these features have also been seen weakly
in experiments (see Fig. 17). More recent high-precision
measurements of S(k,�ω) show the above three effects much
more clearly [76,77]; we discuss these features now in detail.

The physics behind the above-mentioned three features
is the same; it originates from the possibility of the decay
of an excitation into two sharp excitations. The issue is
most transparently discussed if we assume that the energy
denominator in Eq. (4.10) is reasonably well approximated
by a collective mode, i.e., the self-energy has the form shown
in Eq. (5.3), with the Feynman phonons ε0(k) replaced by
the self-consistent solution of Eq. (6.2). Then, the energy
denominator in Eq. (4.10) in the relevant energy/momentum
regime can be represented by

�ω − ε(p) − ε(k − p). (6.3)

At long wavelengths, ε(k) is monotonic and almost linear.
The combination [ε(p) + ε(k − p)] has, as a function of p,
an extremum at p = k/2 with the value 2 ε(k/2). Moreover, if
the dispersion relation ε(k) bends upwards, we have 2 ε(k/2) <

ε(k) and the collective mode is dampened; this is a well-known
consequence of anomalous dispersion. However, independent
of the sign of ε′′(k/2), the self-energy has, for �ω → ε(k/2),
the behavior [37]

�(k,�ω) = −|V3(k; −k/2,−k/2)|2k
16πρε′(k/2)

√
2ε(k/2) − �ω

ε′′(k/2)
.

(6.4)
Equation (6.4) is normally used to estimate the lifetime of a
phonon in the regime of anomalous dispersion ε′′(k/2) > 0.
However, the nonanalytic square-root dependence on the
energy persists for ε′′(k/2) < 0 and is visible as long as
the ε′′(k/2) is small, in other words, up to about twice the
wave number for which the dispersion relation ε(k) is to a
good approximation linear. This feature is seen very clearly
especially in the low-density cases shown in Fig. 10. We are not
aware of published experimental data that show this feature,
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FIG. 18. (Color online) The figure shows long-wavelength re-

sults for S(k,�ω) at ρ = 0.022 Å
−3

at the level of BW perturbation

theory (5.3) in the wave-number regime 0.5 Å
−1

< k < 1 Å
−1

and
energy range 0.7 meV < E < 1.5 meV. The solid red lines are cuts of
S(k,�ω) for fixed wave number, the green line in the ω-k plane is the
Feynman spectrum ε0(k), and the blue line is the boundary �ωc(k) of
the continuum. Note the logarithmic scale and the fact that the results
have been broadened to avoid δ functions and discontinuities.

but most recent high-precision neutron scattering experiments
display the same effect [76].

Figure 18 shows this situation in the BW approximation

for a density ρ = 0.0220 Å
−3

, i.e., practically at SVP. We see
a sharp collective phonon mode with normal dispersion, and
above that the onset of a continuum. The collective mode and
the continuum are separated by an area of zero strength. When
multiparticle excitations are included, this area is filled out, but
some strength remains along the line �ωc(k) = �ck. This is
clearly seen in Fig. 19 and, of course, also in Figs. 10(a)–10(d)

for k < 1 Å
−1

.
The same mechanism of mode-mode coupling is at work at

the much more frequently discussed “Pitaevskii-plateau” [19].
Assuming, for the sake of discussion, a sharp phonon-roton
spectrum as in the energy denominator of Eq. (5.3), the
condition for the decay of an excitation into two rotons is
ω > 2�R.

Three observations are made:
(i) The collective mode actually bends over below the

plateau and is seen, for quite some momentum regime, as
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FIG. 19. (Color online) Same as Fig. 18 for the full solution of
the equations of motion. The area between the phonon spectrum and
�ωc(k) has been filled by multiparticle contributions, but the strength
along the line �ωc(k) is also clearly visible.
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FIG. 20. (Color online) The figure shows a closeup of the dy-

namic structure function for the density ρ = 0.0226 Å
−3

, in the

wave-number regime 2 Å
−1

< k < 3 Å
−1

and energy range 0.6 meV
< E < 2.0 meV. The solid red lines are cuts of S(k,�ω) for fixed wave
number. Note the logarithmic scale and the fact that the results have
been broadened to avoid δ functions and discontinuities.

a well-defined excitation. This is largely consistent with the
observations of Refs. [7,29] at large momenta who also observe
a gradual bending of the dispersion relation and not an abrupt
“kink.” It is also consistent with the theoretical work and data
analysis of Pistolesi [12,13]; see also Ref. [14].

