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Motivated by recent developments in magnetic materials, frustrated nanoarrays, and cold atomic systems, we
investigate the behavior of dipolar spins on the frustrated two-dimensional kagome lattice. By combining the
Luttinger-Tisza approach, numerical energy minimization, spin-wave analysis, and parallel tempering Monte
Carlo, we study long-range ordering and finite-temperature phase transitions for a Hamiltonian containing
both dipolar and nearest-neighbor interactions. For antiferromagnetic exchange and both weak and moderate
dipolar interactions, the system enters a three-sublattice long-range ordered state with each triangle having
vanishing dipole and quadrupole moments; whereas for dominating dipolar interactions we uncover ferrimagnetic
three-sublattice order. These are also the ground states for XY spins. We discuss excitations of, as well as phase
transitions into, these states. We find behavior consistent with Ising criticality for the 120◦ state, whereas the
ferrimagnetic state appears to be associated with drifting exponents. The celebrated flat band of zero-energy
excitations of the kagome nearest-neighbor Heisenberg model is lifted to finite energies but acquires only
minimal dispersion as dipolar interactions are added.
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I. INTRODUCTION

Long-ranged dipolar interactions occur in any lattice system
of interacting magnetic moments. However, the assessment
of the relevance of dipolar interactions in determining the
behavior of magnetic systems has witnessed a recalibration in
the recent past. This is largely due to the advent of several
experimental systems that shifted the focus away from purely
exchange-coupled magnets where the dipolar interaction is
routinely neglected.

We can identify at least three broad classes of systems
which have led to this renewed interest in dipolar interactions.
The first are the A2B2O7 pyrochlore oxides, which most
closely resemble conventionally studied magnetic systems [1].
For these, as a result of an interplay of crystal-field effects,
geometry, and the specific magnetic ions involved, the dipolar
interactions can be appreciable. A second class is that of
nanomagnetic arrays [2], collections of nanomagnetic islands
arranged in a regular pattern using lithography. The magnitude
of the moments as well as the strength of the dipolar
interactions can be tuned to a great degree by controlling
the dimensions and separation of the magnetic islands. These
systems are much more tunable than the thin-film systems
studied in the past with a view to analyzing pattern formation
and ordering via the dipolar interaction [3]. Finally, the past
decade has seen rapid development of magnetic systems of
polar molecules and atomic gases with large dipole moments
confined in optical lattices [4,5].

Of particular interest is the interplay of dipolar interactions
and geometrical frustration. On frustrated lattices, an exchange
term typically gives rise to a macroscopically degenerate yet
locally strongly constrained ground-state manifold, usually

*mykola.maksymenko@weizmann.ac.il

lacking conventional magnetic order. This constraint can be
thought of as restricting the space of states, often in a
topologically nontrivial way, within which dipolar interactions
are to be minimized; or, conversely, the dipolar interactions
can be thought of as lifting the degeneracy, akin to the
usual order-by-disorder physics characteristic of quantum and
thermal fluctuations [6]. The combination of exchange and
dipoles can lead to surprising results, such as in the case of
spin ice [7] where the underlying elementary excitations can
be seen as doubly gauge charged [8] (emergent) magnetic
monopoles [9].

Theoretical efforts to study dipolar spins are several decades
old [10–13]. An early milestone is the work of Luttinger
and Tisza (LT) [10] who established that the ground state
for a simple cubic lattice of dipoles is an antiferromag-
netic arrangement of chains of aligned dipoles. Thereafter,
Maleev [13] found that the long-range and anisotropic nature
of the dipolar interactions can stabilize long-range order in
two-dimensional (2D) magnets—something that is prohibited
for short-ranged isotropic exchange Hamiltonians because of
the Mermin-Wagner theorem. Indeed, for nanomagnetic arrays
and cold atoms in optical lattices the study of two dimensions
is particularly relevant. For dipoles on the square lattice the
ground state likely consists of antiferromagnetically aligned
ferromagnetic legs [14,15] and closely related degenerate
states [16]. For the triangular lattice a ferromagnetic phase
has been reported for purely dipolar interactions, but it was
argued that other phases, such as a 120◦ phase and striped
antiferromagnetic phases appear for increasing strength of
the exchange interaction [17–20]. Although there is some
agreement about the nature of the low-temperature phase for
several of these systems the precise details of the transition
to those low-temperature phases are frequently under debate.
The principal reason lies in the subtleties involved in the
thermodynamic limit in the presence of long-ranged (and
anisotropic) interactions.
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FIG. 1. (Color online) The kagome lattice (left) and the ground-
state phase diagram of the model consisting of nearest-neighbor
exchange J = sin θ and dipolar interactions of strength D = cos θ

