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Josephson photonics with a two-mode superconducting circuit
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We analyze the quantum dynamics of two electromagnetic oscillators coupled in series to a voltage-biased
Josephson junction. When the applied voltage leads to a Josephson frequency across the junction which matches
the sum of the two mode frequencies, tunneling Cooper pairs excite photons in both modes simultaneously leading
to far-from-equilibrium states. These states display highly nonclassical features including strong antibunching,
violation of Cauchy-Schwartz inequalities, and number squeezing. We obtain approximate analytic results for
both the regimes of low and high photon occupancies which are supported by a full numerical treatment. The
impact of asymmetries between the two modes is explored, revealing a pronounced enhancement of number

squeezing when the modes are damped at different rates.

DOI: 10.1103/PhysRevB.91.184508

I. INTRODUCTION

It has long been known that the current flowing through
a voltage-biased mesoscopic conductor can provide an ex-
tremely sensitive probe of its electromagnetic environment
[1-4]. The current-voltage characteristics of a tunnel junction
placed in series with a transmission line resonator is a
particularly well-studied case [1,2,5]. The transmission line
resonator contains a series of well-defined harmonic modes
whose presence opens up inelastic current channels leading
to characteristic features in the dc current flowing through the
junction [5]. The advent of high-Q superconducting resonators
whose quantum state can be measured with great precision
[6], together with the development of hybrid devices which
couple nonmetallic conductors to resonators [7,8], has led
to a renewed interest in the interaction between tunneling
electrons or Cooper pairs and harmonic modes. While earlier
experiments [5,9] on mesoscopic conductors coupled to elec-
tromagnetic resonators focused on how the harmonic modes
affect the current in a regime where the modes themselves
are close to thermal equilibrium, more recent experimental
[10-13] and theoretical work [14-25] has begun to investigate
how the current influences the resonator state and to explore the
dynamics of systems where the resonator is far from thermal
equilibrium.

For a Josephson junction which is biased with a sub-gap
voltage, V, the relationship between the dc current and
the energy pumped into the electromagnetic environment is
particularly simple as all of the energy associated with a
tunneling Cooper pair must be absorbed by the environment
[11]. When the Josephson junction is placed in series with a
transmission line resonator a dc current is expected when the
ac Josephson frequency w; = 2eV /h matches one or more of
the mode frequencies in the transmission line. Experiments
using low-Q resonators [5,11] have demonstrated that when
the individual harmonic modes remain close to thermal
equilibrium, they lead to well-defined peaks in the dc current
whose heights and widths can be calculated using perturbation
theory. In contrast, a high-Q resonator can be excited to
far-from-equilibrium states containing many photons [13]
which are predicted to display intriguing nonclassical features
such as number squeezing [21,22]. This new field of Josephson
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photonics combines typical processes known from quantum
optical setups with those known from charge transfer physics
in highly versatile devices.

In this article we consider a voltage-biased superconducting
junction whose ac Josephson frequency is tuned to excite rwo
electromagnetic modes simultaneously (see Fig. 1). Signatures
of such processes have been observed in the dc current flowing
through Josephson junctions coupled to low-Q resonators and
the production of nonclassical photons has also been predicted
[20], all of which can also be understood within a perturbative
approach as the modes remain close to thermal equilibrium.
While we address this domain as well, our main focus here
lies in the regime where the power transferred to the resonator
modes is sufficient to drive them into far-from-equilibrium
states while still displaying strong quantum properties. Note
that the system we consider here differs from those used in
recent experiments to produce photon pairs [26,27] in that the
energy comes from a dc voltage.

Starting from a simple model Hamiltonian which describes
the effect of the Cooper pairs on the oscillators through a
highly nonlinear ac drive at the Josephson frequency, we use
a rotating wave approximation to derive an effective time-
independent Hamiltonian which we use to analyze the quantum
dynamics of the oscillators. Although the full behavior of
the system can only be uncovered by numerical solutions
of the quantum master equation, we find that approximate
analytical descriptions are available for both the two regimes
of low and high photon occupancy. In the former one a
perturbative treatment in the Josephson energy applies while
in the latter explicit results are obtained by linearizing about
the classical fixed points which provide a faithful description
of the quantum dynamics when the zero-point fluctuations of
the oscillators are small.

The excitation of the two oscillators shows a clear threshold
as a function of the Cooper pair pumping rate. Earlier
work, which investigated the quantum dynamics of a single
mode [21-23] driven by a voltage-biased Josephson junction,
showed that nonclassical features in the state of the oscillator
such as number squeezing (sub-Poissonian photon statistics)
occur very generally. For the two-mode system, we also find
that significant number squeezing occurs in the states of the
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FIG. 1. Effective circuit model of the system. It consists of a
Josephson junction (JJ) in series with two LC oscillators, across
which a voltage V is applied. The two LC oscillators are as-
sumed to have different angular frequencies w, = (L,C,)”'/? #
wy = (L, Cp)™ "2

individual oscillators, especially in the above-threshold regime
where the oscillators are strongly excited. Interestingly, when
the damping rates of the oscillators are very unequal, the
less-damped oscillator displays much stronger strong-number
squeezing than is ever found for a single-oscillator system.
Provided that the quantum zero-point fluctuations are not
too small, the number squeezing is strong enough to lead to
negative regions in the Wigner function.

This work is organized as follows. We introduce our
theoretical model in Sec. II, and we analyze its low photon
limit in Sec. III and its semiclassical dynamics in Sec. I'V.
Sections V and VI explore the quantum dynamics of the
system in the below and above threshold regimes, respectively.
Finally, Sec. VII contains a discussion and the conclusions. The
Appendix contains further details of some of the calculations
described in the main text.

II. MODEL SYSTEM

We consider a system consisting of a Josephson junction
in series with two LC oscillators, A and B, with angular
frequencies w, and wj, across which a voltage V is applied (see
Fig. 1). The two oscillators could both be modes of a single
superconducting resonator in which a Josephson junction is
embedded between the ground plane and center conductor
[13,19,21,28] (see Ref. [21] for a detailed derivation of the
Hamiltonian for this case), but the system could also be
realized using modes of two different electrical resonators [5].
The effective Hamiltonian of the system takes the form

H = hwya'a + ho,b'b
— Ej cos[wyt + Ag(a+a’) + Ap(b+bD], (1)

where E is the Josephson energy of the junction, a and b are
the lowering operators of the oscillators with frequencies w,
and wy, respectively, and w; = 2eV /h. The parameters A,
quantify the strength of the zero-point fluctuations of the oscil-
lators, Agpy = (2e22a(b)/h)1/2, where Zawy = +/ La(b)/Ca(b) is
the impedance.

Here we analyze the case where the system is operated close
to the resonance that occurs when the voltage energy lost by
a single Cooper pair traversing the circuit matches the energy
required to simultaneously create one photon in each of the
LC oscillators, w; = 2eV /h = w, + wp,. We assume that the
modes are not degenerate so that w, # wj. This means that the
resonance at w; = w, + w;, does not compete with processes
in which two photons are absorbed by just one of the modes.
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We examine the behavior of the system as a function of
the Josephson energy which describes the strength of the
Cooper pair tunneling. The value of E; can be thought of
like a pumping rate for the oscillators: as it is increased the
oscillators will be more strongly driven, become more strongly
excited, and behave more nonlinearly. In practice E; can be
varied in an effective single junction by forming two junctions
in parallel and applying a tunable flux in the SQUID loop that
they form [21,29].

