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Nonlocal homogenization theory in metamaterials:
Effective electromagnetic spatial dispersion and artificial chirality
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We develop, from first principles, a general and compact formalism for predicting the electromagnetic response
of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up
to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective
medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated
by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the
metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the
equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce
a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically
analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that
even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows
pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the
reflection is either a 0◦ or 90◦ rotation around an axis orthogonal to the reflection plane. These two symmetric
situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example
admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter
is shown to be directly related to the metamaterial dielectric profile by quadratures.
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I. INTRODUCTION

Designing the electromagnetic response of an artificial
medium is one of the main targets of modern photonics,
and metamaterial science is probably the most important
research field based on such skill. Basically the design is
made possible by the physical fact that the electromagnetic
field, when traveling within a nonhomogeneous medium with
subwavelength features, is not able to follow its spatial
rapidly varying details so that the field only experiences the
effect of an averaged or effective medium. A number of
different homogenization approaches have been developed for
predicting the effective medium electromagnetic response and
they exploit different and suitable approximation schemes. The
simplest homogenization technique deals with the retrieval
of the effective parameters from the scattering properties
of the medium [1–8] and it is based on postulating the
equivalence between a complex metamaterial array and a
uniform slab of the same thickness with unknown constitutive
parameters. Another homogenization technique is the field-
averaging method which is based on the averaging of the
electromagnetic field in a metamaterial unit cell [9–13] and, in
analogy with the retrieval technique, it is a numerical method
for the determination of effective parameters. In addition
to numerical methods, mean-field homogenization theories
are available where the effective parameters are evaluated
from the distribution of the underlying metamaterial inclu-
sions. Examples of such techniques are those exploiting the
Lorentz [14], Clausius-Mossotti [15], and Maxwell-Garnett
[16] approximations, or based on multipolar expansion [17]
and the source-driven approach [18]. Spatial periodicity and
rapidly varying spatial scales are the two basic ingredients of
each metamaterial homogenization approach. Two different
homogenization techniques are obtained by assuming one of
these two ingredients and subsequently incorporating the other.

Therefore, starting from the photonic-crystal description of
the structure where the spatial periodicity is fully taken into
account, the effective medium response can be extracted in
the long-wavelength regime [19–25]. Conversely, the spatial
rapidly varying metamaterial features allow an asymptotic
multiscale analysis of the sample electromagnetic response
which combined with the array periodicity yields the effective
medium response [26–32].

Even though the metamaterial inclusions patterning has a
spatial scale much smaller than the radiation wavelength, such
two scales are generally not so different to allow a description
of the effective medium response only comprising effective
dielectric permittivity and magnetic permeability tensors. For
this reason, the effective medium generally shows an additional
nonlocal response [33–39] yielding spatial dispersion. It is
well known that the nonlocal first-order contribution (i.e.,
containing first-order spatial derivatives of the electric field) is
equivalent to a reciprocal bianisotropic response [40] whereas
the second-order contribution can be partially interpreted as
a correction to the effective magnetic permeability tensor
[40,41], a phenomenon which is known as artificial or
optical magnetism [9,42–45]. If the effective nonlocality is
weak, the effective medium response is adequately described
by reciprocal bianisotropic constitutive relations where the
chirality tensor accounts for the strength of magnetic and
electric polarization coupling. An efficient way for observing
the effect of electromagnetic chirality is considering meta-
materials whose underlying constituents’ patterning exhibits
chiral asymmetry; i.e., its mirror image cannot be superposed
onto it, and theoretical and experimental investigations have
been performed both in three-dimensional [6,46–48] and in
two-dimensional configurations [49–53]. Chiral metamaterials
have attracted a good deal of attention since they can yield giant
optical activity, asymmetric transmission [54,55], repulsive
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Casimir force [56], backward waves [57,58], and negative
refractive index [59–61].

In this paper we theoretically investigate the electromag-
netic response in the long-wavelength regime of a periodic
composite medium, whose inclusions are nonmagnetic, and
we carry out the analysis by including spatial dispersion up to
the second order. Specifically, by using the ratio η between the
composite periodicity and the wavelength as an asymptotic ex-
pansion parameter, we exploit a general multiscale technique
for separating the fast matter scale from the slow radiation
one and to extract the average effect of the composite on
the electromagnetic field. We fully develop the analysis up
to the second order in η and we find that the obtained effective
medium response has a η0 order reproducing the known
results of standard homogenization approaches and η1 and η2

orders accounting for first- and second-order effective medium
nonlocality, respectively. The effective dielectric permittivity
tensor (of rank two) arising from the zeroth order is obtained by
averaging over the metamaterial unit cell specific fast-varying
fields satisfying electrostatic-like equations. The main result
of the present paper is that this very simple procedure still
works for evaluating the two tensors (of ranks three and
four, respectively) describing effective medium nonlocality
up to the second order and the corresponding electrostatic-like
equations for the suitable fast-varying fields to be averaged
are here derived and discussed. As a consequence we obtain a
simple scheme for evaluating the effective medium response
up to the second order which is based on solving a small
number of Poisson equations on the metamaterial unit cell.
In particular we obtain a very compact expression for the
three-rank tensor describing first-order spatial nonlocality
which remarkably reveals that it can be evaluated by using
the same fast-varying fields appearing in the zeroth-order
description, thus avoiding the requirement of solving ad-
ditional electrostatic-like equations. Therefore the ensuing
procedure for deducing the medium response up to the first
order is remarkably simple and compact. For metamaterials
with negligible second-order spatial dispersion, we combine
the obtained description with the equivalence of first-order
spatial dispersion and reciprocal bianisotropic electromagnetic
response to obtain a compact and simple expression for the
effective medium chirality tensor. Using such expression we
investigate the impact of the composite patterning symmetry
on electromagnetic chirality. Specifically we obtain that if the
composite does not show chiral asymmetry, i.e., its mirror
image can be superposed on it, the effective chiral tensor
vanishes with two remarkable exceptions corresponding to
the specific cases where the rotation needed to superpose
the mirror image onto the structure is either a 0◦ or 90◦
rotation around an axis orthogonal to the reflection plane. In
these two situations the composite is geometrically achiral
and it nonetheless shows electromagnetic chirality whose
chiral tensor turns out to be that of a pseudo-chiral-omega
medium. Such general result encompasses in particular the
relevant cases of two-dimensional and recently considered
one-dimensional metamaterials showing chiral response. As
an example admitting full analytical description, we discuss
one-dimensional metamaterials whose single chirality parame-
ter is shown to be directly related to the metamaterial dielectric
profile by quadratures.

The paper is organized as follows. In Sec. II we discuss
our approach to the effective medium description of a periodic
composite in the long-wavelength regime including spatial
nonlocality. This is done examining the general multiscale
technique in Sec. II A and applying it to the zeroth, first,
and second orders in Secs. II B–II D, respectively. In Sec. III
we sum up the results obtained in Sec. II and we stress
the simplicity and compactness of the proposed approach. In
Sec. IV we consider media whose second-order contribution
to spatial nonlocal response can be neglected and we focus on
electromagnetic chirality. Specifically in Sec. IV A we adopt
the bianisotropic description of the medium to deduce a simple
expression for the chirality tensor, in Sec. IV B we examine
the relation between geometric and electromagnetic chirality
of metamaterials, and in Sec. IV C we specialize such general
analysis to the cases of two-dimensional and one-dimensional
chiral metamaterials. In Sec. V we focus on one-dimensional
chiral metamaterials and we obtain a closed-form expression
for the single parameter ruling electromagnetic chirality of
such media. In Sec. VI we draw our conclusions.

II. HOMOGENIZATION THEORY

A. Electromagnetic field multiscale analysis

Let us consider propagation of a monochromatic electro-
magnetic field through an unbounded metamaterial whose
underlying nonmagnetic inclusions (both metal and dielectric)
are arranged on a lattice whose period is much smaller than the
radiation wavelength λ. The electric E and magnetic H field
amplitudes satisfy Maxwell equations

∇ × E = iωμ0H, ∇ × H = −iωε0εrE, (1)

where time dependence e−iωt has been assumed and the
medium relative dielectric constant εr (r) is a periodic complex
function having the same periodicity of the metamaterial.
Due to the rapidly varying dielectric spatial modulation it is
convenient to introduce the parameter

η = d

λ
, (2)

where d is the largest of the lattice basis vector lengths.
Following the standard multiscale technique, it is possible
to exploit the condition η � 1 to develop an asymptotic
analysis of electromagnetic propagation. Accordingly, we
introduce the fast spatial coordinates R = r/η, regarded as
independent from the slow coordinates r. Any field f (r,R)
can be decomposed as f (r,R) = f (r) + f̃ (r,R) where the
overline denotes the spatial average over the metamaterial unit
cell, i.e.,

f (r) = 1

V

∫
C

d3Rf (r,R), (3)

where C is the unit cell and V is its volume scaled by η3, and
the tilde denotes the rapidly varying zero mean residual, i.e.,
f̃ = f − f . In our scheme the relative dielectric permittivity
depends on the fast coordinates only so that we set

ε(R) = εr (ηR), (4)

and it can be decomposed as ε(R) = ε + ε̃(R). Follow-
ing the general multiscale technique [62], we set for the
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electromagnetic field amplitudes A = E,H

A =
∞∑

n=0

[An(r) + Ãn(r,R)]ηn, (5)

or, in other words, the field amplitudes are expanded in
powers of η and, for each order, the average on the unit
cell (terms with an overbar and depending on the slow
coordinates only) is separated from the zero mean residual
(terms with a tilde and depending on both slow and fast
coordinates). After substituting Eq. (5) into Eqs. (1) and noting
that ∇ → ∇ + 1