(right). A1 and A2 are the basis vectors of the triangular Bravais lattice,
and a dark green triangle denotes the unit cell of three sites labeled by
r0 = (0,0), r1 = (1/2,0), and r2 = (0,1/2) in this basis. The system
exhibits long-range 120◦ order for π/2 � θ > θ1 with θ1 = 10.01◦

and ferrimagnetic order for −π/2 < θ < θ2 where θ2 = 1.03◦. The
latter has two spins inclined with respect to one of the unit-cell edges
by angle ±φ(θ ). The area between two phases possibly contains an
incommensurate intermediate regime.

For some otherwise well-studied lattices, not even the
dipolar ground state is known. A case in point is that of
classical dipolar spins on the kagome lattice, the focus of
this paper. The kagome is perhaps the most-studied two-
dimensional highly frustrated lattice for which even the low-
temperature behavior of a simple nearest-neighbor Heisenberg
model is remarkably intricate [21,22]. We investigate in
this paper using a combination of the LT method, spin-wave
calculations, numerical energy minimization, and extensive
Monte Carlo (MC) simulations the interplay of exchange and
dipolar interactions. We find two distinct low-temperature
orderings. Starting with antiferromagnetic (AFM) nearest-
neighbor exchange, for weak dipolar interactions we observe
120◦ three-sublattice order with a zero net moment; whereas
for strong dipolar interactions we find a peculiar ferrimagnetic
state with a continuously varying net moment, which persists
also for the case of ferromagnetic (FM) exchange. Thus we
have two different three-sublattice k0 = (0,0) states at weak
and strong dipolar interactions [Fig. 1(b)]. Although our results
for the case of strong dipolar interactions predict a finite
moment per unit cell as in earlier work [23], our extensive
simulations and analytic considerations do not support the
existence of a disordered nonmagnetic sublattice.

The outline of the paper is as follows. In Sec. II we
introduce the model and conventions used. In Sec. III we
present the ground-state phase diagram from the Luttinger-
Tisza approach [10]. This method fails in the case of the
strong dipolar term, hence in Sec. IV we perform a numerical
search for the ground state, and in Sec. V we confirm that
this state is locally stable via a spin-wave analysis. Finally,
in Sec. VI we analyze our model using a parallel-tempering
Monte Carlo method which confirms our predictions for the
ground states and provides the details of the corresponding

rich finite-temperature phase transitions. We close with a
discussion section.

II. MODEL

The kagome lattice given in Fig. 1 is an Archimedean
lattice [24], a triangular lattice of triangles. The positions of
the triangular Bravais lattice points are denoted by Rl whereas
each site in the unit cell is labeled by ri so that a site is labeled
by Rl

i = (Rl + ri). Throughout the paper the lattice constant
Rnn is set to 1/2 such that the full translation of the three-site
unit cell is the unit of length.