The strengths of the quantum fluctuations parameterized
by A,, Ay, also play a very interesting role in determining
the dynamics of the system and we will examine how the
behavior is modified when they are varied. These quantities
give the strengths of the zero-point fluctuations in the fluxes
associated with the resonators in units of the flux quantum
since the Josephson junction couples to the dimensionless
phase variable. It is the scaling by the flux quantum to
obtain a dimensionless phase which gives these quantities an
overall A~ 1/2 dependence. However, the resonators can also
be described in terms of a simple mechanical analog [19,22]:
They are equivalent to oscillators with effective masses given
by mg, = (h/ 2e)? C,.» for which the strengths of the quantum
fluctuations take the familiar form Aib = h/2mg pwap).
Written in this way one can associate the classical limit
A, p — 0 with taking the limit & — 0 in the usual way
provided that at the same time the effective masses and
frequencies are kept constant.

The charging energies associated with the two oscillators,
E&" =2/ C,p, can also be written as EC” = ha, p A2 .
Thus one sees that the strength of charge quantization effects
will be directly related to the size of the quantum phase
fluctuations, as one would expect. In essence, the charge
quantum e must formally be considered as being of order
Fi so that indeed A, , ~ O(Vh).

For systems where a Josephson junction is embedded in
a superconducting resonator designed to have a very high Q
the quantum fluctuations will typically be very small, A, <
1. However, significantly stronger quantum fluctuations have
very recently been engineered in low-Q resonators coupled
to tunnel junctions [30] and it may be possible to combine
stronger quantum fluctuations with higher Q values in the
future.

A. Rotating wave approximation

The explicit time dependence in the Hamiltonian compli-
cates the analysis of the corresponding dynamics significantly.
However, close to the resonance we are interested in, w; =~
w, + wp, only some of the terms will play an important role
and these can be picked out by a rotating wave approximation
(RWA).

We proceed following the approach in Refs. [21-23]. We
move to a rotating frame, applying a unitary transformation
of the form U(r) = /@@ ¢i®b'bt  \where we define the
frequencies @, j in terms of the oscillator frequencies w, ; and
small detunings §? (which are both zero on-resonance) so
that @, = @, — 8, subject to the constraint @, + @, =
. We then make a RWA in which we neglect all of the rapidly
oscillating terms in the rotating frame. The resulting effective
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Hamiltonian takes the form
Hrwa = 18@a’a + rs®b'h
N E; 11QANata)d, (2Ab\/bTb)(

Tpt .
, a'b' +ab)
2 ~vafa~/'bth

@

where the colons imply normal ordering of the operators and
E; = E e~ %+2D/2 For sufficiently low photon numbers
(such that 2A,+/(ata),2A,+/(bTh) < 1) we can expand the
Bessel functions in Eq. (2) to lowest order. In this limit the
system reduces to a nondegenerate parametric amplifier [31]

E A A

, E
Hina = h8@ala + hs®@blb + = (@b +ab). (3)

B. Quantum master equation

The two oscillators are assumed to be weakly damped at
rates y, and y, which in general will not be the same. We
therefore assume that the quantum master equation of the
system takes the standard quantum optical form in the 7 = 0
limit [31]

dp

P = —ilArwa.p) + —Qapa' — alap — pa'a)
dt 2

1 -
+ 2—(2bpb1 —b'bp — pb'b), 4)
r

where we adopt dimensionless units of time T = ¢
A Va/ Ve, and Hrwa = Hrwa/(h/VaV5b)-

The simple model circuit that we consider here (see Fig. 1)
does not include any further source of noise in series with
the Josephson junction beyond the two (damped) oscillators.
This is why it is possible to eliminate the phase across the
junction as an independent dynamical variable. However, in
an actual experimental realization of the JJ-oscillators system
the damping of the oscillators (due to photon decay from the
resonators) is not the only source of dissipation. Indeed,
the existence and impact of local voltage fluctuations at
the JJ can be seen in the broadening of the spectrum of
emitted microwave radiation [11,22]. The existence of such
fluctuations necessitates including explicitly an extra degree of
freedom for the number of Cooper pairs N transported across
the junction in the model and the associated junction phase 7.
In the effective Hamiltonian, Eq. (2), the (bt + ab) term is
replaced by (¢ a'b’ + e~ ab), where e =Y IN)(N £
1]. Local voltage fluctuations are included by an additional
dissipator in (4) which in the simplest version takes the form
LIN,pl =r;2Np N — N?p — p N*) with r; = y;//VaVs-
Reference [22] describes how the corresponding quantum
master equation can be treated in the extended JJ-resonator
space.

However, it turns out that only certain observables sen-
sitively depend on the strength of these fluctuations, char-
acterized by y;, for example the spectral broadening (i.e.,
oscillator linewidths). For other observables, such as the
photon occupation and photonic correlation functions that
are of relevance for this work, the impact of local voltage
fluctuations is likely to be very weak since experimentally one
typically has y; < v, (see for example Ref. [11]) so the

YaVbs I =
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oscillator damping will play a dominant role. Then, formally,
the Hamiltonian (2) is regained by putting y; = 0 so that the
phase operators e*'" simply appear as phase factors which can
be removed via the gauge transformation e'"/?a’,e"/?bt —
a',bf. Note that this reflects a phase invariance of the RWA
Hamiltonian (2).

C. Relevant observables

The basic structure of the RWA Hamiltonian [Eq. (2)] in
which photons are always created (or destroyed) jointly in the
two oscillators and the linear damping that we assumed in
formulating the master equation lead to a simple connection
between the occupation numbers of the two modes n,p) =
(a'a(b'h)) and the average dc current, Iy, flowing through
the junction that can be obtained from an energy balance
argument without the need to work with a current operator.
Since each Cooper pair that contributes to the dc current must
create exactly one additional photon in each of the oscillators,
the requirement that the energy gain and loss rates balance
tells us that

Idc

2_ = Yalla = VpNp, (5)
e

where in this case we have returned to dimensionful units.
The quantum nature of the photonic states in the oscillators
is captured by photon correlation functions such as

T 512y — Tapt
© {[a'a(d'b))") — naw) @) {(a’ab'b)
O == , () =

Baawr)(©) o 8a (0) .

(6)
and the Fano factors
[ata(bib)]?) — nﬁ

Fay = ([a'a(®'b)]%) 0y o

Ra(b)

While these two types of correlation functions are closely re-
lated to each other, they are nevertheless useful to characterize
the photonic states in opposite regimes of parameter space.
In the regime of weak driving and low photon occupation,
deviations from the case of a driven harmonic oscillator are
best seen in the g® functions. Namely, with increasing driving
amplitude £, the photon distributions for the number states in
the cavities evolve from Poissonian distributions with almost
empty cavities towards distributions peaked around finite mean
occupations n,,n;. In this case the g(z)(O) functions (6) sensi-
tively indicate deviations from the linear regime gffa)(bb)(O) =1

with g(ﬁ} (0) # 0 capturing growing cavity-cavity correlations.