η
∇R it is possible to extract equations for each

order and, for each of them, to separately balance the averaged
contributions and zero mean residuals. As a result, for the
averaged equations we obtain

∇ × En = iωμ0Hn, ∇ × Hn = −iωε0(εEn + εẼn), (6)

whereas for the zero mean residual equations we have

∇R × Ẽ0 = 0, ∇R × H̃0 = 0,

∇R × Ẽn+1 = −∇ × Ẽn + iωμ0H̃n,
(7)∇R × H̃n+1 = −∇ × H̃n − iωε0[(ε − ε)En

+ εẼn − εẼn],

where n = 0,1,2, . . . . Equations (6) do not contain the fast
coordinates R and are coupled to the rapidly varying field

orders only through the averaged term εẼn. Multiplying each
of Eqs. (6) for ηn and summing over n we obtain

∇ × E = iωμ0H, ∇ × H = −iωD, (8)

where E = ∑∞
n=0 Enη

n and H = ∑∞
n=0 Hnη

n is the overall
averaged electromagnetic field and

D = ε0εE +
∞∑

n=0

�Dn, (9)

where

�Dn = ε0εẼnη
n. (10)

Therefore the slowly varying electric and magnetic field
amplitudes satisfy the macroscopic Maxwell equations (8)
with the slowly varying displacement vector D of Eq. (9)
which has two contributions, the former due to the spatial
average of the dielectric profile and latter due to the dielectric
modulation. The latter contribution is obtained by summing the
spatial average of the rapidly varying fields Ẽn multiplied by
the dielectric permittivity arising from each order. Therefore,
in order to obtain an effective medium description of the
metamaterial response, such rapidly varying fields have to be
related to the slowly varying ones through Eqs. (7).

From the structure of Eqs. (7) we note that the fields Ẽn+1

and H̃n+1 have to be evaluated recursively from the knowledge
of Ẽn and H̃n. In order to accomplish this task it is convenient
to deduce equations involving the fields’ divergence. After
applying the operator ∇R· to both the third and fourth of
Eqs. (7) we obtain

∇ · (∇R × Ẽn) = −iωμ0∇R · H̃n,
(11)∇ · (∇R × H̃n) = iωε0∇R · [(ε − ε)En + εẼn],

where we have used the identity ∇R · (∇ × A) = −∇ · (∇R ×
A). Setting n = 0 and using the first and the second of Eqs.
(7), Eqs. (11) become

∇R · H̃0 = 0, ∇R · (εẼ0) = −(∇Rε) · E0. (12)

Relabeling n → n + 1 in Eqs. (11) and substituting the
expressions for ∇R × Ẽn+1 and ∇R × H̃n+1 from the third
and fourth of Eqs. (7) we obtain

∇R · H̃n+1 = −∇R · H̃n,

∇R · (εẼn+1) = −∇ · [(ε − ε)En + εẼn − εẼn] (13)

− (∇Rε) · En+1

for n = 0,1, . . . . Equations (7) together with Eqs. (12) and
(13) can be used to evaluate the rapidly varying fields of order
n + 1 once those of order n are known and these fields are
linearly dependent on the slowly varying fields. Therefore, the
discussed homogenization technique allows us to obtain an
effective medium description of the metamaterial response up
to the desired order in η. In this paper we will provide an
effective medium description up to the second order.

B. Zeroth order

From the second of Eqs. (7) and the first of Eqs. (12) we note
that the field H̃0 has no sources and therefore it vanishes. On
the other hand the first of Eqs. (7) and the second of Eqs. (12)
state that the field Ẽ0 is conservative and it is produced by
the spatial modulation of ε and the slowly varying field E0.
Therefore we have

H̃0 = 0, Ẽ0 = êi(∂ifj )E0j , (14)

where the sum is hereafter understood over repeated indices,
êi is the unit vector along the ith direction, ∂i is the partial
derivative along Xi = êi · R, E0j = êj · E0, and the functions
fj satisfy the equations

∇R · (ε∇Rfj ) = −∂j ε, (15)

where j = 1,2,3. Note that the source term of Eq. (15) has the
same metamaterial periodicity and its spatial average vanishes,
i.e., ∂j ε = 0, so that the fields fj are periodic functions with
the same metamaterial periodicity and they are defined up to
an arbitrary constant (see Appendix A). Inserting the second
of Eqs. (14) into Eq. (10) with n = 0 we obtain

�D0 = ε0êi�ε
(eff)
ij E0j , (16)

where �ε
(eff)
ij = ε∂ifj so that the zeroth-order contribution

to the displacement vector of the effective medium amounts
to a tensor correction to the average dielectric permittivity.
This result agrees with Ref. [28] where the authors consider
the homogenization of a two-dimensional structure up to the
zeroth order in η. Note that, as shown in Appendix B, the
rank-two tensor �ε

(eff)
ij satisfies the relation �ε

(eff)
ij = �ε

(eff)
ji

and this is the correct symmetry property of the correction
to the dielectric permittivity tensor, in agreement with the
Onsager symmetry principle [63]. After symmetrizing the pair
of indices ij , i.e., by setting �ε

(eff)
ij = 1

2 (�ε
(eff)
ij + �ε

(eff)
ji ), we

get

�ε
(eff)
ij = −δij ε + 1

2 (Qij + Qji), (17)
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where we have set

Qij = ε(δij + ∂ifj ), (18)

for later convenience. It is worth noting that the expression for
Qij only involves spatial derivatives of the fields fj so that,
at the zeroth order, the undefined additive constant in fj (see
Appendix A) does not affect the effective correction to the
permittivity tensor of Eq. (17). In addition, as a consequence
of Eq. (15) we have the divergenceless condition

∂iQij = ∂j ε + ∇R · (ε∇Rfj ) = 0. (19)

C. First order

In order to obtain the equations for the fast-varying fields
of the first order we use the third and fourth of Eqs. (7) and
Eqs. (13) with n = 0 thus getting

∇R · H̃1 = 0,

∇R × H̃1 = −iωε0[êi(Qij − Qij )E0j ],

∇R · (εẼ1) = −(Qij − Qij )
∂E0j

∂xi

− (∂iε)E1i ,

∇R ×
(

Ẽ1 − êifj

∂E0j

∂xi

)
= 0, (20)

where we have used Eqs. (14) and (18) and we have exploited

the evident relation ∇ × Ẽ0 = −∇R × (êifj
∂E0j

∂xi
). Note that

we use the symbol ∂/∂xi to label the partial derivative
operators with respect the slowly varying coordinates xi in
order to avoid confusion with ∂i = ∂/∂Xi which we use
for partial derivative operators with respect the fast-varying
coordinates.

The first and the second of Eqs. (20) provide the field H̃1

since

∇R · (êiQijE0j ) = (∂iQij )E0j = 0, (21)

where Eq. (19) has been used, is the compatibility condition
of the system. Therefore we set

H̃1 = 1

iωμ0
[∇R × (êiAij )]E0j , (22)

where the functions Aij satisfy the magnetostatic equations

∂iAij = 0, ∇2
RAij = −k2

0(Qij − Qij ), (23)

where k0 = ω/c, which have to be solved with the prescrip-
tions that Aij has the metamaterial periodicity and it is defined
up to an arbitrary constant (see Appendix A). Note that if Aij

satisfies the second of Eqs. (23) then

∇2
R(∂iAij ) = −k2

0∂iQij = 0, (24)

where Eq. (19) has been used and this implies that ∂iAij =
constant since the constant is the only harmonic function
which has the metamaterial periodicity. In addition ∂iAij

has vanishing average since it is the derivative of a periodic
function and therefore ∂iAij = 0. Therefore the first of
Eqs. (23) is automatically satisfied and does not have to be
additionally required.

The third and the fourth of Eqs. (20) provide the field Ẽ1

and it is easily seen that it can be expressed as

Ẽ1 = êi

[
(∂ifj )E1j + (δirfj + ∂iWrj )

∂E0j

∂xr

]
, (25)

where the functions Wrj satisfy the equation

∇R · (ε∇RWrj ) = −∂r (εfj ) − (Qrj − Qrj ). (26)

It is important noting that field Ẽ1 has, by its very definition,
zero average and, from Eq. (25), this forces the undefined
additive constant of fj to be set equal to zero, i.e., in such a
way that

fj = 0. (27)

Note that the source term of Eq. (26), on its right-hand side, has
vanishing spatial average so that the equation is structurally
equivalent to Eq. (15) and therefore Wrj has the metamaterial
periodicity and it is defined up to an additive constant (see
Appendix A). Inserting Eq. (25) into Eq. (10) with n = 1 we
obtain

�D1 = ε0êi

[
η�ε

(eff)
ij E1j + α

(eff)
ijr

∂E0j

∂xr

]
, (28)

where α
(eff)
ijr = ηε(δirfj + ∂iWrj ) so that the first-order contri-

bution to the displacement vector of the effective medium
provides a tensor correction to the average dielectric per-
mittivity which has the same structure as its zeroth-order
counterpart [see Eq. (16)] and a contribution which is linear
in the derivatives of the slowly varying zeroth-order electric
field. This former contribution is responsible for the first-order
nonlocal part of the effective medium dielectric response.

The rank-three tensor α
(eff)
ijr can be conveniently rewritten

as (see Appendix B)

α
(eff)
ijr = η(Qrifj − Qrjfi), (29)

which reveals that the nonlocal contribution of the effective
medium response up to the first order can be predicted directly
from the knowledge of the functions fi thus avoiding solving
Eqs. (26). Note that Eq. (29) also shows that

α
(eff)
ijr = −α

(eff)
jir , (30)

which is the correct antisymmetric property, in agreement with
the Onsager symmetry principle, for the third-order tensor
associated with first-order spatial nonlocality of the effective
medium response [63].