The general Hamiltonian of the system of N spins is

H =
∑
k,i,l,j

∑
α,β

J
αβ

ij

(
Rkl

ij

)
Sα

i (Rk)Sβ

j (Rl), (1)

J
αβ

ij (R) = 1

2

[
Jδαβ,|R|=Rnn

+ DR3
nn

(
δαβ

|R|3 − 3
RαRβ

|R|5
)]

. (2)

Here Rkl
ij is the vector between two interacting classical O(3)

spins Sα
i (Rk) and S

β

j (Rl) of unit length. k and l index the unit
cell, whereas i and j run over the sites of the basis in the unit
cell and greek α and β denote the components of the vectors
x, y, and z. The first term of the interaction matrix (2) is the
nearest-neighbor exchange whereas the second is the dipole
interaction with R3

nn as the nearest-neighbor distance, included
for normalization. A factor 1

2 has been included to avoid double
counting. J > 0 is the energy scale of the antiferromagnetic
nearest-neighbor exchange. The dipolar energy scale is

D = μ0

4π

μ2

R3
nn

, (3)

where μ is the magnetic moment of the ions.
We parametrize the relative strength of J and D via an

angle θ (Fig. 1),

J = sin θ, D = cos θ, (4)

with the unit of energy set to J 2 + D2 = 1.
Fourier transformation of the Hamiltonian (2) yields

H =
∑
k,i,j

J
αβ

ij (k)Sα
i (−k)Sβ

j (k), (5)

J
αβ

ij (k) =
∑
kl

J
αβ

ij

(
Rkl

ij

)
exp

[ − ikRkl
ij

]
. (6)

We generate the interaction matrix for the dipolar interactions
using the Ewald summation [25], which we confirm by the
direct lattice summation possible in two dimensions.

III. LUTTINGER-TISZA ANALYSIS

We first determine a ground state using the LT method [10]
where it applies. Decomposing the interaction matrix into
its Fourier components and denoting by λmin(k) the lowest
eigenvalue(s) of the interaction matrix, we use the fact that the
energy of any spin configuration satisfies the bound,

H � Nλmin(k). (7)

If there exists a spin configuration which can be decomposed
into a linear combination of only the “optimal” [26] LT
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FIG. 2. (Color online) Eigenvalues of the interaction matrix
J

αβ

ij (k) along lines in the Brillouin zone. (a) Spectra for dominant
exchange case θ = π/4. (b) Spectra for D = 1, θ = 0. The eigen-
value lowest in energy is generally at the 	 point k0.

eigenvectors corresponding to these eigenvalues, it is a global
ground state. This happens if the “strong constraint” of unit
length for the spins,

|Si |2 = 1 (8)

does not conflict with the optimal eigenvectors, which however
in general have entries with different amplitudes. In the latter
case, not unusual for non-Bravais lattices, nonoptimal modes
have to be admixed, and the LT approach only yields an (often
rather useful) guess at possible ground states or at least at
leading instabilities from the high-temperature paramagnet.

A. Dominant AFM nearest-neighbor exchange

For pure nearest-neighbor antiferromagnetic exchange θ =
π/2 (D = 0), the lowest branch of the interaction matrix is
exactly flat (dispersionless) reflecting the high ground-state
degeneracy [27–30]. Decreasing θ we move to nonzero D > 0
which immediately lifts the degeneracy, selecting a ground
state at wave vector k0 = (0,0) as shown in Fig. 2(a) for θ =
π/4. The optimal eigenvector satisfies the constraint (8) and
results in a 120◦ state which is doubly degenerate reflecting
two possible chiralities. A further increase in D leads to level
crossing at θ1 = 10.01◦. Hence the 120◦ state is certainly stable
up to this point as we have also confirmed in Monte Carlo
simulations.

B. Dominant dipolar interactions or FM exchange

For θ < θ1 LT no longer yields an exact ground state [31].
Instead, we enter an intermediate regime where neither spin-
wave nor Monte Carlo computations (see Secs. V and VI)
allow us reliably to conclude on the ground state. This regime
persists up to the point θ2 = 1.03◦ beyond which the 120◦ state
is no longer even a stable local minimum at k0 = (0,0).

For purely dipolar interactions θ = 0 the minimal eigen-
value λmin = −2.487 is doubly degenerate and again occurs
at k0 = (0,0), Fig. 2(b). The best state we find has two of the
spins that are inclined approximately by φ≈ ± 16◦ with respect
to one of the unit-cell edges whereas the third spin remains
unchanged (right panel of Fig. 1). This situation persists
with varying φ(θ ) until the ferromagnetic point θ = −π/2.
However, in general no combination of the pair of eigenvectors
satisfies the strong constraint on spin length (8). To determine
the true ground state for hard unit length spins, we thus need
to allow the admixing of other modes so that we next turn to
numerics.