In the opposite regime of strong driving, nonlinearities may
substantially influence the widths of the peaks for photon
occupations (energy fluctuations) as properly measured in the
Fano factors (7).

In the following, we will first focus on the regime where
E; is small and charge quantization effects are important.
The behavior in this regime is closely related to the familiar
dynamical Coulomb blockade regime which corresponds to the
low occupancy limit of the oscillator modes [11]. Analytical
results are obtained via a perturbative treatment in the drive
amplitude E,;. We then consider a much wider range of E
values, developing a semiclassical approach which applies
when the phase fluctuations given by A, ;, are sufficiently
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weak. Using this approach we show that there is a threshold
for E; beyond which the oscillator occupation numbers can
become very large. We also solve for the steady state of the
master equation (4) numerically and hence are able to uncover
the role played by the magnitude of the parameters A,, Ay,
across the whole range of E; values studied.

III. FEW-PHOTON LIMIT

The physics of the system described by the Hamiltonian
(2) and the master equation (4) is at its simplest when it is
driven so weakly that excitations in the resonators will relax
to equilibrium well before a new excitation occurs. In that
regime, very few photons, n,, < 1, reside in the resonators
on average. Transport across the junction in turn is in the
(dynamical) Coulomb-blockade regime, where subsequent
Cooper-pair tunneling events are uncorrelated and occur with
some tunneling rate. While the charge flows uncorrelated, the
photons exhibit correlations already at the weakest driving.

Now, for the present setup one derives from the master
equation [Eq. (4)] the steady-state relation

iE; fot JiQANata) J1(2A,VbTh)
ng = . :(ab—a'b) :
2ESr ata ApN/bTh

®)

with ES = (hy/VaVs/AaAp)e®it2D/2 and where n;, follows
by replacing r — 1/r. To lowest order in the driving strength
this reduces to

o _ 1 (E, 1+ r2
“ T4 E; r2(8@ 4 8@ 4 (1 + r2)2/4’

©))

with the superscript indicating the leading order in E% and
with nzo) again following from r — 1/r.

For the correlations we focus on the symmetric case y, = ¥,
atresonance so thatn, = n, = n. Then, considering the steady
state arising from the master equation (4) one can obtain the
general relation

[

(atablpy =2 ”2 [20) + 20)] (10)
which implies
L1
8ar () = 5+ 5[0 + 3,/ (0)] (1)

with n as given in (8). Now, working to order E 4 one finds

2
A2 5 AL
oo =2(1-552) (1-fat+52). 0

Two types of correlations are encoded in the above g®(0)
functions. The most obvious ones stem from the common
excitation process of photons in the two resonators. They are
therefore already present in the parametric amplifier limit of
the Hamiltonian (3) and well understood for that case; see,
e.g., Ref. [32]. A convenient tool to characterize them is the
noise reduction factor [27] NRF = [((ata — bTb)?) — (n, —
np)?] /(ng + np) which in the symmetric situation y, = v,

PHYSICAL REVIEW B 91, 184508 (2015)

()
(0) - 1/(2n)

3
o
=%
93

[} =

S

(o))

FIG. 2. (Color online) Autocorrelations g(fl)(bb)(O) (left) and
cross-correlations g(z)(O) (right) of the two modes vary with the
strength of zero-point fluctuations A,;, in the two oscillators.
For weak driving, E; = 0.2E¢, the autocorrelations (symbols) are
given by (12) (lines) when A,, or simultaneously A, and A, are
tuned. The reduced cross-correlations g(z)(O) — 1/(2n) (lines) obey
the general relation (11) with the mean of the autocorrelations
[2©0) + g(z)(O)] /2 depicted as symbols for the case of symmetric
damping r = 1.

takes the form

NRF = Z[¢2(0) + g5(0) = 2650] + 1. (13)
However, the perfect correlation of the excitation process leads
to perfectly correlated occupations in the oscillators with a
noise reduction factor NRF = 0 only for the undamped case
¥a = ¥» = 0. For any finite photon lifetimes in the cavities,
the decay out of the two cavities occurs uncorrelated which
according to (11) always implies in the stationary state and for
the symmetric situation NRF = 1/2.

Further correlations in the light field are caused by the back-
action of the resonator occupations on the photon creation
processes. Generally speaking, the existence of photonic
excitations in the resonators can either increase the probability
of further excitations, similarly to a stimulated emission effect,
or it can hinder further excitations. Formally, these effects
are encoded in the transition matrix elements of the RWA
Hamiltonian (2) between neighboring oscillator states, where
the nonlinearities of the Bessel functions enter. If charge
quantization of the Cooper-pair current is significant, the
parameters A,;, become large, so that the nonlinearities
already appear at the few-photon level. For the case of a
single resonator, it was shown in Ref. [22] that A% =2 can
completely suppress transitions to higher occupations and
reduces the resonator effectively to a two-level system, thus
operating as a perfect single photon source. The behavior of
the correlation functions in the two-mode case is shown in
Fig. 2. While a nonzero g2 (0) requires oscillator A to be
populated up to the second excited state by two successive
photons, this need not be the case for oscillator B as it can
relax before the second photon arrives. Consequently, as seen
in (12), g2(0) = 0 at A2 = 2, but not at AZ = 2.

The general result (11) also reveals that the classical
Cauchy-Schwartz inequality for photon intensities is always
violated in the quantum case; i.e.,

220 20) < ¢2(0). (14)
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Namely, introducing the parameter € = g5, (0)/g2/(0) the
violation of the inequality requires [— (2)(0)](1 Jer <
1/n which always applies since g?(0),n > 0. Accordingly,
emission of photons from the cavities occurs in a correlated
way for all driving strengths and photon occupations. In the
next section we ascribe to the individual photon states in the
cavities respective amplitudes (energies) and phases. One then
sees that these states are correlated through their phases due
to the simultaneous creation process in the transfer of a single
Cooper pair.

IV. SEMICLASSICAL DYNAMICS

We now turn to consider a different way of analyzing the
dynamics of the system based on a semiclassical approxima-
tion. This approach has the advantage that it is not restricted to
the regime of small photon occupation numbers, as is the case
for the perturbative approach we have just described. However,
the semiclassical approach is only likely to be accurate when
quantum fluctuations are weak, i.e., A, < 1.

The simplest semiclassical description of the dynamics of
the system is obtained from the equations of motion for (a)
and (b) which follow from Eq. (4), making the replacements
(a) = a, (b) = B and treating expectation values of products
of operators as products of expectation values. Hence we find

@ C
& = (zS n 2)a Yo EC LiCALB)

(12,3 :3*:|
LA, — Ji a — 15
[2( dle g — @Al | (19)
g = —(iS(”) 1 )/3+ ‘Ey J2A|x])
20,E5"
2 *
[Jz( AL JO(ZAMD“—] (16)
BPlal ]

where §@? = 5@/ _/y;y,. Obtained in this way, the factors
of e(®i+2)/2 embodied in ES that appear in these equations
are accidental: they would not be present if we had instead
chosen to use a symmetric ordering for the operators when
deriving the Hamiltonian. However, Egs. (15) and (16) would
also arise from a simple-minded ansatz in which we assumed
that the density operator of the system is just a product of
the coherent states p(t) = |a(?))(a(?)] ® |B()){(B(¢)]; in this
approximation the factors of e(®a+25)/2 would arise naturally.