D. Second order

The equations for the fast-varying electric field of the
second order are obtained from the third of Eqs. (7) and the
second of Eqs. (13) with n = 1 so that

∇R · (εẼ2) = −(Qij − Qij )
∂E1j

∂xi

− (Pirj − Pirj )
∂2E0j

∂xi∂xr

−(∂iε)E2i ,

∇R × Ẽ2 = ∇R ×
[

êi

(
fj

∂E1j

∂xi

+ Wrj

∂2E0j

∂xi∂xr

+ AijE0j

)]
,

(31)
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where we have used Eqs. (22) and (25), we have set

Pirj = ε(δirfj + ∂iWrj ), (32)

and we have used the evident relation ∇ × Ẽ1 = −∇R ×
[êi(fj

∂E1j

∂xi
+ Wrj

∂2E0j

∂xi∂xr
)]. Note that since we are investigating

the effective medium response up to the second order η2, we are
not considering the equations for the second-order magnetic
field H̃2 since it provides contributions to the effective medium
response only of order η3.

It is easily seen that the field Ẽ2 satisfying Eqs. (31) is

Ẽ2 = êi

[
(∂ifj )E2j + (δirfj + ∂iWrj )

∂E1j

∂xr

+ (Aij + ∂ivj )E0j + (δisWrj + ∂iRsrj )
∂2E0j

∂xs∂xr

]
,

(33)

where the functions Rsrj and vj satisfy the equations

∇R · (ε∇RRsrj ) = −∂s(εWrj ) − (Psrj − Psrj ),
(34)∇R · (ε∇Rvj ) = −∂i(εAij ).

It is important to note that field Ẽ2 has, by its very definition,
zero average and, from Eq. (33), this forces the undefined
additive constants of Aij and Wrj to be set equal to zero, i.e.,
in such a way that

Aij = 0, Wrj = 0. (35)

Note that the source terms of Eqs. (34) have vanishing spatial
average so that such equations are structurally equivalent to
Eq. (15) and therefore Rsrj and vj have the metamaterial
periodicity and they are defined up to an arbitrary constant
(see Appendix A). Inserting Eq. (33) into Eq. (10) with n = 2
we obtain

�D2 = ε0êi

[
η2�ε

(eff)
ij E2j + ηα

(eff)
ijr

∂E1j

∂xr

+ η2γ
(eff)
ij E0j + β

(eff)
ijsr

∂2E0j

∂xs∂xr

]
, (36)

where γ
(eff)
ij = ε(Aij + ∂ivj ) and β

(eff)
ijsr =

η2

2 ε(δisWrj + δirWsj + ∂iRsrj + ∂iRrsj ). Note that in the

fourth term in Eq. (36), β
(eff)
ijsr has been symmetrized with

respect to the indices sr since it is contracted with the
symmetric mixed partial derivatives tensor. From Eq. (36) we
note that second-order contribution to the displacement vector
of the effective medium contains a correction to the effective
dielectric permittivity tensor and a correction to the first-order
nonlocal response which which have the same structures
as their zeroth- and first-order counterparts [see Eqs. (16)
and (28)]. In addition it provides a novel contribution to the
effective dielectric permittivity which is physically due to
the effect of the rapidly varying first-order magnetic field
and a contribution which is linear in the mixed second-order
derivatives of the slowly varying zeroth-order electric field,
the latter being responsible for the second-order nonlocal part
of the effective medium dielectric response.

The rank-two tensor γ
(eff)
ij and the rank-four tensor β

(eff)
ijsr can

be rewritten as (see Appendix B)

γ
(eff)
ij = 1

k2
0

(∂sAri)(∂sArj ),

β
(eff)
ijsr = η2

4
(QriWsj + QsiWrj + QrjWsi + QsjWri)

− η2

4
[fi(Prsj + Psrj ) + fj (Prsi + Psri)], (37)

so that the second-order contribution to the effective medium
response can be predicted without solving Eqs. (34). It is worth
noting that the relations γ

(eff)
ij = γ

(eff)
ji and β

(eff)
ijrs = β

(eff)
jirs hold

and they are the correct symmetric properties, in agreement
with the Onsager symmetry principle, for contributions to the
effective dielectric tensor and for the rank-four tensor associ-
ated with second-order spatial nonlocality [63], respectively.

III. NONLOCAL EFFECTIVE MEDIUM RESPONSE

A. Effective medium response up to the second order

The slowly varying electric and displacement fields up
the second order are E = Ei êi = E0 + E1η + E2η

2 and D =
Di êi = D0 + D1η + D2η

2 so that, inserting Eqs. (16), (28),
and (36) into Eq. (9) (whose series is truncated up to the second
order) and adding suitable higher order terms for restoring the
field Ei in the nonlocal contributions, we obtain

Di = ε0

(
ε

(eff)
ij Ej + α

(eff)
ijr

∂Ej

∂xr

+ β
(eff)
ijrs

∂2Ej

∂xr∂xs

)
, (38)

where, from Eqs. (17), (29), and (37), we have

ε
(eff)
ij = 1

2
(Qij + Qji) + η2

k2
0

(∂sAri)(∂sArj ),

α
(eff)
ijr = η(Qrifj − Qrjfi),

(39)

β
(eff)
ijsr = η2

4
(QriWsj + QsiWrj + QrjWsi + QsjWri)

− η2

4
[fi(Prsj + Psrj ) + fj (Prsi + Psri)],

where

Qij = ε(δij + ∂ifj ), Pirj = ε(δirfj + ∂iWrj ). (40)

In order to sum up the results obtained so far for clarity
purposes, we here report Eq. (15), the second of Eqs. (23),
and Eq. (26) for the fields fj , Aij , and Wrj necessary for
evaluating the effective medium tensors, namely

∇R · (ε∇Rfj ) = −∂j ε, ∇2
RAij = −k2

0(Qij − Qij ),

∇R · (ε∇RWrj ) = −∂r (εfj ) − (Qrj − Qrj ), (41)

whose solutions have to be determined with periodic boundary
conditions on the edges of the metamaterial unit cell and with
vanishing spatial average.

Equations (38), (39), and (41) are the main result of
this paper and they show that the effective dielectric tensor
ε(eff) and the tensors α(eff) and β(eff) describing first- and
second-order spatial dispersion can easily be evaluated after
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FIG. 1. (Color online) (a) Real and (b) imaginary part of the
permittivity profile ε(X,Y ) pertaining to the two-dimensional square
metamaterial unit cell used to model a metallic inclusion embedded
in a dielectric matrix. The imaginary part of the metallic inclusion
permittivity is 1.2 whereas its real part has been varied from −6 [the
case plotted in (a)] to 0.

solving Eqs. (41) for a given periodic dielectric profile
ε(R). In turn these equations share a common electrostatic
structure and therefore they can be faced through a number
of well-known theoretical and numerical schemes. In addition
we note that, to the best of our knowledge, the second and
the third of Eqs. (39) contain the simplest expressions for
the tensors α(eff) and β(eff) since they are easily obtained
by averaging suitable mesoscopic fields. We conclude that
the discussed homogenization scheme provides a particularly
simple way for predicting and analyzing, in addition to the
local dielectric response, the spatial dispersion properties of
an arbitrary tridimensional periodic dielectric medium in the
long-wavelength regime up to the second order [64].

B. Numerical examples

In order to illustrate how the proposed method actually
works for predicting the nonlocal response of a realistic
metamaterial, let us consider the case of parallel metallic wires

embedded in a dielectric matrix and periodically arranged on
a square lattice. Choosing the Z axis to be parallel to the
wires’ direction, we have modeled the considered composite
by means of the unit cell dielectric profile ε(X,Y ) (two-
dimensional metamaterial) reported in Fig. 1 and consisting of
a uniform background and three elliptical Gaussians suitably
arranged to resemble the wire transverse shape of an F. In our
calculations we have set εb = 2 for the dielectric background,
Im(εin) = 1.2 for the imaginary part of the metallic inclusion
permittivity, and we have varied its real part Re(εin) from −6 to
0. Following the above discussed procedure, we have evaluated
the fields fj , Aij , and Wrj by numerically solving Eqs. (41)
with periodic boundary conditions through a finite difference
scheme and subsequently evaluated the tensors of Eqs. (39) by
numerically averaging the relevant fields. In Figs. 2(a) and 2(b)
we plot the real and imaginary parts of the entries ε

(eff)
11 , ε

(eff)
22 ,

and ε
(eff)
33 of the effective permittivity tensor ε(eff) as functions of

Re(εin) and we note that they are all different; i.e., the effective
medium behaves as a biaxial crystal. In addition we note that
the more the real part of the metallic permittivity is negative
the more the considered permittivity tensor entries are lower
than the value of the background dielectric permittivity (which
is equal to 2). Note that, since the medium we are considering
is two-dimensional (i.e., ε does not depend on Z), from the first
of Eqs. (41) it is evident that f3 = 0 (see Appendix A) so that
ε

(eff)
33 = ε and this explains its linear dependence on Re(εin).