π/6

π/3

-π/2 -π/3 -π/6 0 π/18

φ(
θ)

θ

FIG. 3. (Color online) Inclination angle ±φ of two of the spins
in the unit cell (Fig. 1) as a function of θ [Eq. (4)] in the ferrimagnetic
phase.

IV. NUMERICAL ENERGY MINIMIZATION FOR STRONG
D OR FERROMAGNETIC J

Our Monte Carlo simulations (Sec. VI) do unveil a k0 =
(0,0) ordering at low temperatures, suggesting that hard spin
constraint may optimally be satisfied by admixing higher
modes at k0 = (0,0) only. We therefore constrain our problem
to a single unit cell and perform a numerical minimization
of the Hamiltonian (5). The minimal energy configuration for
the single unit cell is indeed the state found in full lattice
Monte Carlo simulations. The ground state is a ferrimagnetic
configuration in which the spins Si take the following angles
with one of the three edges in the unit cell:

φ1 = φ, φ2 = −φ, φ3 = 0,

with

φ ≈ 36.42◦ (9)

for the pure dipolar interactions (θ = 0,J = 0). As we change
−π/2 < θ < θ2 we can obtain a minimal energy ferrimagnetic
configuration with a drifting φ(θ ) as shown in Fig. 3.

V. LINEAR SPIN-WAVE THEORY

We next study the role of quantum fluctuations around the
two ground states discussed above. We find that both states are
locally stable and exhibit a lowest band with little dispersion,
in particular for the 120◦ state.

We evaluate the spin-wave spectrum of noncollinear spin
structures using standard methods [32–34]. The Hamiltonian
of a Bose gas of magnons reads

H = H (0) +
∑

k

∑
i

εi(k)

+
∑

k

∑
i

εi(k)[a†
i (k)ai(k) + a

†
i (−k)ai(−k)], (10)

where ai(k)’s are boson annihilation operators with H (0) as
the classical ground-state energy. For a stable ground-state
spin configuration, H is Hermitian and all the spin-wave
eigenenergies εi(k) are real. This yields the specific heat Cv(T )
and magnetization M(T ), allowing in principle for comparison
with experimental data at low temperatures, e.g., below a scale
set by the gap in the excitation spectrum [35].
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FIG. 4. (Color online) Spin-wave spectra for (a) the 120◦ state
at θ = π/4 and for (b) the ferrimagnetic ground state obtained by
energy minimization at θ = 0. In (a), the lowest branch remains
almost perfectly flat while acquiring a gap ∝√

D (the inset).

We first confirm that the 120◦ and ferrimagnetic states at
θ = π/4,0, respectively, are stable to quantum fluctuations.
Although it is known from previous studies [28] that for
the 120◦ state the spin-wave excitation spectrum has a fully
dispersionless (flat) band at zero energy as well as a twofold
degenerate acoustic mode, the addition of D leads to a gap in
the excitation spectrum proportional to

√
D at small D. We

plot the spin-wave spectra for cases θ = π/4 and θ = 0 in
Fig. 4 where it is clearly seen that in both cases the leading
effect of dipolar interactions is pushing the zero modes to finite
frequency, expected on account of the absence of a continuous
symmetry. The dispersion of the lowest branch of the 120◦
state is only weakly affected. This fact can manifest itself
in finite energy almost k-independent resonance in inelastic
neutron scattering [33,36]. The existence of the gap in the
spectrum affects the corresponding specific heat and sublattice
magnetization (Fig. 5). The gap leads to an exponential
suppression of specific heat Cv ∼ exp[−�/T ] or a reduction
of staggered magnetization �M(T ) ∼ exp[−�/T ] with the
gap �.