Using amplitude-phase coordinates for the two oscillators,
a = Ae % and B = Be™'%, and introducing the total and
relative phase variables £* = ¢, £ ¢, Egs. (15) and (16) take

the form
. E; JiI2A,B)J1(2ALA)

A= ——A , 17
3 + = £ YA AA sin(§y), (17)

. 1 E; JIQA,AJ(QALB) .

B = _2_3 + —f 1 MG )sm(§+), (18)
rC T ES T 20,08
et =8 4 F (A,B)cos&™, 19)
£~ =687+ F_(A,B)cos&™, (20)
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where we used the Bessel flll’lCtiOl;l identjty, D(2) + Jo(z) =
2J1(z)/z, and have defined §* = §® 4 §®_ Further,

E, [J2A,B)
Fi(A,B) = TR <W [Jo(2A,A) — J2(2A,A)]
J
J1(2A,A)
+ NI [Jo2A,B) — 12(2AbB)]> (2D

with the property F1(—A,B) = F_(A,B) and F+(A, — B) =
—F_(A,B). The behavior of the system is determined by the
fixed points of the amplitudes Ay, By and the total phase EJ .
Since the relative phase does not appear on the right-hand side
of any of these equations its fixed-point value is arbitrary. For
simplicity, we concentrate on the on-resonance case 8§ =
8®) = 0 in our analysis.
The amplitude equations lead to the fixed-point conditions
A() = B() =0or
rA ApESAS
E;Ji1(2A,Bo)J1(2A,A0)
AaApES B}

= 0 ) (22)
rE;Ji(2ApBo)J1(2A,Ap)

sing) =

The second equality in Eq. (22) leads to the energy balance
condition By = rAg. From the equation for &+, we see that
fixed points arise when either cos & = 0 or

F,(Ag,By) = 0. (23)

This latter condition is independent of E; and hence leads to
a locking of the amplitudes at particular values as a function
of E;, something which is an important characteristic of the
dynamics in the single-oscillator system [21]. For symmetric
oscillators (r =1 and A, = A,) Fy =0 implies J{(z) =0
with z = 2A,A¢ = 2A, By which has a first solution at z =
1.841 [21].

Thus we identify three possible fixed points for the system:
a zero-amplitude one, one given by the conditions cos§* =0
and [from Eq. (22)]

rAZA ALES

=41, (24)
E;Ji2AprAg)J1(2A,Ap)

and a third solution for which the amplitudes lock to values
where Eq. (23) is satisfied (together with the condition B =
rA) and the total phase is be given by Eq. (22).

We can look for small-amplitude solutions to Eq. (24)
(AprAp, A Ap K 1) by expanding the Bessel functions and
retaining the lowest order terms in Ay,

(25)

Thus we see that a nonzero-amplitude solution only exists for
Ej; > ES. Thus EY has a simple physical interpretation: it is
the value of E; at which the oscillators reach the threshold for
nonzero amplitude oscillations.

Taking into account the stability of the fixed points, we find
that as E; is increased from zero the amplitudes remain zero
until the system reaches threshold at E; = EY, after which
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the amplitudes grow smoothly according to Eq. (24) with the
global phase locked to S(T = /2. For a sufficiently large E,
which we define as £ 32, a bifurcation occurs as the amplitudes
become large enough to satisfy Eq. (23) and the amplitudes
then lock, becoming independent of E .

In the next two sections we will examine the quantum
dynamics of the system in the below and above threshold
regimes.

V. SUBTHRESHOLD DYNAMICS

In the subthreshold regime (E; < EY) the semiclassical
fixed points have zero amplitude (A = B = 0). In this case
we can gain some insight into the behavior of the system by
approximating the Hamiltonian of the system by its lowest
order terms, i.e., setting Hrwa = Hl({(:’i/A [see Eq. (3)], an
approach which is equivalent to analyzing small fluctuations
about the semiclassical fixed points.

When this approximation is made the Hamiltonian is
quadratic and the equations of motion for the moments take
a rather simple form. Solving these equations, we find in the
steady state

E—J, 2
ng = r’znb = (E;) 570 (26)
= ()]
E
(o (%)
(ab) = —i <r2 n 1) - (%)2, 27)
(@) = (b) = (ab') = 0. (28)

We note in passing that the result for n, reduces to the one
derived in (9) in leading order in E;/EY.

Simplified in this way, the linearized description leads to a
Gaussian steady-state Wigner function which takes the form
[33,34]
e~ L +1/2)laP+ma+1/2)| B +pap+pe* ]/ C

72C
where C = [(n, + 1/2)(npy + 1/2) — |u|?] and p* = —(ab).
This is a mixed state which combines two-mode squeezing
and thermal-like fluctuations [34]. The Wigner function of
the individual oscillators is obtained by integrating over the

phase space of the other one leading in either case to a thermal
distribution. Thus for oscillator A, for example, we have

Wap(a.p) = (29)

1 [ o
(g, +1/2) (ng +1/2)

The full behavior of the average energy of oscillator A,
n,, obtained by solving the master equation numerically
[35], is shown in Fig. 3 for symmetric oscillators (r = 1,
A = A, = Ap). The divergence in n, which the linearized
analysis predicts for E; — E$ [Eq. (26)] never occurs in
the full quantum problem as higher order terms in the RWA
Hamiltonian always saturate the energy gain. As A is increased
the saturation occurs at progressively lower values of the
photon number while the range of E;/EY values for which the
linearized calculation is accurate becomes smaller and smaller.

Wo(e) = ] N E)
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FIG. 3. (Color online) (a) Average occupation, (n) = n, = ny,
(b) Fano factor, F = F, = F}, as a function of E,; /E¢ for symmetric
oscillators. The full curves are the linearized results and the other
curves are for A = 0.1 (dashed curves), A = 0.3 (dotted curves),
and A = 0.6 (dash-dotted curves).

The fluctuations in the energy of the oscillators, described
by the Fano factors F,) (7), change rather more dramatically
with A. The thermal Wigner function obtained from the
linearized calculation [Eq. (30)] predicts the simple relation-
ship between Fano factor and photon number associated with
thermal states, F,4) = nq@) + 1, leading to growth in F ) as
E;/E¢ increases and again there is a divergence at threshold.
For small values of A, the full quantum dynamics follows a
similar pattern though with saturation in F,) at the threshold
leading to a peak rather than a divergence. In contrast, for
larger A values the behavior is completely different: the value
of F,y) drops monotonically as E;/ES is increased and its
behavior contains no signature of the threshold at E.