In Figs. 2(c) and 2(d) we plot the real and imaginary parts
of the entries α

(eff)
211 = −α

(eff)
121 , α

(eff)
212 = −α

(eff)
122 , α

(eff)
313 = −α

(eff)
133 ,

and α
(eff)
233 = −α

(eff)
323 of the effective tensor α(eff), normalized

by ηλ, as functions of Re(εin). Due to the symmetry of the
considered structure, all the other entries of the tensor α(eff)

vanish and we note that the nonsymmetrical shape of the
metallic inclusion yields a first-order nonlocal response whose
relevance increases as −Re(εin) increases. In Figs. 2(e) and
2(f) we plot the real and imaginary parts of the typical entries

β
(eff)
1111, β(eff)

1122, and β
(eff)
2211 of the effective tensor β(eff), normalized
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FIG. 2. Effective medium parameters evaluated from the dielectric profiles of Fig. 1. (a) Real and (b) imaginary part of diagonal entries
of the effective permittivity tensor ε(eff) as functions of Re(εin). (c) Real and (d) imaginary parts of the normalized nonvanishing entries of
the effective tensor α(eff) as functions of Re(εin). (e) Real and (f) imaginary parts of typical entries of the effective tensor β (eff) as functions of
Re(εin).
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FIG. 3. (Color online) Comparison between the results of the full-wave theory and of both nonlocal and local effective medium theories
for a layered medium stacked along the x axis. Real and imaginary parts of the normalized complex propagation constants λ
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kz of TE [panels

(a) and (b)] and TM [panels (c) and (d)] modes as functions of the normalized wave vector λ
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kx .

by (ηλ)2, as functions of Re(εin) and, in analogy to the other
two tensors, their impact is more effective for greater values
of −Re(εin). Note that the discussed analysis of the effective
tensors as functions of the parameter Re(εin) additionally
reveals that, even in the case where the permittivities of
the metallic inclusions and the dielectric background are
strongly dissimilar, the second-order nonlocal contribution to
the effective medium response is, in the considered example,
always negligible with respect the first-order one and this
assures the convergence of the performed asymptotic analysis
supporting the homogenization technique.

In order to check the predictions of the discussed nonlocal
homogenization theory we here consider a second example
of metamaterial which is a layered structure obtained by
repeating, along the X direction, metal-dielectric bilayers
whose dielectric profile ε(X) (one-dimensional metamaterial)
is

ε(X) =
{
ε1 0 < X/λ < f,

ε2 f < X/λ < (1 − f ), (42)

where ε1 and ε2 are the dielectric permittivities of the two
layers and f and (1 − f ) are their volume filling fractions. For
the numerical simulations we have chosen ε1 = −1.5 + 1.1i

(metal layer), ε2 = 1.5 + 0.1i (dielectric layer), f = 0.6,
and we have set η = 0.04 for the parameter ruling the
structure homogenization. Following the above discussed
procedure, we have solved Eqs. (41) with periodic boundary
conditions along the X axis and we have evaluated the tensors
of Eqs. (39) thus obtaining a diagonal effective dielectric
permittivity tensor ε

(eff)
ij with ε

(eff)
11 = 0.1235 + 4.7941i,

ε
(eff)
22 = ε

(eff)
33 = −0.3000 + 0.7000i, a vanishing rank-three

tensor α
(eff)
ijr , and a rank-four tensor β̃

(eff)
ijrs = 1

(λη)2 β
(eff)
ijrs

whose nonvanishing entries are β̃
(eff)
1111 = −0.1720 + 0.1269i,

β̃
(eff)
2222 = β̃

(eff)
3333 = −0.0058 − 0.0082i, β̃

(eff)
1122 = β̃

(eff)
1133 =

−0.0802 + 0.0716i, β̃
(eff)
1221 = β̃

(eff)
1331 = −0.0388 + 0.0727i,

and β̃
(eff)
2332 = −0.0029 − 0.0041i, together with the other

components obtained by permuting the first and/or the second
pair of indices. Due to its translational invariance along
the z axis, the structure admits transverse electric (TE) and
transverse magnetic (TM) modes given by

ET E = ei(kxx+kzz)Uy(x)êy,
(43)

ET M = ei(kxx+kzz)[Ux(x)êx + Uz(x)êz].

In the full-wave electromagnetic description these are the
Bloch modes of the one-dimensional photonic crystal (with
periodic amplitudes Ux,Uy,Uz), where kx is the Bloch wave
vector (in the first Brillouin zone) and kz is the mode
propagation constant which are joined by the well-known
dispersion relations of stratified media

TE : cos(kxd) = cos(k1xd1) cos(k2xd2) − 1

2

(
k2x

k1x

+k1z

k2z

)
× sin(k1xd1) sin(k2xd2),

TM : cos(kxd) = cos(k1xd1) cos(k2xd2) − 1

2

(
ε2k1x

ε1k2x

+ε1k2x

ε2k1x

)
× sin(k1xd1) sin(k2xd2), (44)

where d is the structure period, d1 = f d, d2 = (1 − f )d

are the layers’ thicknesses, and k1x =
√

( 2π
λ

)2ε1 − k2
z , k2x =√

( 2π
λ

)2ε2 − k2
z . In the effective medium description the

modes of Eqs. (43) are plane waves (with uniform ampli-
tudes Ux,Uy,Uz) whose wave vectors satisfy the dispersion
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relation

det

{
−(

k2
x + k2

z

)
δij + kikj +

(
2π

λ

)2

×[
ε

(eff)
ij + iα

(eff)
ijr kr − β

(eff)
ijrs krks

]} = 0. (45)

In Fig. 3 we compare the results of the full-wave theory
with those of the proposed nonlocal homogenization theory.
Specifically, for both TE [Figs. 3(a) and 3(b)] and TM
[Figs. 3(c) and 3(d)] modes, we plot for various real kx the
real and imaginary parts of the complex propagation constants
kz obtained from both Eqs. (44) (continuous line) and from
Eq. (45) (continuous line with circles). In addition we also plot,
for comparison purposes, the complex propagation constants
kz obtained from Eq. (45) with α

(eff)
ijr = 0 and β

(eff)
ijrs = 0 (dashed

line) which represent the results of the purely local effective
medium theory. From Figs. 3(a) and 3(b) we note that, for TE
modes, the predictions of the full-wave theory coincide with
those of both the nonlocal and local effective medium theory.
On the other hand, from Figs. 3(c) and 3(d) we note that, for
TM modes, the results of nonlocal effective medium theory
very well reproduce those of the full-wave theory whereas
the purely local theory is inadequate to reproduce the correct
electromagnetic behavior of the structure. This analysis reveals
the crucial role generally played by the nonlocal contributions
to the effective medium response.

IV. ELECTROMAGNETIC CHIRALITY

A. Reciprocal bianisotropic metamaterial response

Let us focus here on the situation where the contributions
of order η2 in Eq. (38) can be neglected. It is well known
that in this case the effective medium first-order nonlocal
response is equivalent to a reciprocal bianisotropic response
which is referred to as an electromagnetic chirality [40]. In
order to evaluate the chiral tensor let us note that Maxwell
equations for the effective medium are left invariant by the
transformation

E′ = E, B′ = B, D′ = D + ∇ × V,
(46)

H′ = H − iωV,

where V is an arbitrary vector field, since Eqs. (8), after
defining B = μ0H, can be rewritten as

∇ × E′ = iωB′, ∇ × H′ = −iωD′. (47)

This shows at the same time that the fields D and H are not
uniquely defined (as opposed to the fields E and B) and that,
for each possible vector field V, the constitutive relations

D′ = êiε0

(
ε

(eff)
ij E′

j + α
(eff)
ijr

∂E′
j

∂xr

)
+ ∇ × V,

B′ = μ0(iωV + H′) (48)

characterize the electromagnetic behavior of the effective
medium. Choosing V = êi( 1

ωcμ0
κijEj ) for the arbitrary vector

field V, where

κij = k0
(− 1

2εnmiα
(eff)
nmj + 1

4εnmqα
(eff)
nmqδij

)
(49)

and εijk is the Levi-Civita tensor, and exploiting the crucial
antisymmetric property α

(eff)
ijr = α

(eff)
jir , Eqs. (48) become (see

Appendix C)

D′ = ε0ε
′(eff)E′ − i

c
κT H′, B′ = i

c
κE′ + μ0H′, (50)

where ε′(eff) = ε(eff) + κT κ . Equations (50) show that the
effective medium has a reciprocal magnetoelectric coupling
or electromagnetic chirality described by chiral tensor κ of
Eq. (49). Inserting the second of Eqs. (39) into Eq. (49) we
obtain

κij = ηk0
[
εimj εfm + (

εimnδjq + 1
2εmqnδij

)
εfm∂qfn

]
. (51)

This relation is among the main results of the present paper and
to the best of our knowledge it is the simplest expression for
the effective medium chiral tensor since it is directly evaluated
using the functions fi obtained by solving the first of Eqs. (41).
Since we are dealing with a very general and tridimensional
situation it is convenient to express the chirality tensor as [65]

κ = 1
3 Tr(κ)I + N + J, (52)

where Tr(κ) = κii is the trace of the chirality tensor, I is
the identity tensor, N is a symmetric trace-free tensor, and
J is an antisymmetric tensor. Such decomposition allows
us to classify the reciprocal bianisotropic response [40] of
the effective medium and the three main classes are Tr(κ) �=
0,N �= 0,J = 0 for chiral media, Tr(κ) = 0,N �= 0,J = 0 for
pseudochiral media, and Tr(κ) = 0,N = 0,J �= 0 for omega
media.