Moreover we have checked for both θ = 0,π/4 that these
are the only stable spin-configurations at k0 = (0,0). We
close this section by noting that both the 120◦ and the
ferrimagnetic states are locally stable within the boundaries
of the intermediate phase (Fig. 1).

VI. MONTE CARLO SIMULATIONS

This section pursues two goals. First, the ground states
are confirmed numerically; second, the corresponding finite-
temperature phase transitions are analyzed in detail. This is
performed with computationally intensive but tractable Monte
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FIG. 5. (Color online) (a) Specific heat scaled by the temperature
and (b) temperature dependence of the reduction of sublattice
magnetization due to quantum fluctuations calculated using linear
spin-wave theory, which is controlled in the limit of small T .

Carlo simulations of the system on finite lattices with a linear
dimension of L � 24 unit cells or N � 1728 sites.

We employ parallel tempering with 64–128 replicas in the
temperature range of T = 0.125–2.95 for the phase-transition
analysis and in the range of T = 0.00625–2.95 to investigate
the low-energy configuration of the dipoles. One Monte Carlo
step corresponds to a sweep over the lattice in which on
average every spin is touched. We perform ≈106 Monte Carlo
steps for the thermalization, followed by ≈106 steps for every
measuring round.

We obtain thermodynamic properties of the model (specific
heat, uniform and staggered—120◦ state—magnetization,
magnetic susceptibility, and fourth-order Binder cumulant) as
well as the structure of the low-temperature spin configuration.

For the set of parameters leading to the ferrimagnetic
ground state we analyze the phase transition via the behavior
of the magnetic order parameter,

M = 1

N

∑
i

(
Sx

i ,S
y

i ,Sz
i

)
, (11)

where the sum is taken over all the sites in the lattice. For
the planar 120◦ ground-state order we investigate the order
parameter which captures the particular chiral spin pattern,

Mχ =
√

mχm∗
χ , (12)

where

mχ = 1

N

∑
R+rj

S(R + rj ) exp(iφj ), (13)

and φj are sublattice phase angles φ1 = 0, φ2 = 2π/3, and
φ3 = 4π/3.

To investigate the corresponding finite-temperature phase
transition we also compute the fourth-order Binder cumulant
for the corresponding order parameter O given in Eq. (11)
or (12),

UL = 1 − 1

3

〈O〉4

〈O2〉2
, (14)

as well as susceptibility,

χ = N

T
(〈O2〉 − 〈O〉2), (15)

and specific heat per spin (see Figs. 6 and 7),

C/N = 1

N

1

T 2
(〈E2〉 − 〈E〉2). (16)

To characterize the phase transitions we employ standard
finite-size scaling,

M̃(L1/ν t) = Lβ/νML,

χ̃ (L1/ν t) = L−γ /νχL, (17)

C̃(L1/ν t) = L−α/νCL,

where t = (T − Tc)/Tc is the reduced temperature. To obtain
the critical exponent 1/ν and critical point Tc we use the scaling
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FIG. 6. (Color online) Monte Carlo results for specific heat C/N ,
Binder cumulant UL, magnetization M , and susceptibility χ for θ = 0
(D = 1 and J = 0).

relation for the Binder cumulant,

Ũ (L1/ν t) = UL. (18)

We extract ν, β, α, γ , and Tc via data collapse.
Let us first look at the finite temperature transition to the

120◦ state. We perform MC simulations deep in the ordered
phase for θ = 35.6◦. Collapsing the curves for chiral order
parameter, Binder cumulant, susceptibility, and specific heat
yields critical temperature Tc as well as the full set of critical
exponents ν, β ,γ , and α see Fig. 8. The transition occurs
at Tc = 0.692(5), consistent with the 2D Ising universality
class with critical exponents ν = 1, β = 1/8, γ = 7/4, and
α = 0, reflecting the discrete Z2 symmetry of the chiral order
parameter.