(ii) Second, we see that the plateau has an extension into
the continuum for larger wavelengths. Figure 20 shows a
closeup of the S(k,�ω) at ρ = 0.0226 Å

−3
for 2 Å

−1 � k �
3 Å

−1
. We see clearly how the collective mode is separated

from the continuum and that the plateau can be continued
towards longer wavelengths. The effect becomes stronger with
increasing density.

(iii) At the very highest density, the energy of the maxon
is above that of the plateau, and hence a similar effect as the
plateau is observed at long wavelengths. In fact, at the density
ρ = 0.026 Å

−3
, the plateau is very pronounced practically

down to k ≈ 0.5 Å
−1

.
Finally, we return to the above-mentioned strength above

the maxon. This feature stems from the possibility that a mode
decays into a maxon and a roton. We represent the maxon
energy in a form similar to Eq. (1.7):

εM(k) = �M + �
2

2μM
(k − kM)2, (6.5)

where �M, kM and μM are the maxon energy, wave number μR

the so-called mass, respectively. We have fitted the form (6.5)
to the data of Ref. [8]; the fit is shown in Fig. 17. The threshold
energy for a mode decaying into a maxon and a roton under
energy and momentum conservation is, for given momentum
transfer k = q − p,

�ωM-R(k) = �R + �M + �
2

2(μR + μM)
(k − kR + kM)2.

(6.6)

This model is valid for k ≈ kR − kM. The line �ωM-R(k) is also
drawn in Fig. 17, showing that the feature in the spectrum is
indeed due to maxon-roton coupling.

All of these effects have rather simple kinematic causes.
The analytic analysis of these effects is somewhat complicated
(see Supplemental Material [78]). Our results on the structural
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FIG. 21. The figure shows a comparison between our S(k,�ω)
(solid line) and the experimental one [9] (stars) at a momentum trans-

fer of k = 2.4 Å
−1

. The experimental values have been normalized
to satisfy the m0 sum rule.

properties of 4He are quite encouraging. But, it should be clear
that all approximations become more delicate at higher den-
sities. Therefore, whether the appearance of a plateau below
the maxon will happen at exactly the predicted density, or at
a somewhat lower or higher density, is not completely deter-
mined by our theoretical calculations. The experimental data at
the pressure of 2 MPa [8] indicate a maxon energy of 1.3 meV,
which is close to twice the roton energy of 0.636 meV. Our the-
oretical results are consistent with this; therefore, one should
expect that a plateau will appear around a pressure of 2 MPa.

There is also some interest in the form of the spectrum
at higher energies and wave numbers (see, e.g., Ref. [9]). At
higher energies, multiparticle processes become increasingly
important and, because of the multitude of processes, it
becomes impossible to disentangle the physics. Our approach
has included all processes where a phonon splits into two
phonons, which may again split, etc., but eventually they
recombine into the same phonon (see Fig. 4). Processes such as
the one shown in Fig. 5 are not included. Since all of these have
a different kinematics, one would expect that the multitude of
all multiparticle excitations have the tendency to smooth the
spectrum out. This is actually seen quite well in Figs. 21 and 22:
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FIG. 22. Same as Fig. 21 for a momentum transfer of k =
3.6 Å

−1
. The experimental values have been normalized to generate

rough overall agreement with our theoretical results.

Our theoretical values show, as expected, more structure than
the experiments, but the overall strength distribution is the
same.