For the chirality tensor of Eq. (51) we obtain after some
straightforward algebra

Tr(κ) = ηk0
(

1
2εmqn

)
εfm∂qfn,

Nij = ηk0
[

1
2 (εimnδjq + εjmnδiq) + 1

3εmqnδij

]
εfm∂qfn,

Jij = ηk0
[
εimj εfm + 1

2 (εimnδjq − εjmnδiq)
]
εfm∂qfn. (53)

B. Spatial symmetries and chirality tensor structure

A structure is chiral if it is distinguishable from its mirror
image or, in other words, if its mirror image cannot be rigidly
superposed onto it. If the structure is not chiral it is necessarily
invariant under a set of geometrical symmetries which affect
the structure of the chirality tensor κ . In order to investigate the
relation between geometrical and electromagnetic chirality it
is necessary to identify the symmetries of the dielectric profile
which either entail the vanishing or select a specific structure
of the chiral tensor.

Let us suppose that the metamaterial is achiral or, in other
words, that the mirror image of the dielectric profile through a
plane orthogonal to the unit vector ŝ can be rigidly superposed
onto the original profile through the composition of a rotation
of an angle θ around the unit vector r̂ and a translation T. This
implies that the dielectric permittivity is left invariant by the
composition of these three transformations or

ε(R′) = ε(R), (54)

where R′ = X′
i êi is the image of the point R = Xi êi obtained

through the spatial transformation

X′
i = Ti + R̃ijXj , (55)
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ŝ

(a) r̂ · ŝ = 0 or θ = 0

ψ =
π

2
,
3π
2

û(3)

û(2)

û(1)θ

ŝ
r̂

(b) sin2(θ/2)(r̂ · ŝ)2 =
1
2

ψ

û(2)

û(3)

û(1)θ

ŝ
r̂

(c) otherwise

FIG. 4. A reflection (dotted lines) through a plane orthogonal to
the unit vector ŝ followed by a rotation (circular arrows) of an angle θ

around the unit vector r̂ is equivalent to a reflection through the plane
spanned by the unit vectors û(1) and û(2) and a rotation around the
unit vector û(3) of an angle ψ such that cos ψ = 1 − 2 sin2( θ

2 )(r̂ · ŝ)2.
If the medium dielectric profile is invariant under the composition of
the reflection and the rotation, three different situations are relevant.
(a) The rotation is trivial θ = 0 or r̂ · ŝ = 0 so that ψ = 0. (b) The
rotation and the reflection are such that sin2( θ

2 )(r̂ · ŝ)2 = 1
2 so that

ψ = π

2 or ψ = 3π

2 . (c) Conditions (a) and (b) are not satisfied. In
case (c) the chirality tensor vanishes whereas in cases (a) and (b) it
has a reduced structure.

where Ti are the components of the translation vector and
R̃ij = RikSkj (or in matrix form R̃ = RS) is the improper
rotation obtained by composing the reflection S and the
rotation R whose matrices are

Snm = δnm − 2snsm,
(56)

Rnm = rnrm + (δnm − rnrm) cos θ + εnkmrk sin θ.

In Appendix D we fully investigate the way the symmetry
of Eq. (54) affects electromagnetic chirality and as a result
we obtain that such symmetry implies the vanishing of the
chirality tensor apart from two specific situations where it
imposes restrictions on the chirality tensor structure. With
reference to Fig. 4, these cases are (a) the rotation is trivial
θ = 0 or the rotation unit vector is orthogonal to the reflection
unit vector r̂ · ŝ = 0; (b) the rotation and the reflection are such
that sin2( θ

2 )(r̂ · ŝ)2 = 1
2 .

In order to discuss such symmetric situations where the
chirality tensor does not wholly vanish it is convenient to
consider the orthonormal basis

û(1) = û(2) × û(3), û(2) = û(3) × r̂√
1 − (r̂ · û(3))2

,

(57)

û(3) = − sin
(

θ
2

)
ŝ × r̂ + cos

(
θ
2

)
ŝ√

1 − sin2
(

θ
2

)
(r̂ · ŝ)2

.

Note that for θ = 0 the rotation is the identity transformation
so that the rotation vector r̂ is in this case an arbitrary unit
vector.

In case (a), the dielectric profile is invariant under a pure
reflection through a plane orthogonal to ŝ, or a suitable rotation
around an axis belonging to the reflection plane is in order for
restoring the dielectric profile after the reflection. As is shown
in Appendix D, in this case the unit vectors of Eqs. (57) are
such that R̃û(1) = û(1), R̃û(2) = û(2), and R̃û(3) = −û(3) so that
the improper rotation R̃ is a pure reflection through the plane
spanned by the unit vectors û(1) and û(2) and a rotation around
û(3) of an angle ψ = 0◦. In other words case (a) deals with
the situation where the medium admits a plane of reflection
symmetry. In this case the structure of the chirality tensor
allowed by this symmetry is (see Appendix D)

κ = η(κ (13)û(1)û(3)T + κ (31)û(3)û(1)T + κ (23)û(2)û(3)T

+ κ (32)û(3)û(2)T ), (58)

where κ (13),κ (31),κ (23),κ (32) are four independent complex
scalars. From Eq. (58) it is evident that Tr(κ) = 0 so that
if the metamaterial admits a plane of reflection symmetry it is
a pseudo-chiral-omega medium.

In case (b) the medium profile is restored, after the reflec-
tion, by a specific rotation in such a way that sin2( θ

2 )(r̂ · ŝ)2 =
1
2 . As is shown in Appendix D, in this case the unit vectors
of Eqs. (57) are such that R̃û(1) = û(2), R̃û(2) = −û(1), and
R̃û(3) = −û(3) so that the improper rotation R̃ is a reflection
through the plane spanned by the unit vectors û(1) and û(2) and
a rotation around the unit vector û(3) of an angle ψ = 90◦. In
other words case (b) deals with the situation where the medium
is left invariant (modulus a translation) by a reflection through
a plane and a 90◦ rotation around an axis orthogonal to such
plane. In this case the structure of the chirality tensor allowed
by this symmetry is

κ = η[κ (s)(û(1)û(2)T + û(2)û(1)T ) + κ (a)(û(1)û(1)T

− û(2)û(2)T )], (59)

where κ (s),κ (a) are two independent complex scalars. From
Eq. (59) it is evident that Tr(κ) = 0 so that if the metamaterial
has the symmetry of case (b) it is pseudo-chiral-omega
medium.

We conclude that if the medium can be superposed to its
mirror image the chirality tensor vanishes unless the rotation
needed to restore the dielectric profile is around an axis
orthogonal to the reflection plane and the rotation angle is
either 0◦ or 90◦ and in both cases it is a pseudo-chiral-omega
medium.
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C. Two-dimensional and one-dimensional electromagnetic
chirality

As an application of the above symmetry analysis let us
consider two relevant situations where the medium is geo-
metrically achiral and has a chiral electromagnetic response
nonetheless.

The first situation is that of a medium which is invariant
under translations along an axis, say the Z axis, so that its
underlying dielectric profile is ε = ε(X,Y ). This implies that
the structure is left invariant by a reflection though the plane
Z = 0 followed by a rotation of zero angle θ = 0 around any
axis orthogonal to the Z axis, so that we set ŝ = êz and r̂ = êx .
Using such unit vectors, the basis vectors of Eqs. (57) become

û(1) = êx, û(2) = êy, û(3) = êz, (60)

so that since the medium symmetry is of the kind (a) (see the
last paragraph), from Eqs. (58) we have

κ =
⎛⎝ 0 0 ηκ (13)

0 0 ηκ (23)

ηκ (31) ηκ (32) 0

⎞⎠ (61)

so that, in agreement with the considerations of the last
paragraph, the metamaterial behaves as a pseudo-chiral-
omega medium. Since such geometrically achiral medium is

translationally invariant we conclude that Eq. (61) contains
the most general expression for the chirality tensor of a
two-dimensional medium; i.e., it describes two-dimensional
electromagnetic chirality. This situation also encompasses
the case of a planar metamaterial [49–53] (i.e., a very thin
metamaterial sheet) since, after the reflection through a plane
parallel to the medium plane, the sheet can be made to
superpose the original sheet through a zero-angle rotation and
a translation (which does not affect the chiral tensor structure)
along the axis normal to the medium plane.

The second situation is that of a medium which is invariant
under rotations around an axis, say the Z axis, so that
its underlying dielectric profile is ε = ε(R,Z), where R =√

X2 + Y 2. This implies that the structure is left invariant by a
reflection though any plane containing the Z axis followed by
a rotation of zero angle θ = 0◦ around the Z axis. Therefore
we set ŝ = cos φêx + sin φêy , where φ is an arbitrary angle,
and r̂ = êz. Using such unit vectors, the basis vectors of
Eqs. (57) become

û(1) = êz, û(2) = sin φêx − cos φêy,
(62)

û(3) = cos φêx + sin φêy,

so that since the medium symmetry is of the kind (a) (see the
last paragraph), from Eqs. (58) we have

κ = η

⎛⎜⎝ (κ (23) + κ (32)) sin φ cos φ κ (23) sin2 φ − κ (32) cos2 φ κ (31) cos φ

−κ (23) cos2 φ + κ (32) sin2 φ −(κ (23) + κ (32)) sin φ cos φ κ (31) sin φ

κ (13) cos φ κ (13) sin φ 0

⎞⎟⎠ , (63)

where κ (13)(φ), κ (31)(φ), κ (23)(φ), and κ (32)(φ) are functions
of φ. The entries of the chirality tensor of Eq. (63) cannot
depend on the arbitrary angle φ so that imposing that each κij

is constant we get κ (13) = κ (31) = 0 and κ (23) = −κ (32) = κ0

and therefore Eq. (63) yields

κ =
⎛⎝ 0 ηκ0 0

−ηκ0 0 0
0 0 0

⎞⎠ . (64)

Therefore, a rotationally invariant metamaterial around the
Z axis behaves as an omega medium whose chirality tensor
depends on a single parameter κ0. This situation encompasses
the case of a one-dimensional metamaterial for which ε =
ε(Z) so that we conclude that Eq. (64) contains the most
general expression for the chirality tensor of a one-dimensional
metamaterial; i.e., it describes one-dimensional electromag-
netic chirality.