For dominant dipolar interactions we analyze two points
θ = 0 and for θ = 1◦. The ferrimagnetic order has a sixfold
discrete symmetry (the total spin of the triangular unit cell
is collinear with one of its edges leading to the six possible
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Binder cumulant UL, chiral order parameter Mχ , and corresponding
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FIG. 8. (Color online) Scaling collapse for the magnetic (chiral)
order parameter and its susceptibility for the transition into the 120◦

state (left) and the ferrimagnetic state (right).

orientations) and at T = 0 differs only in the angle φ of the
two inclined spins [Fig. 1(b)]. We therefore expect the corre-
sponding transitions to belong to the same universality class.

Our Monte Carlo data show a clear divergence of the
ferromagnetic order parameter, specific heat, and susceptibility
as well as crossings of fourth-order Binder cumulant curves.
This suggests a single second-order phase transition from a
high-temperature paramagnet to a low-temperature ferrimag-
netic phase (Fig. 6). Both for θ = 0◦ and θ = 1◦ we can extract
critical temperatures Tc = 0.439(2) and Tc = 0.406(5) as well
as the set of exponents which lead to the best data collapse of
Binder cumulant, magnetization, susceptibility, and specific
heat (Table I). Note that correlation length exponent ν and
order parameter exponent β increase monotonically with J

whereas the ratios β/ν ≈ 0.25 and γ /ν ≈ 1.5 remain constant
with a two-dimensional scaling law implying η = 2β/ν ≈ 0.5.

This appears to provide an example of the so-called “weak
universality” hypothesis which states that ratios of exponents
should be independent of the details of the system Hamiltonian
with η = 2β/ν and γ /ν universal whereas α and β are
allowed to change [37]. The weak universality behavior is
often observed as a drift from Berezinskii-Kosterlitz-Thoules
(KT) exponents to discrete (i.e., Ising, Potts) transition
exponents [38,39] and may of course be related to the existence
of a large length scale. Note that in our case, we have
a correspondence to a six-state clock model arising from
a Hamiltonian with both nearest-neighbor and long-range
interactions. Individually, a six-state clock model with only the
former exhibits two KT transitions (not observed here) [40–43]
whereas mean-field studies for the case of long-range dipolar

TABLE I. Critical exponents for the continuous phase transition
analyzed with classical Monte Carlo.

1/ν α/ν β/ν γ /ν Universality class

θ ≈ π/5 1 0 1/8 7/4 Ising
θ = 0 1.05(3) 0.10(3) 0.25(2) 1.5(2) Unknown
θ = 1◦ 1.17(3) 0.32(3) 0.25(3) 1.5(3) Unknown
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interactions suggest a single second-order low-temperature
phase transition [44,45].

A low-temperature phase transition of pure dipoles on the
kagome lattice was recently observed in the O(N ) Monte Carlo
studies in Ref. [23]. The nature of the low-temperature spin
arrangement was however not resolved due to the high com-
putational cost of the O(N ) Monte Carlo algorithm inversely
proportional to temperature. We have investigated the system
at significantly lower temperatures where snapshots of the
spin configurations give clear evidence of ferrimagnetic order
at k0 = (0,0). At the same time, the temperature dependence
of the static structure factor does not indicate any intermediate
ordering between the low-temperature ferrimagnetic state and
the high-temperature disordered configuration. Together with
our LT and spin-wave studies this rather strongly suggests
that the ferrimagnetic k = (0,0) state is the low-temperature
configuration of the dipoles.

In the intermediate regime between two three-sublattice
phases (see Fig. 1) due to the existence of many metastable en-
ergy minima, our Monte Carlo simulations do not equilibrate
even for our extensive parallel setup. We thus cannot provide
a clear picture of physical quantities and leave a detailed
investigation of this possibly incommensurate regime for
future studies.

VII. DISCUSSION AND CONCLUSION

We have determined ground states, excitations, and phase
transitions of classical Heisenberg spins with exchange and
dipolar interactions on the frustrated kagome lattice.

Our first central result is a determination of the ground state
for classical Heisenberg dipoles. This is a ferrimagnetic three-
sublattice one. Note that dipolar interactions for Heisenberg
spins lead to ground states in two-dimensional systems effec-
tively confined on the plane of the lattice as a result of extensive
energy cost of any finite out-of-plane component [3,13]. In
our studies we indeed observe only in-plane spin states as
the ground states of the model. Therefore, the ground states
we find also apply to classical XY spins in the plane of the
lattice.