There are also experimental data at higher pressures [7];
our conclusion on these data is the same. The overall strength
distribution is reasonably well represented by our theory,
but because of the multitude of different excitations and
decay channels, it is impossible to identify individual physical
mechanisms. Therefore, we refrain from a further discussion
of these data.

We conclude this section with a brief discussion on the
new physics described by multiparticle fluctuations compared
to earlier work containing only pair fluctuations. We stress
here that these findings are generically due to multiparticle
fluctuations and not due to the approximation for the two-
phonon hybridization vertex (4.11); the reader is reminded
that a full HNC evaluation of the self-energy at the two-body
fluctuation level [4] leads to negligible improvement of the
description of the dynamics.

Technically, the essential improvement of the dynamics is
due to the self-consistency between the self-energy on the
left-hand side of (4.10) and the energy denominator. While
such a self-consistency could be expected, the precise form of
the energy/momentum dependence of the self-energy must be
determined from the equations of motion or by the summation
of sufficiently high-order BW diagrams as carried out in
Eq. (5.4).
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FIG. 23. (Color online) The figure compares results for S(k,�ω)
in BW approximation [43–46] (blue, dashed lines) with the present

calculation (red, solid lines) at the density ρ = 0.022 Å
−3

. We show
three different momentum transfers corresponding to the maxon (k =
1.18 Å

−1
, lower panel), roton (k = 1.95 Å

−1
, middle panel), and the

plateau region (k = 3.21 Å
−1

, upper panel). The scale on the right-
hand side of the plot corresponds to the roton.
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Figure 23 shows a comparison of second-order BW pertur-
bation theory and the self-consistent solution of the equations
of motion. Two effects are most visible: the BW calculation
for the maxon and the roton predicts a large area between the
collective mode and the onset of the continuum where S(k,�ω)
is zero. This is because the energy where the continuum begins
is determined by the energy denominator which is, in BW
approximation, the Feynman spectrum (1.5). The same effect
is even more visible in the energy of the plateau (upper panel
of Fig. 23) which is, in BW approximation, given by twice
the roton energy in Feynman approximation and not of the
self-consistent spectrum.
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APPENDIX A: EVALUATION OF THE LAGRANGIAN

1. One-body current

The quantity of interest is the term in Eq. (2.13) that contains
three-body fluctuations. The triplet distribution function is
generally a functional of ρ1(ri), g2(ri ,rj ) and triplet as well
as possible higher-order ground-state correlations. We prove
here that W3(r; r1,r2,r3) is zero for the special case that the
ground state contains no three-body correlations, i.e., for a
Jastrow wave function. In this case, the three-body distribution
function is a functional of correlation bonds h2(r1,rj ) and
one-body densities ρ1(ri) [59].

We carry out the proof diagrammatically. It is instructive
to begin by writing the three-body distribution function in the
Abe form

g3(r1,r2,r3) = g2(r1,r2)g2(r1,r3)g2(r2,r3) exp[A(r1,r2,r3)].

(A1)

A(r1,r2,r3) is represented by the sum of all three-point
diagrams in terms of two-particle bonds h2(ri ,rj ) and points
ρ1(ri) that (a) have a path between each pair of external
points, and (b) cannot be factorized in products of func-
tions of the external points. A few diagrams are shown in
Fig. 24.

Inserting the Abe expansion (A1) in W3(r; r1,r2,r3) gives
a new representation

W3(r; r1,r2,r3) = g3(r1,r2,r3)

[
δ(r1 − r)

ρ1(r)
∇rA(r,r2,r3) + cycl.

− 2

ρ1(r)

∫
d3r ′∇rg2(r,r′)

δA(r1,r2,r3)

δg2(r,r′)

∣∣∣∣
ρ1

+∇r
δA(r1,r2,r3)

δρ1(r)

∣∣∣∣
g2

]
. (A2)

With that, we have eliminated all contributions to
W3(r; r1,r2,r3) that contain functions of the kind ∇rg2(r,r′)
where both r and r′ are among the points r1, r2, and r3. In
particular, the representation in terms of the Abe expansion
demonstrates that the W3(r; r1,r2,r3) is zero in the Kirkwood
superposition approximation

gKSA
3 (r1,r2,r3) = g2(r1,r2)g2(r1,r3)g2(r2,r3). (A3)

This should serve to make the exact result more plausible.
It remains to prove that

δ(r1 − r)

ρ1(r)
∇rA(r,r2,r3) + cycl.