The change in the behavior of F,;) as A is increased is
reminiscent of quantum optical systems such as the laser [36].
In the “thermodynamic” limit of weak atom-photon couplings
the laser displays a clear threshold (accompanied by a signature
peak in the Fano factor) whose properties can be understood in
terms of an analogy with classical phase transitions, but which
for sufficiently strong couplings behaves quite differently
without clear signatures of a threshold [36,37].
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VI. DYNAMICS ABOVE THRESHOLD

Above threshold the oscillators become strongly excited
though this does not mean that their states become classical. As
in the case of the single-oscillator system [21], strong number
squeezing (marked by a Fano factor below unity) occurs even
at large average occupation numbers. As in the subthreshold
regime, the behavior of the system in the limit of very
small zero-point fluctuations, A,,A, < 1, can be captured
within an approximate description which linearizes about the
semiclassical fixed points of the system, but for larger zero-
point fluctuations numerical solution of the quantum master
equation becomes essential. We start by exploring the general
properties of the steady states of the individual oscillators
in the above-threshold regime for symmetric oscillators and
the role played by the size of the zero-point fluctuations
before going on to examine how asymmetry alters the
behavior.

A. Symmetric oscillators

For symmetric oscillators (r =1, A, = A, = A) the
steady-state properties of the two oscillators must be the
same and there is a very simple scaling to the semiclassical
fixed-point amplitudes obtained in Sec. IV: the value of
2A, Ay is a function of just E;/ES; see (22). This scaling
provides a convenient way of comparing the average oscillator
occupation n = n, = n; (obtained by solving the master
equation numerically) for different values of A with the
semiclassical prediction, as shown in Fig. 4(a). We solved
the master equation using standard numerical methods [35];
for smaller values of A we carried out quantum trajectory
simulations, while for larger A we were able to solve for
the steady state of the master equation directly because the
state space required was rather smaller. Indeed, the strong
suppression in the magnitude of the oscillator occupation
number as A is increased (there is a reduction by a factor ~100
in going from A = 0.1 to A = 0.6) is the most significant
feature in Fig. 4(a), which is captured by the 4A? scaling.

Figure 4(a) also shows that the semiclassical amplitudes
provide a very good description of the oscillator occupations
for A « 1. For A = 0.1 we see that there are small deviations
from the semiclassical predictions which become apparent
just above threshold and near the bifurcation that occurs at
ES? = 2.5E. As the size of the zero-point fluctuations is
increased, these small deviations grow much larger and spread
out over a much wider range of E;/E¢ values. Nevertheless,
the semiclassical amplitude continues to provide a useful
estimate of the full quantum results even for A = 0.6.

We now turn to the fluctuations in the occupation numbers
of the oscillators, described by the single-mode Fano factors,
F = F, = F,. The value of F decreases progressively the
further above threshold we go as shown in Fig. 4(b). For very
small A, F is strongly elevated close to threshold (the other
side of the peak in F seen below threshold), but decreases
rapidly with increasing E;/E¢ leading to substantial number-
state squeezing with F' ~ 0.5 before the bifurcation at £ 32. For
larger A values there is no peak around threshold and F < 1
throughout though the lowest values are slightly larger than
those obtained for very small A.
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FIG. 4. (Color online) Comparison of the oscillator occupation
numbers (a) and Fano factor (b) obtained from numerical solution
of the quantum master equation for A = 0.1, 0.3, and 0.6 with
corresponding semiclassical calculations over the range E§ < E; <
E$* = 2.5E5. In (a) both the semiclassical oscillator energy, A2, and
occupation number, n,, are scaled by 4A2,

The simple semiclassical analysis in Sec. IV can be
extended to describe small fluctuations in the system about
the stable fixed points by essentially adding a noise term to
the equations of motion for the amplitudes, Eqgs. (15) and
(16), so that they become Langevin equations. Formally, such
Langevin equations can be derived within the framework of an
approximate semiclassical approach known as the truncated
Wigner approximation, as we show in Appendix A. We
again make the change to amplitude-phase variables and then
linearize about the fixed-point values to obtain expressions for
the amplitude fluctuations (6 A%) = ((A — Ag)?) which can be
related to the Fano factor in a simple way F, ~ 4(§A?) (details
of the calculation are provided in the Appendix).

The comparison of the semiclassical and quantum cal-
culations of the Fano factor shown in Fig. 4(b) shows that
the semiclassical Fano factor, which is a function of E;/E¢
alone in the symmetric case, can be thought of as giving
the low-A limit. As A is increased the deviations from the
semiclassical value get stronger around threshold and the
bifurcation at E 32 = 2.5E¢ as well as spreading over a wider
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FIG. 5. (Color online) Steady-state occupations n, and n, (full
lines) compared with the classical values of A and B} at the stable
fixed points (dashed lines) for (a) A =0.3, (b) A = 0.6. Results
are shown for » = 1, 1/2, and r = 1/3 in each case. Note that the
semiclassical amplitudes are zero for E; < E¢. The above-threshold
bifurcation occurs at E*/ES = 2.5, 4.0, and 8.7 for r = 1, 1/2, and
r = 1/3, respectively.

range of E;/ES in much the same way as for the oscillator
occupation. Note that the semiclassical calculation predicts
a Fano factor which tends to 0.5 as the system tends to the
bifurcation, E; — Ejz. This matches the lowest Fano factors
found for the one-oscillator system which occurs as the system
tends towards an above-threshold bifurcation at the 2-photon
resonance [21].

B. Asymmetric oscillators

We now consider what happens when the oscillators are
no longer entirely symmetric. We start by considering the case
where the zero-point fluctuations of the modes remain the same
(A = A, = Aj) but the damping rates are different r # 1, and
then go on to consider the general case where A, # A, and
r# 1.

The effect of asymmetric damping on the average occu-
pation numbers of the oscillator (shown in Fig. 5) is twofold
with both effects following from the underlying semiclassical
dynamics discussed in Sec. IV. First, the bifurcation which
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occurs at Eﬁz is pushed to larger values of EY. Second, the
average occupation numbers of the modes become unequal
in proportion to the underlying asymmetry in the damping,
n, =r’n,.

Figure 6 shows the effect of asymmetric damping on the
occupation number fluctuations for different values of A. What
is striking here is that the fluctuations become asymmetric and
the Fano factor becomes significantly lower than 0.5 in the
less damped oscillator. The lowest values of F are achieved
well above threshold, close to the bifurcation at Ej2 for small
A, though for larger A values the minimum F is at a lower
value of E as the increase in F’ associated with the bifurcation
starts to occur at progressively smaller values of E;/ES as A
is increased. Above the bifurcation the value of F settles down
to a steady but rather higher value.

The semiclassical calculation predicts a minimum value of
F ~ 0.1 for the small-A limit when r = 1/3, substantially
lower than any of the Fano factors predicted for the single-
oscillator system [21], and this value continues to decrease for
smaller r. This suggests that the asymmetric two-oscillator
system may provide a very effective route to preparing a
particular mode in a strongly nonclassical state at large photon
numbers. As F' — 0 the state of the oscillator must eventually
become a pure Fock state and so one naturally expects to
find negative features in the Wigner function for very small
values of F. However, the presence of negative regions in a
Wigner function is not simply a function of F, but also the
average occupation number (n): as one goes to larger average
oscillator occupation numbers, smaller and smaller values of
F are required to form negative regions. Figure 7 illustrates
this by showing examples of the Wigner functions for A = 0.3
and A = 0.6 withr = 1/3and E;/ES = 6 where F ~ 0.2 in
both cases (see Fig. 6). For A = 0.6 there is strong evidence of
negativity in the Wigner function while it is almost washed out
for A = 0.3 since although the Fano factors are very similar,
the latter has a much higher average occupation number.