Next, for the AFM nearest-neighbor exchange we observe
that switching on a weak dipolar interaction lifts the extensive
ground-state degeneracy of the nearest-neighbor model which
exists here as it does in many other frustrated lattices, e.g., the
Archimedean pyrochlore lattice in three dimensions [46,47].
In both cases, the elementary simplices—triangles for kagome,
tetrahedra for pyrochlore—have a vanishing total dipole
moment in the nearest-neighbor ground state; upon adding
dipolar interactions, they enter a state where the quadrupole
moment of each simplex also vanishes [48]. However, for
stronger values of the dipolar interaction, the suppression of
the leading multipole moment no longer seems to be favorable.
The general principles governing the low-energy states on
individual clusters [49] and how they combine to form a large
lattice is an intriguing topic for future studies.

The concomitant line of phase transitions into the ferri-
magnetic state at various D’s appears to have exponents ν

and β change monotonically with the ratios β/ν and γ /ν

constant. This is known in the context of the weak universality
hypothesis and often appears in systems with n-fold anisotropy

where exponents appear to drift from KT values to those of
discrete continuous transitions. The presence of an enigmatic
slice of the phase diagram where our methods fail to produce
a reliable answer further focuses attention on the possibility
of the appearance of incommensurate states for delicately
balanced exchange and dipolar interactions.

Moreover, it seems rather remarkable that the flat band of
zero-energy excitations simply moves up in energy without
acquiring almost any dispersion. We do note that this phe-
nomenon is not so uncommon, after all, with a range of differ-
ent perturbations capable of producing a similar phenomenon,
a case in point being magnetoelastic interactions [50]. Also, a
recent preprint [51] noted the same phenomenon for a dipolar
magnet on the gadolinium gallium garnet (GGG) lattice,
which has historically played an immensely important role
in the experimental study of frustrated magnetic materials.
This may very well be one of the best experimental handles
on dipolar interactions, leading to an almost k-independent
resonance in inelastic neutron scattering [33,36] at a nonzero
energy scaling quite sensitively with the size of the dipolar
interaction ∼√

D.
The prospect for experimental work in this field is probably

better now than it has been for a very long time. In a large
number of systems the role of dipolar interactions is important
or even dominant [2,9,52,53]. There is significant progress in
fabrication of dipolar nanoarrays with a complex frustrated
lattice geometry [54,55] as well as recent progress on building
a dipolar system in optical lattices [4,56]. In addition recent
progress in fabricating thin films of frustrated materials [57,58]
suggests a possible route for the realization of dipolar films
with a kagome geometry. Here the possible candidates for a
film realization could be fcc kagome materials RhMn3, PtMn3,
and IrMn3 [59,60] where the latter one is commonly used in
thin-film technology [61,62]. RhMn3 and PtMn3 have the fcc
crystal structure [63–65] where magnetic Mn ions reside on
the cube faces and the nonmagnetic (Ir) ions site at the cube
corners. The magnetic ions can thus be viewed as being on
ABC stacked (111) kagome planes where each site has eight
NN ’s (four in plane, two to the plane above, and two to the
plane below). The (111) plane is perpendicular to the film plane
in thin-film applications, and thus one deals with a thin stack
of L kagome layers. Interestingly the bulk of IrMn3 exhibits
a long-range magnetic order below TN ≈ 960 K [60] which
is the three-dimensional manifestation of the 120◦ q = 0 spin
structure [66] one of the structures found in our studies to
be stabilized by weak dipolar interactions. Similar magnetic
order is also found in RhMn3 and PtMn3.