− 2

ρ1(r)

∫
d3r ′∇rg2(r,r′)

δA(r1,r2,r3)

δg2(r,r′)

∣∣∣∣
ρ1

= −∇r
δA(r1,r2,r3)

δρ1(r)

∣∣∣∣
g2

. (A4)

The expression (A4) can be represented by a diagrammatic
expansion in terms of correlation bonds h2(rirj ), one bond
∇rg2(r,ri), and internal points ρ(ri).

The term

− 2

ρ1(r)

∫
d3r ′∇rg2(r,r′)

δA(r1,r2,r3)

δg2(r,r′)

∣∣∣∣
ρ1

(A5)

is obtained as follows:
(a) open, in turn, each pair of points (ri ,rj ) that is

connected by a correlation line;
(b) replace h2(ri ,rj ) by 1

2 [∇ig2(ri ,rj ) + ∇j g2(ri ,rj )];
(c) close each point where no gradient acts, call the point

left open r;
(d) collect all diagrams; the nonintegrated points

are of the form [∇g2(r,ri)]h2(r,rj )h2(r,rk) +
h2(r,ri)[∇g2(r,rj )]h2(r,rk) + h2(r,ri)h2(r,rj )[∇g2(r,rk)] +
· · · = ∇[h2(r,ri)h2(r,rj )h2(r,rk) · · · ].

Two types of diagrams appear: Those where the point r is
one of the external points r1, r2, or r3 and those where it is not.
The first type of diagrams is canceled against the first term in
Eq. (A4). Thus, in the second step we have proven that there is
no contribution to W3(r; r1,r2,r3) where r is the same as one
of the coordinates r1, r2, or r3.

(a) (b) (c) (d) (e)

FIG. 24. The figure shows a few low-order diagrams contributing to the Abe function A(r1,r2,r3).
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Finally, the term on the right-hand side of Eq. (A4) is evaluated as follows:
(a) open in turn each internal point; label this point with r;
(b) apply the gradient at this point;
(c) since only h2(r,rj ) bonds are attached to the open point, but no density factor, we get ∇[h2(r,ri)h2(r,rj )h2(r,rk) . . .]

(note that r is an internal point).
This is exactly the same as what we got from the variation δA(r1,r2,r3)/δg2(r,r′) where r is one of the internal points. Thus,

the two expressions on the left- and the right-hand sides of Eq. (A4) are the same

2. Time-derivative term

We must rewrite the variations with respect to the δun(t) in terms of variations with respect to the δvn(t). In a somewhat
shorthand notation, we have

δ

δv1
= δu1

δv1

δ

δu1
= δ

δu1
,

δ

δv2
= δu2

δv2

δ

δu2
+ δu1

δv2

δ

δu1
= δ

δu2
+ δu1

δv2

δ

δu1
, (A6)

δ

δv3
= δu3

δv3

δ

δu3
+ δu2

δv3

δ

δu2
+ δu1

δv3

δ

δu1
= δ

δu3
+ δu2

δv3

δ

δu2
+ δu1

δv3

δ

δu1
.

Consequently,

δLt (t)

δu∗
1(r1; t)

= − i�

4
δρ̇(r1; t),

δLt (t)

δv∗
2 (r1,r2; t)

= i�

8

[
ρ̇2(r1,r2; t) − ρ1(r1)g2(r1,r2)ρ̇1(r2; t) − ρ1(r2)g2(r1,r2)ρ̇1(r1; t) − ρ1(r1)ρ1(r2)

∫
d3r3

δg2(r1,r2)

δρ1(r3)
ρ̇1(r3; t)

]

= i�

8
ρ1(r1)ρ1(r2)