V. ELECTROMAGNETIC CHIRALITY
OF ONE-DIMENSIONAL METAMATERIALS

The description of the effective medium response, i.e.,
the evaluation of the tensors of Eqs. (39), is achieved by
solving Eqs. (41) for a specific dielectric distribution and
numerical integration is usually unavoidable. However there
is a situation where electromagnetic chirality can be fully

discussed without resorting to numerical analysis and it is
the case of one-dimensional metamaterials.

Let us consider a metamaterial whose dielectric profile is
such that εr (z) = εr (z + d); i.e., it is a periodic function of
the single Cartesian coordinate z, whose period d is such that
d � λ for the homogenization theory to be applicable. After
introducing the fast spatial coordinates (X,Y,Z) = (x,y,z)/η,
where η = d/λ is the homogenization parameter, the dielectric
profile ε(Z) = εr (ηZ) of Eq. (4) is a periodic function of period
λ. In Appendix E we show that for such dielectric distribution
ε(Z), the first of Eqs. (41) can be analytically solved so that the
effective permittivity of the first of Eqs. (39) and the chirality
tensor of Eq. (51) can be analytically evaluated and they are

ε(eff) =
⎛⎝ε 0 0

0 ε 0
0 0 [ε−1]−1

⎞⎠ , κ =
⎛⎝ 0 ηκ0 0

−ηκ0 0 0
0 0 0

⎞⎠ ,

(65)

where

κ0 = [ε−1]−1 2π

λ2

∫ λ

0
dZ1

∫ λ

0
dZ2

ε(Z1)

ε(Z2)

[(
Z1 − Z2

λ

)
− 1

2
sign

(
Z1 − Z2

λ

)]
. (66)

The effective dielectric tensor in the first of Eqs. (65)
coincides with the well-known result of the zeroth-order
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homogenization theory of layered media. The structure of
the chirality tensor in the second of Eqs. (65) shows that
the effective medium behaves as an omega medium and this
agrees with the discussion of the last paragraph, see Eq. (64),
since the considered one-dimensional medium is in particular
rotationally invariant around the Z axis. It is also remarkable
that the parameter κ0 of Eq. (66) governing electromagnetic
chirality in the present case can be directly evaluated from the
dielectric profile by quadratures.

VI. CONCLUSIONS

To sum up we have investigated the electromagnetic
response of a metamaterial with nonmagnetic inclusions by
a multiscale analysis and we have included spatial nonlocality
up to the second order. The resulting description is very simple
and compact since the three tensors characterizing the effective
medium response are shown to be averages (on the unit cell)
of suitable fast-varying fields which, in turn, are obtained
from the dielectric distribution by solving a small number of
electrostatic equations. If the second-order nonlocal response
can be neglected, the medium response can be recast into the
standard bianisotropic form and this has allowed us to obtain
a compact expression for the chirality tensor of the effective
medium. We have exploited our approach to investigate the
relation between geometrical and electromagnetic chirality
by proving that the latter is shown, in addition to chiral
media, even by an achiral medium whose mirror image can
be superposed onto it by means of a 0◦ or 90◦ rotation
around an axis orthogonal to the reflection plane. We have
deduced, as specific relevant examples, the chirality tensor
structure of two-dimensional and one-dimensional media and,
for the former, we have obtained a closed form expression
for the chirality parameter which can be evaluated from the
inclusions’ dielectric profile by means of quadratures.
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APPENDIX A: THE ELECTROSTATIC EQUATION

Let us consider the equation

∇R · (ε∇R�) = �, (A1)

whose source term �(R) has the metamaterial periodicity with
vanishing spatial average � = 0 and whose solution �(R) is
required to have the metamaterial periodicity. Equation (A1)
can be written as L̂� = �, where the operator L̂ is

L̂ = ∇R · (ε∇R), (A2)

so that solving Eq. (A1) amounts to the problem of inverting the
operator L̂ on the space of functions having the metamaterial
periodicity.

Note that the relation ∇R · (ε�∗
0 ∇R�0) = ε|∇R�0|2 +

�∗
0 L̂� holds for any function �0 and therefore, if �0

satisfies the homogeneous equation L̂�0 = 0 and it has the

metamaterial periodicity, we have∫
C

d3Rε|∇R�0|2 =
∫

C

d3R∇R · (ε�∗
0 ∇R�0)

=
∫

∂C

dSε�∗
0 n̂ · ∇R�0 = 0, (A3)

where Green’s theorem has been used together with the
periodicity of both ε and �0. The real and imaginary parts
of this equation read∫

C

d3RRe(ε)|∇R�0|2 = 0,

(A4)∫
C

d3RIm(ε)|∇R�0|2 = 0,

and therefore, since we are considering dielectrics without gain
for which Im(ε) > 0, we obtain ∇R�0 = 0 or �0 = constant.
This implies that the function � ′ = � + �0 satisfies Eq. (A1)
and the boundary conditions if �(R) does and therefore
Eq. (A1) and the periodic boundary conditions determine �

up to an arbitrary constant.
Setting ε = 1 in Eq. (A1) we obtain the Poisson equation

∇2
R� = � for which the above considerations hold so that �

has to be determined with the metamaterial periodicity up to
an arbitrary constant.

APPENDIX B: TENSOR PROPERTIES OF THE
EFFECTIVE MEDIUM RESPONSE

A straightforward calculation shows that the relation

�L̂� − �L̂� = ∇R · [ε(�∇R� − �∇R�)], (B1)

where L̂ is the operator defined in Eq. (A2), holds for any
pair of functions � and � so that, if both these functions have
the metamaterial periodicity after using Green’s theorem we
obtain ∫

C

d3R�L̂� =
∫

C

d3R�L̂�. (B2)

Let us consider a function �(R) which has the metamaterial
periodicity. The average ε∂i� can be rewritten as

ε∂i� = 1

V

∫
C

d3Rε∂i� = − 1

V

∫
C

d3R�∂iε, (B3)

where integration by parts and the periodicity of both ε and �

have been used. Using Eq. (15) we obtain

ε∂i� = 1

V

∫
C

d3R�L̂fi (B4)

so that Eq. (B2) with � = fi yields

ε∂i� = 1

V

∫
C

d3RfiL̂�. (B5)

Using Eq. (B5) with � = fj , the rank-two tensor �ε
(eff)
ij =

ε∂ifj can be written as

�ε
(eff)
ij = 1

V

∫
C

d3RfiL̂fj = 1

V

∫
C

d3Rfj L̂fi, (B6)

where Eq. (B2) has been used and therefore �ε
(eff)
ij = �ε

(eff)
ji .
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Setting � = Wrj , Eq. (B5) becomes

ε∂iWrj = 1

V

∫
C

d3RfiL̂Wrj

= − 1

V

∫
C

d3Rfi[∂r (εfj ) + Qrj ], (B7)

where Eqs. (26) and (18) have been used together with the
property fi = 0. After integrating by parts the first term we
get

ε∂iWrj = ε(∂rfi)fj − Qrjfi. (B8)

Therefore the rank-three tensor α
(eff)
ijr = ηε(δirfj + ∂iWrj )

becomes

α
(eff)
ijr = η(Qrifj − Qrjfi), (B9)

where use has been made of the fact that fi = fj = 0.
Setting � = vj , Eq. (B5) becomes

ε∂ivj = 1

V

∫
C

d3RfiL̂vj = 1

V

∫
C

d3RArjε∂rfi, (B10)

where the second of Eqs. (34) has been used and integration
by parts has been performed. Noting that Eq. (18) and the
second of Eqs. (23) can be combined to yield ε∂rfi = −εδri −
1
k2

0
∇2

RAri + Qri , we obtain

ε∂ivj = 1

V

∫
C

d3RArj

(
− εδri − 1

k2
0

∇2
RAri

)
= −εAij + 1

k2
0

∇RAri · ∇RArj , (B11)

where the property Arj = 0 has been used and integration by
parts has been performed. Therefore, for the rank-two tensor
γ

(eff)
ij = ε(Aij + ∂ivj ) we have

γ
(eff)
ij = 1

k2
0

(∂sAri)(∂sArj ). (B12)

Setting � = Rrsj , Eq. (B5) becomes

ε∂iRrsj = 1

V

∫
C

d3RfiL̂Rrsj = 1

V

∫
C

d3R[Wsj (ε∂rfi)]

− 1

V

∫
C

d3R[ε(fi∂rWsj + δrsfifj )], (B13)

where the first of Eqs. (34) and (32) have been used together
with the property fi = 0 and an integration by parts has been
performed. From Eq. (26) we have ε∂rfi = −εδri − ∂r (εfi) +
Qri − L̂Wri , which inserted in Eq. (B13), after using the
property Wsj = 0 and integrating by parts, yields

ε∂iRrsj = 1

V

∫
C

d3R[ε(δrsfifj + δriWsj ) − Wsj L̂Wri].