Finally, we examine the behavior in the regime where A, #
Ay,. Figure 8 shows examples of the behavior of the occupation
numbers and Fano factors of the two oscillators in this case.
Interestingly for » = 1 while energy balance means that n, =
np, the fluctuations in the two modes are no longer the same.
When r # 1 the occupation numbers of the two oscillators spilt
according to the usual relation, n, = r2n,, and the fluctuations
become even more asymmetric. Indeed, the minimum values
of the Fano factors are lower than those in the corresponding
cases where A, + A, takes the same value, but A, = A,.

VII. DISCUSSION AND CONCLUSIONS

We have analyzed the quantum dynamics of two electro-
magnetic oscillators coupled to a voltage-biased Josephson
junction. We considered the case where the voltage across the
junction was tuned so that the energy lost by a Cooper pair
crossing the circuit matches the sum of the photon energies of
the two oscillators. In this regime the oscillators are pumped
by the flow of Cooper pairs and can become strongly excited.
Using a rotating wave approximation, we derived an effective
time-independent Hamiltonian for the system and explored
the behavior it gives rise to under a wide range of conditions
using a mixture of numerical and analytic approaches to
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FIG. 6. (Color online) Steady-state Fano factors of the modes (a)
calculated semiclassically (small- A limit) and calculated numerically
using the master equation for (b) A = 0.3 and (c) A = 0.6. In each
case results are shown for r = 1 (full lines), »r = 1/2 (dashed lines),
andr = 1/3 (dotted lines). Forr = 1/2 and r = 1/3 the upper curves
are for oscillator B and the lower ones for oscillator A. The bifurcation
occurs at E?/ES =2.5, 4.0, and 8.7 for r = 1, 1/2, and r = 1/3,
respectively. Note that the semiclassical results in (a) are for E <
E; < Ejz while (b) and (c) cover a broader range of E; values.
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FIG. 7. (Color online) Wigner function of oscillator A for r =
1/3,E;/ES =6,and (a) A = 0.3, (b) A = 0.6. Negative regions are
apparent in both cases, though more strongly in (b). The Fano factors
associated with the states are F, = 0.19 (a) and F, = 0.22 (b).

solve the master equation. We use a perturbative approach to
obtain analytic results for the regime where the occupation of
the oscillators is low while in the opposite regime of large
occupation numbers a semiclassical approach provides an
effective description.

The steady states of the oscillators display signatures of
nonclassical behavior over a very wide range of conditions
with sub-Poissonian photon statistics found in both the low
and high occupancy regimes. The strength of the zero-point
fluctuations in the oscillators, A,), plays an important role:
as these are increased the overall excitation level of the
oscillators tends to move towards lower photon numbers while
the signatures of nonclassicality are enhanced. The ratio of the
damping rates of the two cavities, described by r = \/Y./ s,
also has an interesting effect on the behavior of the system.
The photon numbers in the two oscillators are related in a
simple way, n, = r’n,, as one would expect. However, the
quantum fluctuations (e.g., measured by the Fano factors F,))
also become unequal in the asymmetric case, r # 1. Indeed
we find that the Fano factor in the less-damped oscillator can
become low enough to lead to significant negative regions in
the corresponding Wigner function.

Strong correlations between the two oscillators are to be ex-
pected in the regime we consider given the fact that the tunnel-
ing Cooper pairs excite photons in each of the two oscillators
simultaneously. The violation of the classical Cauchy-Schwarz
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FIG. 8. (Color online) Steady-state occupation numbers 7 (a) and
Fano factors F' (b) of the oscillators for A, = 0.4, A, = 0.2 with
r =1 and 1/2. In (a) the semiclassical predictions are shown as a
dotted line and the numerical results as a full line in each case.

inequality for the photons in the two oscillators, g((fb), indicates
that the corresponding two-mode states are nonclassical. It
would be natural to also investigate the entanglement between
the two oscillators. However, this is complicated by the
fact that in practice local voltage fluctuations, even when
weak, would be expected to have a very strong influence on
phase-dependent correlation functions such as (ab) which can
be important in determining the level of entanglement. This
is in contrast to the observables such as photon occupation
numbers and correlation functions which we have focused
on here which, as remarked in Sec. II B, are expected to be
only very weakly affected. We plan to address the issue of
interoscillator entanglement in a future work using a form of
the master equation where the effects of voltage fluctuations
are explicitly included [22].

Note added. Recently Ref. [40], which considers the same
model circuit as this paper, was posted on arXiv.
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APPENDIX: SEMICLASSICAL CALCULATION OF
ABOVE-THRESHOLD FLUCTUATIONS

We can gain useful insights into the dynamics by extending
our semiclassical analysis to include quantum fluctuations
using a truncated Wigner approximation (TWA) [31,38]. The
TWA leads to an approximate equation of motion for the
Wigner function of the system, W(w, ), in which third-order
and higher derivatives are neglected. Dropping higher-order
derivatives leads to a Fokker-Planck equation from which we
obtain [31] Langevin equations for the phase-space variables
o, B of the form (for the on-resonance case)

y= 1 L NOIN
a__§a+2AbEj 12A4181)
O{2,3 ’3*:|
DA ) ——=— — JoQ2 Al = | + 10 (7),
X|:2( |04|)|0[|2|ﬁ| o( Ial)w' Na(T)
(A1)
j— L 1y an,lal
'B__Zrﬁ+2Aanl al
X [J (2A Iﬁl)ﬂ —Jo(2A Iﬁl)a—*] + np()
BT TP 7] I
(A2)

The noise terms 1¢()(7) have zero means and the only nonzero
second moments are given by

(Na(Dne- () = %3(1 - 1), (A3)

(np(Omp () = %8& -1 (A4)
Apart from the noise terms, the equations of motion take
the same form [39] as those derived in Sec. IV [Egs. (15)
and (16)].