∫
d3r3d

3r4
δg2(r1,r2; t)

δu2(r3,r4)
δv̇2(r3,r4; t). (A7)

The calculation of the three-body term is lengthier but straightforward:

δLt (t)

δv∗
3 (r1,r2,r3; t)

= − i�

24

{
ρ̇3(r1,r2,r3; t) −

∫
d3r4d

3r5
δρ3(r1,r2,r3)

δg2(r4,r5)

δρ̇2(r4,r5)

ρ1(r4)ρ1(r5)

−
∫

d3r6

[
δρ3(r1,r2,r3)

δρ1(r6)
−

∫
d3r4d

3r5
δρ2(r4,r5)

ρ1(r4)ρ1(r5)δρ1(r6)

δρ3(r1,r2,r3)

δg2(r4,r5)

]
δρ̇1(r6; t)

}

= − i�

24
ρ1(r1)ρ1(r2)ρ1(r3)

∫
d3r4d

3r5d
3r6

δg3(r1,r2,r3; t)

δu3(r4,r5,r6)
δv̇3(r4,r5,r6; t). (A8)

Thus, our choice of independent variables diagonalizes the time-derivative term, and we can summarize our result in the form (3.6).

3. Interaction Lagrangian

The original form of the interaction part of the Lagrangian is

L(1,1)
int (t) = �

2

8m

∫
d3ρ1|∇δu1(r1; t)|2,

L(1,2)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2g2(r1,r2)∇1δu1(r1; t) · ∇1δu
∗
2(r1,r2),

L(1,3)
int (t) = �

2

16m

∫
d3ρ1d

3ρ2d
3ρ3g3(r1,r2,r3)∇1δu1(r1; t) · ∇1δu

∗
3(r1,r2,r3; t),

L(2,2)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2g2(r1,r2)|∇1δu2(r1,r2; t)|2

+ �
2

8m

∫
d3ρ1d

3ρ2d
3ρ3g3(r1,r2,r3)∇1δu2(r1,r2; t)∇1δu

∗
2(r1,r3; t),

L(2,3)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2d
3ρ3g3(r1,r2,r3)∇1δu2(r1,r2; t) · ∇1δu

∗
3(r1,r2,r3; t)

+ �
2

16m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4g4(r1,r2,r3,r4)∇1δu2(r1,r2; t) · ∇1δu
∗
3(r1,r3,r4; t),
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L(3,3)
int (t) = �

2

16m

∫
d3ρ1d

3ρ2d
3ρ3g3(r1,r2,r3)|∇1δu3(r1,r2,r3; t)|2

+ �
2

8m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4g4(r1,r2,r3,r4)∇1δu3(r1,r2,r3; t) · ∇1δu
∗
3(r1,r2,r4; t)

+ �
2

32m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4d
3r5g5(r1,r2,r3,r4,r5)∇1δu3(r1,r2,r3; t) · ∇1δu

∗
3(r1,r4,r5; t). (A9)

We first collect all terms that contribute to the current (2.12); this moves the appearance of the one-body fluctuation δu1(r; t) into
the first term in Eq. (3.10). The remaining terms are

L′(2,2)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2d
3ρ3∇r1δu2(r1,r2; t)F22(r1; r2,r3)∇r1δu

∗
2(r1,r3; t),

L′(2,3)
int (t) = �

2

8m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4∇r1δu2(r1,r2; t)F23(r1; r2,r3,r4)∇r1δu
∗
3(r1,r3,r4; t),

L′(3,3)
int (t) = �

2

16m

∫
d3ρ1d

3ρ2d
3ρ3g3(r1,r2,r3)|∇r1δu3(r1,r2,r3; t)|2

+ �
2

8m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4g4(r1,r2,r3,r4)∇r1δu3(r1,r2,r3; t) · ∇r1δu
∗
3(r1,r2,r4; t)

+ �
2

32m

∫
d3ρ1d

3ρ2d
3ρ3d

3ρ4d
3r5[g5(r1,r2,r3,r′

2,r
′
3) − g3(r1,r2,r3)g3(r1,r′

2,r
′
3)]