We hope that our work will provide motivation for a detailed
characterization of the nature and collective behavior of some
of these experimental systems.
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APPENDIX: LINEAR SPIN-WAVE THEORY

Our spin-wave analysis in the noncollinear magnetic sys-
tems starts with a rotation from the global z direction to the
local frame for each moment. Let S̃i(Rk) point along its local
z axis so that it is related to the spin operator defined in the
crystallographic frame via the rotation,

Si(Rk) = R−1
i S̃i(Rk), (A1)

where Ri is the corresponding rotation matrix. In the local
frame the Hamiltonian reads

H = −1

2

∑
i,j

∑
α,β

∑
k,l

J αβ

ij

(
Rkl

ij

)
S̃α

i (Rk)S̃β
j (Rl), (A2)

where the interaction matrix components transform as

Jij

(
Rkl

ij

) = R−1
i Jij

(
Rkl

ij

)
Rj . (A3)

Fourier transforming spin operators and the interaction matrix
gives

S̃α
i (Rk) = 1√

N

∑
k

S̃α
i (k) exp[ik · (Rk + ri)], (A4)

J ij

ij (k) =
∑
kl

J ij

ij

(
Rkl

ij

)
exp

[ − ik · Rkl
ij

]
, (A5)

where N is the number of underlying Bravais lattice points.
Thus, the Hamiltonian in reciprocal space is

H = −1

2

∑
i,j

∑
α,β

∑
k

S̃
β

i (k)J ij

ij (k)S̃β
j (−k). (A6)

The linearized Holstein-Primakoff transformation then gives

S̃x
i (k) =

√
S

2
[c†i (k) + ci(−k)],

S̃
y

i (k) = i

√
S

2
[c†i (k) − ci(−k)], (A7)

S̃z
i (k) =

√
NSδk,0 exp[−ik · ri] − 1√

N

∑
k′

c
†
i (k′)ci(k′ − k),

with boson operators [ci(k), c
†
j (k′)] = δi,j δk,k′ . Keeping only

terms up to second order, we obtain

H = H (0) + H (1) + H (2), (A8)

where

H (0) = −1

2
NS2

∑
i,j

J zz
ij (0),

H (1) = −S

√
NS

2

∑
i,j

[Fij (0)c†i (0) + F�
ij (0)c†i (0)], (A9)

H (2) = −1

2
S

∑
i,j

∑
k

[Aij (k)c†i (k)cj (k) + Bij (k)c†i (k)c†j (−k)

+B�
ij (k)ci(−k)cj (k) + A�

ij (k)ci(−k)c†j (−k)],

and

Fij (0) = J xz
ij (0) + iJ yz

ij (0),

Aij (k) = 1

2

{
J xx

ij (k) + J yy

ij (k) − i
[
J xy

ij (k) − J yx

ij (k)
]}

−
∑

γ

J zz
iγ (0)δi,j ,

Bij (k) = 1

2

{
J xx

ij (k) − J yy

ij (k) + i
[
J xy

ij (k) + J yx

ij (k)
]}

.

(A10)

The equilibrium condition that on every site the effective
magnetic field be parallel to the spin direction implies the
absence of linear terms. This is satisfied if

∑
j Fij (0) =

0. If the spin ground state is stable after the canonical
transformation the Hamiltonian can be written in diagonal
form

H = H (0) +
∑

k

∑
i

εi(k)

+
∑

k

∑
i

εi(k)[a†
i (k)ai(k) + a

†
i (−k)ai(−k)], (A11)

where ai(k) and a
†
i (k) are new boson operators and all the

eigenenergies εi(k) are real.
The specific heat is

Cv = β2

N

∑
k

∑
i

{εi(k)nB[εi(k)]}2 exp[βεi(k)], (A12)

where nB[εi(k)] = [εi(k) − 1]−1 is a Bose factor. The sublat-
tice magnetization M(T ) is obtained by taking into account
the role of quantum and thermal fluctuations,

M(T ) = S − �S − 1

N

∑
k

∑
i

[Q†Q]iinB[εi(k)], (A13)

where

�S = 1

2

(
1

N

∑
k

∑
i

[Q†Q]ii − 1

)
(A14)

is the zero-temperature reduction of classical spin polar-
ization and Q is the matrix diagonalizing the spin-wave
Hamiltonian.
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