(B14)

With the help of this equation, the fourth-rank tensor β
(eff)
ijsr =

η2

2 ε(δisWrj + δirWsj + ∂iRsrj + ∂iRrsj ) becomes

β
(eff)
ijsr = −η2

V

∫
C

d3R(εδrsfifj )

− η2

2V

∫
C

d3R(Wsj L̂Wri + Wrj L̂Wsi). (B15)

Using Eq. (B2) it is straightforward to show that β
(eff)
ijsr = β

(eff)
jisr ;

i.e., the tensor is symmetric with respect to the pair of
indices ij . After symmetrizing these indices, i.e., setting
β

(eff)
ijsr = 1

2 (β(eff)
ijsr + β

(eff)
jisr ), and using Eq. (26), we obtain

β
(eff)
ijsr = η2ε(−δrsfifj )

+ η2

4
(QriWsj + QsiWrj + QrjWsi + QsjWri)

− η2

4
ε(fi∂rWsj + fi∂sWrj + fj∂rWsi + fj∂sWri),

(B16)

or, equivalently,

β
(eff)
ijsr = η2

4
(QriWsj + QsiWrj + QrjWsi + QsjWri)

− η2

4
[fi(Prsj + Psrj ) + fj (Prsi + Psri)]. (B17)

APPENDIX C: EFFECTIVE MEDIUM
ELECTROMAGNETIC CHIRALITY

In order to show that Eqs. (50) hold, let us first prove that
the relation

α
(eff)
ijr + 1

k0
εirkκkj = 1

k0
εjrkκki (C1)

is satisfied. Using Eq. (49) we have

α
(eff)
ijr + 1

k0
(εirkκkj − εjrkκki)

= α
(eff)
ijr + 1

2

(−εirkεnmkα
(eff)
nmj + εjrkεnmkα

(eff)
nmi

)
− 1

2
εnmqα

(eff)
nmqεijr (C2)

which, after exploiting the relation εabkεcdk = δacδbd − δadδbc

and the antisymmetric property α
(eff)
ijr = α

(eff)
jir , becomes

α
(eff)
ijr + 1

k0
(εirkκkj − εjrkκki)

= α
(eff)
ijr + α

(eff)
rij + α

(eff)
jri − 1

2
εnmqα

(eff)
nmqεijr . (C3)

The tensor Fijr = α
(eff)
ijr + α

(eff)
rij + α

(eff)
jri is completely antisym-

metric since, using again the antisymmetric property α
(eff)
ijr =

α
(eff)
jir , it is straightforward proving that Fijr = −Fjir =

−Firj = −Frji . Since every completely antisymmetric three-
rank tensor in a tridimensional space is proportional to
the Levi-Civita tensor, the relation Fijr = Fεijr holds and
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the scalar F is given by F = 1
6εnmqFnmq since the relation

εnmqεnmq = 6 holds. Using the antisymmetric property α
(eff)
ijr =

α
(eff)
jir we obtain F = 3εnmqα

(eff)
nmq so that

α
(eff)
ijr + α

(eff)
rij + α

(eff)
jri = Fijr = 1

2εnmqα
(eff)
nmqεijr (C4)

which, inserted into Eq. (C3), shows that Eq. (C1) is satisfied.
Inserting the expression V = êi( 1

ωcμ0
κijEj ) into the second

of Eqs. (48) and using the relation E′ = E we obtain

B′ = êi

(
i

c
κijE′

j

)
+ μ0H′, (C5)

which coincides with the second of Eqs. (50). Inserting the
expression V = êi( 1

ωcμ0
κijEj ) into the first of Eqs. (48) and

using the relation E′ = E we obtain

D′ = êiε0

[
ε

(eff)
ij E′

j +
(

α
(eff)
ijr + 1

k0
εirkκkj

)
∂E′

j

∂xr

]
= êiε0

[
ε

(eff)
ij E′

j − 1

k0
κkiεkrj

∂E′
j

∂xr

]
, (C6)

where Eq. (C1) has been used together with the antisymmetry
of the Levi-Civita tensor. Exploiting the first of Eqs. (47) this
equation becomes

D′ = êiε0
(
ε

(eff)
ij E′

j − icκkiB ′
k

)
(C7)

which, using Eq. (C5), yields

D′ = êi

[
ε0

(
ε

(eff)
ij + κkiκkj

)
E′

j − i

c
κkiH ′

k

]
, (C8)

which in turn coincides with the first of Eqs. (50).

APPENDIX D: STRUCTURE OF THE CHIRALITY
TENSOR IMPOSED BY SYMMETRY

In order to discuss the impact of the symmetry of the
dielectric profile on the chirality tensor, it is essential to
investigate preliminarily the transformation rule of the fields
fi induced by the dielectric symmetry. Differentiating the
permittivity ε(R′) with respect to X′

i and using Eq. (54) we
obtain

(∂iε)R′ = R̃ij (∂j ε)R, (D1)

where R̃ij = RikSkj . Let us now consider the functions

f ′
i (R) = fi(R′) (D2)

for which, using again Eq. (54), we have

[∇R · (ε∇Rf ′
i )]R = ∂

∂Xn

[
ε(R′)

∂fi(R′)
∂Xn

]
= R̃rnR̃sn[∂r (ε∂sfi)]R′

= [∇R · (ε∇Rfi)]R′, (D3)

where the relation R̃rnR̃sn = δrs , stating the orthogonality of
the improper rotation R̃, has been used. Combining Eq. (D3),
the first of Eqs. (41) evaluated at R′, and Eq. (D1) we obtain

∇R · [ε∇R(R̃ij f
′
i )] = −∂j ε, (D4)

which structurally coincides with the first of Eqs. (41) and
which shows, by the uniqueness of its solution, that R̃ij f

′
i =

fj . From Eq. (D2), we thus conclude that the symmetry of the
dielectric permittivity entails for the functions fi the property

fi(R′) = R̃ij fj (R). (D5)

From Eq. (51) we note that the chirality tensor depends
on the rank-one tensor εfm and rank-three tensor εfm∂qfn

whose geometrical properties have to be separately considered.
Using this equation, exploiting the fact that the improper
rotation is orthogonal (so that |det(R)| = 1), and noting that
the transformation in Eqs. (55) superposes a metamaterial unit
cell C onto another metamaterial unit cell C ′, we have

εfm = 1

V

∫
C ′

d3R′ε(R′)fm(R′)

= 1

V

∫
C

d3Rε(R)R̃mifi(R) = R̃miεfi . (D6)

After differentiation, Eq. (D5) yields

(∂jfi)R′ = R̃jnR̃im(∂nfm)R (D7)

so that, reasoning as in Eq. (D6), we have

εfm∂qfn = 1

V

∫
C ′

d3R′ε(R′)fm(R′)(∂qfn)R′

= 1

V

∫
C

d3Rε(R)R̃mifi(R)R̃qpR̃nj (∂pfj )R′

= R̃miR̃qpR̃nj εfi∂pfj . (D8)

Equations (D6) and (D8) state that the vector εfm and the tensor
εfm∂qfn are geometrical invariants of the improper rotation R̃.

Since R̃ is an improper rotation (R̃R̃T = I and det(R̃) =
−1), it is diagonalizable and its eigenvalues are λ1 = eiψ ,
λ2 = e−iψ , λ3 = −1 (where 0 � ψ < 2π ). In order to relate
ψ to the original reflection and rotation we note that Tr(R̃) =
λ1 + λ2 + λ3 = 2 cos ψ − 1 whereas from Eqs. (56) we obtain
Tr(R̃) = RikSki = 1 − 4 sin2( θ

2 )(risi)2 so that, equating these
two expressions, we get

cos ψ = 1 − 2 sin2

(
θ

2

)
(r̂ · ŝ)2. (D9)

The matrix R̃ admits three eigenvectors ŵ(1),ŵ(2),ŵ(3), such
that R̃ŵ(n) = λnŵ(n), and they satisfy the orthogonality and
completeness relations

w
(n)∗
i w

(m)
i = δnm, w

(n)∗
i w

(n)
j = δij . (D10)

Therefore the matrix R̃ admits the spectral decomposition
R̃ij = λnw

(n)
i w

(n)∗
j so that, after setting

εfi = Vnw
(n)
i , εfi∂pfj = Wmqnw

(m)
i w(q)

p w
(n)
j , (D11)

with the help of Eqs. (D10), Eqs. (D6) and (D8) become

Vn = λnVn, Wmqp = λmλqλpWmqp, (D12)

where no summation is performed over the indices.
From Eqs. (D12) it is evident that all the components

of Vn and Wmqp vanish unless the coefficients λn and
λmλqλp are equal to 1. Since the allowed values for λn are
{−1,eiψ ,e−iψ } and those for λmλqλp are {−1,eiψ ,e−iψ , −
e2iψ , − e−2iψ ,e3iψ , − e3iψ }, it is evident that the only possible
cases where some of the components of Vn and Wmqp do not
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vanish are for ψ = {0, π
2 , 3π

2 , 2π
3 , 4π

3 }. As a consequence these
values of ψ , corresponding to classes of original reflections
and rotations, lead to nonvanishing chiral tensors.

Let us now discuss the various classes of original reflections
and rotations corresponding to the allowed values of ψ . In
order to simplify the treatment let us consider the three vectors

û(1) = û(2) × û(3), û(2) = û(3) × r̂√
1 − (r̂ · û(3))2

,

û(3) = − sin
(

θ
2

)
ŝ × r̂ + cos

(
θ
2

)
ŝ√

1 − sin2
(

θ
2

)
(r̂ · ŝ)2

, (D13)

which are easily seen to have real components and to form an
orthonormal and positively oriented basis; i.e.,

û(n) · û(m) = δnm, û(n) × û(m) = εnmr û(r). (D14)

The second of Eqs. (D14) implies that the vectors of Eqs. (D13)
satisfy the relation

εimju
(k)
m = 1

2εnkm

(
u

(n)
i u

(m)
j − u

(m)
i u

(n)
j

)
, (D15)

which is particularly useful for the developing of the present
analysis.