×∇r1δu3(r1,r2,r3; t) · ∇r1δu
∗
3(r1,r′

2,r
′
3; t) (A10)

with [4]

F22(r1; r2,r3) ≡ g2(r1,r2)
δ(r2 − r3)

ρ1(r2)
+ g3(r1,r2,r3) − g2(r1,r2)g2(r1,r3) (A11)

and

F23(r1; r2,r3,r4) ≡ g3(r1,r2,r3)
δ(r2 − r4)

ρ1(r2)
+ 1

2
[g4(r1,r2,r3,r4) − g2(r1,r2)g2(r1,r3,r4)]. (A12)

Note that

δg2(r1,r3)

δu2(r1,r2)
= ρ1(r2)F22(r1; r2,r3) (A13)

and

δg3(r1,r3,r4)

δu2(r1,r2)
= ρ1(r1)[F23(r1; r2,r3,r4) + F23(r1; r2,r4,r3)]. (A14)

The new aspect compared with earlier derivations is that we also eliminate δu2(r1,ri ; t) in favor of δv2(r1,ri ; t). Inserting
Eq. (2.10) into (A10) generates a number of terms containing derivatives of the triplet fluctuations and derivatives of distribution
functions. The manipulations are somewhat tedious but straightforward. Here, we spell out only one key step: One of the terms
occurring is of the form∫

d3ρ ′
2d

3ρ ′
3

[ ∫
d3ρ ′

1d
3ρ ′′

2F22(r1; r2,r′′
2)∇r1 [G23(r1,r′′

2; r′
1r′

2r′
3)δv3(r′

1,r
′
2,r

′
3)] − F23(r1; r2,r′

2,r
′
3)∇r1δv3(r1,r′

2,r
′
3)

]

=
∫

d3ρ ′
1d

3ρ ′
2d

3ρ ′
3δv3(r′

1,r
′
2,r

′
3)

∫
d3ρ ′′

2F22(r1; r2,r′′
2)∇r1G23(r1,r′′

2; r′
1,r

′
2,r

′
3)

+
∫

d3ρ ′
2d

3ρ ′
3∇r1δv3(r1,r′

2,r
′
3)

[ ∫
d3ρ ′′

2F22(r1; r2,r′′
2)

1

2

δg3(r1,r′
2,r

′
3)

δg2(r1,r′′
2)

− F23(r1; r2,r′
2,r

′
3)

]
. (A15)

The terms in the square brackets cancel due to the properties (A13) and (A14) which leads to the form (3.12)–(3.14) of the
Lagrangian, note that there is a symmetry factor 3

2 compared to Eq. (2.11) because the coordinate r1 is the same in the numerator
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and the denominator. The coefficient function in L′′(3,3)
int (t) is

F33(r1; r2,r3; r′
2,r

′
3) = g3(r1,r2,r3)

δ(r2 − r′
2)

ρ1(r2)

δ(r3 − r′
3)

ρ1(r3)
+ 2g4(r1,r2,r3,r′

3)
δ(r2 − r′

2)

ρ1(r2)

+ 1

2
[g5(r1,r2,r3,r′

2,r
′
3) − g3(r1,r2,r3)g3(r1,r′

2,r
′
3)]

− 2
∫

d3ρ ′′
2 d3ρ ′′

3G32(r1,r2,r3; r1,r′′
2)F22(r1; r′′

2,r
′′
3)G23(r1,r′′

3; r1,r′
2,r

′
3). (A16)

APPENDIX B: DERIVATION OF THE
RESPONSE FUNCTION

As already mentioned above, there is practically no ad-
vantage in assuming a uniform geometry for the derivation
of the response function. Consequently, we proceed here
with a completely general formulation that is also applicable
in nonuniform geometries such as films and clusters. We
restrict ourselves, however, to a formulation that leads to
the so-called “unrenormalized” form of the self-energy [4].
The renormalized form includes specific sets of higher-order
diagrams that can be summed easily. However, our earlier
work led to the conclusion that one must consistently calculate
at least the HNC class of diagrams in all ingredients due to
canceling errors. We will, however, point out which terms
should be kept to obtain the “renormalized” form of the
self-energy.