We proceed by changing to amplitude and phase variables
and then linearizing about the fixed-point values, i.e., working
to first order in A = A — Ay, 8B = B — By, and 8¢+ =
£+ — & with Ag, By, & the fixed-point values. For the fixed
point just above threshold the amplitude and phase fluctuations
become decoupled and on-resonance we find

SA\ <_Fa h(a,b)) (SA)+<77A>
SB - h(b,a) —Fb SB nep ’

where

(A5)

r AaEJ
Fa=3+ J1(2ApBo) [J1(2A4 A0)+J3(2A4Ap)]

2ALES
(A6)
Iy = 4 (2rE JiQ2ALAY) [J1(2A Bo)+J3(2A, Bo)]
b—zr ZAQE‘L, 1 a0 1 b DO 3 bDOJ1 >

(AT)
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E

hp) = (ﬁ) [Jo(2ApBo) — J2(2A,By)]
7

X [Jo(2AgAp) + 2(2A,Ap)], (A8)

and a corresponding expression for A 4. The noise terms
obey the correlation functions

p
(na(@ma(ch) = 29— ), (A9)
/ 1 ’
(mp(np(t)) = Ea(r - 7). (A10)
Using Eq. (A5) we obtain the steady-state variances
r ]’l b)
§A%) = — + @D (5ASB), All
(A7) 8T + T, ( ) (A1)
(0B = —— 4 M09 s 4sp). (A12)
8rl"b Fb
hamTa hp.aT
(SASB) = whla/r +hoolor (A13)

8Ty + Tl — hapyhiva)

Recalling that o and B are phase-space variables of a Wigner
function, we can connect these variances to quantum averages:
(A% = (a'a) + 1/2 and (A*) = ((ata)?) + (ata) + 1/2. For
fixed points where Ag > 1, corrections of order A, 2 can be
neglected, leading to the simple result

(A% — (4D — 1/4

" =13 (Al14)
2 2 2\2

_ 4A0(8124 ) +2(8A%)2 — 1/4 (A15)
A2+ (8A2) —1/2

~ 4(8A%), (A16)
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and there is of relation
for Fj.

To uncover the role of the strength of the quantum fluctu-
ations we can rewrite things in terms of the superconducting
phases, ¢, 5, associated with the oscillators. For example, for
oscillator A, ¢, = A,(a + a) and the semiclassical theory
predicts that above threshold the phase will oscillate with
an average amplitude A, Ay which only depends on the ratio
E;/ES (assuming symmetric oscillators for simplicity). The
corresponding fluctuations in the amplitude of the phase will
be given by AZ (8A?). Since one finds that (§ A2) is a function of
E;/ES alone, we see that the fluctuations in the amplitude of
the phase oscillations have an explicit dependence on the size
of the quantum fluctuations measured by A, whereas the av-
erage amplitude does not. In terms of the mechanical analogy
mentioned in Sec. II, we can write EG = 2, /Y, VpMampwawp
and we have Afl » = N/ (2mg po, p) so if we take A — 0 while
keeping the masses, frequencies, and damping rates of the
oscillators constant the amplitude of the phase oscillations
will remain unchanged while the associated fluctuations will
go to zero as one would expect in the classical limit.

The Langevin equation for §&* takes the form

course a corresponding

85 = —Fi(Ao, B)SE ™ + e+, (A17)
where (ng+(t)ng+(t')) = 2D8(r — ') with 2D = r/(4Aé) +
1/(4r B}). Hence we find

((86%)*) = D/F+ (Ao, By). (AIB)
Note that as the system approaches the bifurcation at E; =

Ejz, F1 (Ao, Bp) — 0implying that the total phase fluctuations
within this linearized approach diverge.

[1] M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier,
and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990).

[2] S. M. Girvin, L. I. Glazman, M. Jonson, D. R. Penn, and M. D.
Stiles, Phys. Rev. Lett. 64, 3183 (1990).

[3] G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling,
edited by H. Grabert and M. H. Devoret (Plenum, New York,
1992).

[4] Yu. V. Nazarov and Ya. M. Blanter, Quantum Transport
(Cambridge University Press, Cambridge, 2009).

[5] T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev.
Lett. 73, 3455 (1994).

[6] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008); J. Q. You and F. Nori, ibid. 474, 589 (2011).

[7] M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch, J. J.
Viennot, G. Feve, B. Huard, C. Mora, A. Cottet, and T. Kontos,
Phys. Rev. Lett. 107, 256804 (2011).

[8] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and
A. Wallraff, Phys. Rev. Lett. 108, 046807 (2012).

[9] W. Lu, K. D. Maranowski, and A. J. Rimberg, Phys. Rev. B 65,
060501 (2002).

[10] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Yu. A.
Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449, 588
(2007).

[11] M. Hoftheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion, P.
Bertet, P. Roche, and D. Esteve, Phys. Rev. Lett. 106, 217005
2011).

[12] Y.-Y. Liu, K. D. Petersson, J. Stehlik, J. M. Taylor, and J. R.
Petta, Phys. Rev. Lett. 113, 036801 (2014).

[13] F. Chen, J. Li, A. D. Armour, E. Brahimi, J. Stettenheim, A. J.
Sirois, R. W. Simmonds, M. P. Blencowe, and A. J. Rimberg,
Phys. Rev. B 90, 020506 (2014).

[14] D. A. Rodrigues, J. Imbers, and A. D. Armour, Phys. Rev. Lett.
98, 067204 (2007); D. A. Rodrigues, J. Imbers, T. J. Harvey, and
A. D. Armour, New J. Phys. 9, 84 (2007); T. J. Harvey, D. A.
Rodrigues, and A. D. Armour, Phys. Rev. B 78, 024513 (2008).

[15] M. Marthaler, J. Leppakangas, and J. H. Cole, Phys. Rev. B 83,
180505 (2011).

[16] P.-Q. Jin, M. Marthaler, J. H. Cole, A. Shnirman, and G. Schon,
Phys. Rev. B 84, 035322 (2011).

[17] C. Bergenfeldt and P. Samuelsson, Phys. Rev. B 85, 045446
(2012).

[18] C. Padurariu, F. Hassler, and Yu. V. Nazarov, Phys. Rev. B 86,
054514 (2012).

[19] M. P.Blencowe, A. D. Armour, and A. J. Rimberg, in Fluctuating
Nonlinear Oscillators, edited by M. Dykman (Oxford University
Press, Oxford, 2012).