In a nonuniform geometry, we introduce the “tilde” nota-
tion [42]

F̃ (r1, . . . ,rn) =
√

ρ1(r1) . . . ρ1(rn)F (r1, . . . ,rn). (B1)

It is advantageous to expand all quantities in terms of Feynman
phonon states. These are defined by the generalized eigenvalue
problem

H1(r)ψn(r) = �ωn

∫
d3r ′S̃(r,r′)ψn(r′) = �ωnφn(r), (B2)

where

H1(r) = − �
2

2m

1√
ρ1(r)

∇ρ1(r) · ∇ 1√
ρ1(r)

. (B3)

The states ψn(r) and their adjoints φn(r) satisfy the orthogo-
nality and closure relations

(ψn|H1|ψm) = �ωnδm,n,
(B4)∑

n

ψn(r1)φn(r2) = δ(r1 − r2),

∑
n

φn(r1)φn(r2) = S̃(r1,r2) (B5)

and expand the fluctuating amplitudes in terms of the Feynman
states

δv(i)
m1,...mi

=
∫

d3r1 . . . d3riφ
∗
m1

(r1) . . . φ∗
mi

(ri)δṽi(r1, . . . ,ri).

(B6)

We first deal with the three-body equation. From the
variation of the Lagrangian we get∫

d3r ′
1d

3r ′
2d

3r ′
3Ẽ33(r1,r2,r3; r′

1,r
′
2,r

′
3; ±ω)δṽ(±)

3 (r′
1,r

′
2,r

′
3,�ω)

(B7)

= − �
2

2m

∫
d3r ′′

1 d3r ′
2

1√
ρ1(r′′

1)
F̃22(r′′

1; r1,r′
2)W̃2(r′′

1; r2,r3)

· ˜δQ
(±)

(r′′
1,r

′
2) + cycl. (B8)

with

Ẽnn(r1, . . . ,rn; r′
1, . . . ,r

′
n; �ω)

= − �
2

2m

1√
ρ1(r1)

∇1 · [δ(r1 − r′
1)F̃nn(r1, . . . ,rn; . . . ,r′

n)]

×∇′
1

1√
ρ1(r′

1)
+ cycl. − �ω

δg̃n(r1, . . . ,rn)

δũn(r′
1, . . . ,r′

n)
. (B9)

Projecting Eq. (B8) onto three states ψn(r) and using the
convolution approximation (4.7) we find

�(ωk + ωm + ωn ∓ ω)δv(3±)
kmn

= − �
2

2m

∫
d3rW̃mn(r) · ˜δQ

(±)
k (r) + cycl., (B10)

where

W̃mn(r) =
∫

d3r2d
3r3W̃2(r; r2,r3)ψm(r2)ψn(r2) (B11)

and

˜δQ
(±)
k (r) =

∫
d3r2 ˜δQ

(±)
(r,r2)φk(r2). (B12)

To obtain the unrenormalized form, we approximate the
function δQ(r1,r2) in Eq. (4.5) by its first term, i.e.,

˜δQ
(±)
k (r) ≈

√
ρ1(r)

∫
d3r2∇rδv

(±)
2 (r,r2)

√
ρ1(r2)φk(r2).

(B13)
We then obtain

�(ωk + ωm + ωn ∓ ω)δv(3±)
kmn =

[∑
i

δv
(2±)
ki V (i)

mn + cycl.

]
.