184508-11


http://dx.doi.org/10.1103/PhysRevLett.64.1824
http://dx.doi.org/10.1103/PhysRevLett.64.1824
http://dx.doi.org/10.1103/PhysRevLett.64.1824
http://dx.doi.org/10.1103/PhysRevLett.64.1824
http://dx.doi.org/10.1103/PhysRevLett.64.3183
http://dx.doi.org/10.1103/PhysRevLett.64.3183
http://dx.doi.org/10.1103/PhysRevLett.64.3183
http://dx.doi.org/10.1103/PhysRevLett.64.3183
http://dx.doi.org/10.1103/PhysRevLett.73.3455
http://dx.doi.org/10.1103/PhysRevLett.73.3455
http://dx.doi.org/10.1103/PhysRevLett.73.3455
http://dx.doi.org/10.1103/PhysRevLett.73.3455
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.107.256804
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevLett.108.046807
http://dx.doi.org/10.1103/PhysRevB.65.060501
http://dx.doi.org/10.1103/PhysRevB.65.060501
http://dx.doi.org/10.1103/PhysRevB.65.060501
http://dx.doi.org/10.1103/PhysRevB.65.060501
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1038/nature06141
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.113.036801
http://dx.doi.org/10.1103/PhysRevLett.113.036801
http://dx.doi.org/10.1103/PhysRevLett.113.036801
http://dx.doi.org/10.1103/PhysRevLett.113.036801
http://dx.doi.org/10.1103/PhysRevB.90.020506
http://dx.doi.org/10.1103/PhysRevB.90.020506
http://dx.doi.org/10.1103/PhysRevB.90.020506
http://dx.doi.org/10.1103/PhysRevB.90.020506
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1103/PhysRevLett.98.067204
http://dx.doi.org/10.1088/1367-2630/9/4/084
http://dx.doi.org/10.1088/1367-2630/9/4/084
http://dx.doi.org/10.1088/1367-2630/9/4/084
http://dx.doi.org/10.1088/1367-2630/9/4/084
http://dx.doi.org/10.1103/PhysRevB.78.024513
http://dx.doi.org/10.1103/PhysRevB.78.024513
http://dx.doi.org/10.1103/PhysRevB.78.024513
http://dx.doi.org/10.1103/PhysRevB.78.024513
http://dx.doi.org/10.1103/PhysRevB.83.180505
http://dx.doi.org/10.1103/PhysRevB.83.180505
http://dx.doi.org/10.1103/PhysRevB.83.180505
http://dx.doi.org/10.1103/PhysRevB.83.180505
http://dx.doi.org/10.1103/PhysRevB.84.035322
http://dx.doi.org/10.1103/PhysRevB.84.035322
http://dx.doi.org/10.1103/PhysRevB.84.035322
http://dx.doi.org/10.1103/PhysRevB.84.035322
http://dx.doi.org/10.1103/PhysRevB.85.045446
http://dx.doi.org/10.1103/PhysRevB.85.045446
http://dx.doi.org/10.1103/PhysRevB.85.045446
http://dx.doi.org/10.1103/PhysRevB.85.045446
http://dx.doi.org/10.1103/PhysRevB.86.054514
http://dx.doi.org/10.1103/PhysRevB.86.054514
http://dx.doi.org/10.1103/PhysRevB.86.054514
http://dx.doi.org/10.1103/PhysRevB.86.054514

A.D. ARMOUR, B. KUBALA, AND J. ANKERHOLD

[20] J. Leppakangas, G. Johansson, M. Marthaler, and M.
Fogelstrom, Phys. Rev. Lett. 110, 267004 (2013).

[21] A. D. Armour, M. P. Blencowe, E. Brahimi, and A. J. Rimberg,
Phys. Rev. Lett. 111, 247001 (2013).

[22] V. Gramich, B. Kubala, S. Rohrer, and J. Ankerhold, Phys. Rev.
Lett. 111, 247002 (2013).

[23] B. Kubala, V. Gramich, and J. Ankerhold, arXiv:1404.6259
[Phys. Scr. (to be published)].

[24] J. Jin, M. Marthaler, and G. Schon, Phys. Rev. B 91, 085421
(2015).

[25] J.-R. Souquet, M. J. Wooley, J. Babelli, P. Simon, and A. A.
Clerk, Nat. Commun. 5, 5562 (2014).

[26] E. Flurin, N. Roch, F. Mallet, M. H. Devoret, and B. Huard,
Phys. Rev. Lett. 109, 183901 (2012).

[27] J.-C. Forgues, C. Lupien, and B. Reulet, Phys. Rev. Lett. 113,
043602 (2014).

[28] F. Chen, A. J. Sirois, R. W. Simmonds, and A. J. Rimberg, Appl.
Phys. Lett. 98, 132509 (2011).

[29] Y. Makhlin, G. Schon, and A. Shnirman, Nature (London) 398,
305 (1999); Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, ibid.
398, 786 (1999).

PHYSICAL REVIEW B 91, 184508 (2015)

[30] C. Altimiras, O. Parlavecchio, P. Joyez, D. Vion, P. Roche,
D. Esteve, and F. Portier, Phys. Rev. Lett. 112, 236803 (2014).

[31] D.F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin,
1994).

[32] R. Graham, Phys. Rev. Lett. 52, 117 (1984).

[33] G. S. Agarwal, Quantum Opt. 2, 1 (1990).

[34] G. S. Agarwal, Quantum Optics (Cambridge University Press,
Cambridge, 2013).

[35] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012); 184, 1234 (2013).

[36] P. R. Rice and H. J. Carmichael, Phys. Rev. A 50, 4318 (1994).

[37] E. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O.
Schmidt, and R. Blatt, Nat. Phys. 6, 350 (2010).

[38] A. Polkovnikov, Ann. Phys. 325, 1790 (2010).

[39] In fact the definition of EY is slightly different in Eqs. (A1) and
(A2) as the drift terms in the truncated Wigner approximation are
derived from a symmetrically ordered Hamiltonian [38] (rather
than normal order) and hence the factor of e(®i+23/2 does not
arise. However, this difference is unimportant in the regime of
small A,,A;, where the TWA is expected to be valid.

[40] M. Trif and P. Simon, arXiv:1503.03640.

184508-12


http://dx.doi.org/10.1103/PhysRevLett.110.267004
http://dx.doi.org/10.1103/PhysRevLett.110.267004
http://dx.doi.org/10.1103/PhysRevLett.110.267004
http://dx.doi.org/10.1103/PhysRevLett.110.267004
http://dx.doi.org/10.1103/PhysRevLett.111.247001
http://dx.doi.org/10.1103/PhysRevLett.111.247001
http://dx.doi.org/10.1103/PhysRevLett.111.247001
http://dx.doi.org/10.1103/PhysRevLett.111.247001
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://arxiv.org/abs/arXiv:1404.6259
http://dx.doi.org/10.1103/PhysRevB.91.085421
http://dx.doi.org/10.1103/PhysRevB.91.085421
http://dx.doi.org/10.1103/PhysRevB.91.085421
http://dx.doi.org/10.1103/PhysRevB.91.085421
http://dx.doi.org/10.1038/ncomms6562
http://dx.doi.org/10.1038/ncomms6562
http://dx.doi.org/10.1038/ncomms6562
http://dx.doi.org/10.1038/ncomms6562
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.109.183901
http://dx.doi.org/10.1103/PhysRevLett.113.043602
http://dx.doi.org/10.1103/PhysRevLett.113.043602
http://dx.doi.org/10.1103/PhysRevLett.113.043602
http://dx.doi.org/10.1103/PhysRevLett.113.043602
http://dx.doi.org/10.1063/1.3573824
http://dx.doi.org/10.1063/1.3573824
http://dx.doi.org/10.1063/1.3573824
http://dx.doi.org/10.1063/1.3573824
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1038/18613
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.52.117
http://dx.doi.org/10.1103/PhysRevLett.52.117
http://dx.doi.org/10.1103/PhysRevLett.52.117
http://dx.doi.org/10.1103/PhysRevLett.52.117
http://dx.doi.org/10.1088/0954-8998/2/1/001
http://dx.doi.org/10.1088/0954-8998/2/1/001
http://dx.doi.org/10.1088/0954-8998/2/1/001
http://dx.doi.org/10.1088/0954-8998/2/1/001
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.02.021
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1103/PhysRevA.50.4318
http://dx.doi.org/10.1038/nphys1627
http://dx.doi.org/10.1038/nphys1627
http://dx.doi.org/10.1038/nphys1627
http://dx.doi.org/10.1038/nphys1627
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://arxiv.org/abs/arXiv:1503.03640