(B14)

Above, the V (i)
mn are the three-phonon vertices known from the

pair excitation theory for inhomogeneous systems [42]:

V (i)
mn = �

2

2m

∫
d3r

ψi(r1)√
ρ1(r1)

∇ · [
√

ρ1(r1)W̃mn(r1)]. (B15)
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Turn now to the two-body equation. From the variation of the Lagrangian we get∫
d3r ′

1d
3r ′

2Ẽ22(r1,r2; r′
1,r

′
2; ∓ω)δṽ(±)

2 (r′
1,r

′
2,�ω)

− �
2

4m

1√
ρ1(r1)

∫
d3r ′

2dr ′′
2 dr ′′

3 ∇1F̃22(r1; r2,r′
2) · W̃2(r1,r′′

2,r
′′
3)δṽ(±)

3 (r′
2,r

′′
2,r

′′
3) + {r1 ↔ r2}

= �
2

2m

∫
d3r3W̃2(r3,r1,r2) ·

[√
ρ1(r3)∇3δv

(±)
1 (r3) − 1

2

∫
d2r ′

1d
3r ′

2W̃2(r3,r′
1,r

′
2)δṽ(±)

2 (r′
1,r

′
2)

]
. (B16)

The “unrenormalized” form is obtained by neglecting the last term. Projecting the equation again in the space of Feynman
excitations and using the uniform limit approximation for F̃22(r1; r2,r′

2) and W̃2(r3,r1,r2) then gives

�(ωm + ωn ∓ ω)δv(2±)
mn − �

2

4m

∫
d3r

ψm(r)√
ρ1(r)

∇√
ρ1(r)

∑
ij

W̃ij (r)δṽ(3±)
nij + {m ↔ n}

= �(ωm + ωn ∓ ω)δv(2±)
mn − 1

2

∑
ij

V
(m)
ij δṽ

(3±)
nij + {m ↔ n}

= �
2

2m

∫
d3r˜Wmn(r) · ∇δv

(±)
1 (r) = −

∑
k

V (k)
mnδv

(1±)
k . (B17)

We can now insert the solution (B14) of the three-body equation in the second term on the left-hand side and recover the
unrenormalized form of the self-energy

1

2

∑
ij

V
(m)
ij δṽ

(3±)
nij =

∑
i

�
(0)
mi (�ω − �ωn)δv(2)

in , (B18)

where

�(0)
mn(�ω) = 1

2

∑
ik

V
(n)
ik V

(m)
ik

�(ωi + ωk − �ω)
. (B19)

The remaining steps are analogous to the derivation of
the response function in the pair-fluctuation theory; the
only change is that the Feynman excitation energies �ωn in
Eq. (B16) are supplemented by self-energy corrections. This
is the expected modification. Defining

�mnij (ω) ≡ �(ωm + ωn − ω)δmiδnj + δmi�
(0)
nj (�ω − �ωi)

+ δmj�
(0)
mi (�ω − �ωj ) (B20)

and

�(1)
mn(�ω) = 1

2

∑
ijkl

V
(n)
ij �−1

ijklV
(m)
kl , (B21)

we can express the pair fluctuations in terms of the one-body
fluctuations ∑

mn

V (i)
mnδv

(2)
mn =

∑
i

�
(1)
ik (�ω)δv(1)

k . (B22)

Following the derivation of Ref. [42], the density-density
response function is finally expressed as

χ (r,r′,�ω) =
∑
s,t

δρ
(s)
1 (r)[Gst (�ω) + Gst (−�ω)]δρ(t)

1 (r′),

(B23)
where the

δρ
(s)
1 (r) ≡ 1

2

√
ρ(r)φs(r) (B24)

are the Feynman density fluctuations, and

Gst (�ω) = [
�(ω − ωt + iε)δst + �

(1)
st (�ω)

]−1
(B25)

is the phonon propagator.
Attention is now directed to the fact that we have no self-

energy corrections in �(0)
mn(�ω); these are present in �(1)

mn(�ω).
The reason for this is evidently the restriction to triplet
fluctuations; one expects that one obtains similar corrections
in the three-body propagator if higher-order fluctuations are
included. Anticipating such higher-order terms, we identify
from now on these two self-energy corrections and consider
our equations as an iterative procedure to obtain the self-
energy. Thus, we shall from here on omit the superscripts
(0) or (1) on the self-energy in Eq. (4.10).
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