Case ψ = 0. From Eq. (D9) we deduce that this case
geometrically occurs both for a trivial rotation (θ = 0) and
for a nontrivial rotation whose unit vector is orthogonal to the
reflection unit vector (θ �= 0, r̂ · ŝ = 0). Since a trivial rotation
is the identity transformation its rotation axis is arbitrary and
therefore even in the first subcase we set r̂ · ŝ = 0. In both
subcases, it is straightforward proving that the eigenvectors of
R̃ are the vectors of Eqs. (D13), i.e., ŵ(n) = û(n), and that, for
r̂ · ŝ = 0, they reduce to

û(1) = r̂, û(2) = cos

(
θ

2

)
ŝ × r̂ + sin

(
θ

2

)
ŝ,

(D16)

û(3) = − sin

(
θ

2

)
ŝ × r̂ + cos

(
θ

2

)
ŝ.

Since for ψ = 0 we have λ1 = 1, λ2 = 1, λ3 = −1, from
Eqs. (D12) we deduce that V3 = 0 and Wmqn = 0 if only one
or three of the indices mqn are equal to 3. Using Eqs. (D14),
(D15), and (D16), from Eqs. (D11) we get after some algebra

εimj εfm = V1
(
u

(3)
i u

(2)
j − u

(2)
i u

(3)
j

)
+V2

(
u

(1)
i u

(3)
j − u

(3)
i u

(1)
j

)
,

εimnεfm∂qfn = (W233 − W322)u(1)
i u(3)

q
(D17)+ (W112 − W211)u(3)

i u(1)
q

+ (W331 − W133)u(2)
i u(3)

q

+ (W122 − W221)u(3)
i u(2)

q .

Inserting these quantities into the definition of the chirality
tensor of Eq. (51) and noting that εqmnεfm∂qfn = 0 since û(1) ·
û(3) = û(2) · û(3) = 0 we get

κij = η
(
κ (13)u

(1)
i u

(3)
j + κ (31)u

(3)
i u

(1)
j + κ (23)u

(2)
i u

(3)
j

+ κ (32)u
(3)
i u

(2)
j

)
, (D18)

where κ (13) = k0(V2 + W233 − W332), κ (31) = k0(−V2 +
W112 − W211), κ (23) = k0(−V1 + W331 − W133), and
κ (32) = k0(V1 + W122 − W221) are four scalars which are
mutually independent since they depend on ten independent
scalars. In matrix form the above chirality tensor reads

κ = η(κ (13)û(1)û(3)T + κ (31)û(3)û(1)T

+ κ (23)û(2)û(3)T + κ (32)û(3)û(2)T ). (D19)

Case ψ = π
2 , 3π

2 . From Eq. (D9) we deduce that this case
geometrically occurs if the reflection and rotation unit vectors
and the rotation angle are such that sin2( θ

2 )(r̂ · ŝ)2 = 1
2 . In this

case it is straightforward proving that the eigenvectors are

ŵ(1) = 1√
2

(û(1) + iû(2)), ŵ(2) = 1√
2

(û(1) − iû(2)),

(D20)
ŵ(3) = û(3).

Since for ψ = π
2 , 3π

2 we have λ1 = ±i, λ2 = ∓i, λ3 = −1,
from Eqs. (D12) we deduce that V1 = V2 = V3 = 0 and
Wmqn = 0 if it does not occur that one of the indices mqn

is equal to 3 and the other two are both equal to 1 or 2. Using
Eqs. (D14), (D15), and (D20), from Eqs. (D11) we get after
some algebra

εimj εfm = 0,

εimnεfm∂qfn = 1

2
(W322 − W233 − W113 + W311)

×(
u

(1)
i u(2)

q + u
(2)
i u(1)

q

)
+ i

2
(W322 − W233 + W113 − W311)

×(
u

(1)
i u(1)

q + u
(2)
i u(2)

q

)
. (D21)

Inserting these quantities into the definition of the chirality
tensor of Eq. (51) we get

κij = η
[
κ (s)

(
u

(1)
i u

(2)
j + u

(2)
i u

(1)
j

) + κ (a)
(
u

(1)
i u

(1)
j − u

(2)
i u

(2)
j

)]
,

(D22)

where κ (s) = k0
2 (W322 − W233 − W113 + W311) and κ (a) =

ik0
2 (W322 − W233 + W113 − W311) are two scalars which are

mutually independent since they depend on four independent
scalars. In matrix form the above chirality tensor reads

κ = η[κ (s)(û(1)û(2)T + û(2)û(1)T ) + κ (a)(û(1)û(1)T − û(2)û(2)T )].

(D23)

Case ψ = 2π
3 , 4π

3 . From Eq. (D9) we deduce that this
case geometrically occurs if the reflection and rotation unit
vectors and the rotation angle are such that sin2( θ

2 )(r̂ · ŝ)2 =
3
4 . Since for ψ = 2π

3 , 4π
3 we have λ1 = 1

2 (−1 ± i
√

3), λ2 =
1
2 (−1 ∓ i

√
3), λ3 = −1, from Eqs. (D12) we deduce that

V1 = V2 = V3 = 0 and Wmqn = 0 if it does not occur that
m = q = n = 1 or m = q = n = 2 (i.e., only the components
W111 and W222 survive). From Eqs. (D11) we directly get

εimj εfm = 0, εimnεfm∂qfn = 0, (D24)
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so that from the definition of the chirality tensor of Eq. (51)
we obtain

κij = 0; (D25)

i.e., the chirality tensor vanishes.

APPENDIX E: EFFECTIVE MEDIUM RESPONSE
OF ONE-DIMENSIONAL DIELECTRIC MEDIA

Let us consider a metamaterial whose dielectric profile is
ε(Z); i.e., it is dependent on a single Cartesian coordinate.
The dielectric profile ε(Z) and its inverse [ε(Z)]−1 can be
represented through the Fourier series

ε(Z) =
+∞∑

n=−∞
eink0Zan, [ε(Z)]−1 =

+∞∑
n=−∞

eink0Zbn, (E1)

where k0 = 2π/λ and

an = 1

λ

∫ λ

0
dZe−ink0Zε(Z),

(E2)

bn = 1

λ

∫ λ

0
dZe−ink0Z[ε(Z)]−1

are their Fourier coefficients. Due to the generality of
the Fourier series representation, the situation we are here
considering allows us to investigate even discontinuous di-
electric distributions, a relevant situation occurring when
the metamaterial is a stratified layered structure, without
explicitly resorting to matching condition on the surfaces of
the inclusions. Note also that

a0 = ε, b0 = ε−1. (E3)

For the one-dimensional dielectric distribution ε(Z), the
functions fj satisfying the first of Eqs. (41) are evidently
dependent solely on Z, i.e., fj = fj (Z), so that such equations
yield

d

dZ

(
ε
dfj

dZ

)
= 0, j = 1,2,

(E4)
d

dZ

(
ε
df3

dZ

)
= − dε

dZ
,

which have to be solved with the requirements that the
functions fj have the same periodicity as ε(Z) and have
vanishing average fj = 0. After an integration Eqs. (E4)
become

dfj

dZ
= Cj

ε
, j = 1,2,

(E5)
df3

dZ
= −1 + C3

ε
,

where C1,C2,C3 are constants. Averaging Eqs. (E5) over the
metamaterial period, using Eqs. (E3), and noting that the
average of their left-hand sides is zero since they are derivatives
of periodic functions, we get

0 = Cjb0, j = 1,2,
(E6)

0 = −1 + C3b0,

which, assuming b0 �= 0, imply that C1 = C2 = 0 and C3 =
1/b0. Accordingly, from the first of Eqs. (E5) we obtain that
f1 and f2 are constants so that, requiring their average to be
zero, we get

f1 = f2 = 0. (E7)

Using the Fourier expansion of ε−1 of the second of Eqs. (E1),
the second of Eqs. (E5) becomes

df3

dZ
=

+∞∑
n=−∞,n�=0

eink0Z
bn

b0
(E8)

which, after an integration and the requirement for f3 to have
vanishing average, yields

f3 =
+∞∑

n=−∞,n�=0

eink0Z
bn

ink0b0
. (E9)

Combining Eqs. (E7) and (E9) we obtain for the functions fj

fj = δj3

+∞∑
n=−∞,n�=0

eink0Z
bn

ink0b0
, (E10)

which are fully determined by the dielectric profile ε(Z) and
they are unique as a consequence of the chosen constraints
(periodicity and vanishing average).

Using Eq. (E10), the first of Eqs. (40) becomes

Qij =
( +∞∑

m=−∞
eimk0Zam

) ⎛⎝δij + δi3δj3

+∞∑
n=−∞,n�=0

eink0Z
bn

b0

⎞⎠
(E11)

which, inserted into the first of Eqs. (39) and neglecting the η2

contribution, yields

ε
(eff)
ij = δij a0 + δi3δj3

1

b0

+∞∑
n=−∞,n�=0

a−nbn. (E12)

Averaging the relation εε−1 = 1 and using Eqs. (E1)
the relation

∑+∞
n=−∞ a−nbn = 1 easily follows so that∑+∞

n=−∞,n�=0 a−nbn = 1 − a0b0 and Eq. (E12) becomes

ε
(eff)
ij = (δi1δj1 + δi2δj2)a0 + δi3δj3

1

b0
, (E13)

or in matrix form

ε(eff) =
⎛⎝ε 0 0

0 ε 0
0 0 [ε−1]−1

⎞⎠ , (E14)

where Eqs. (E3) have been used.
In order to evaluate the chirality tensor we note that

Eqs. (E10) and the first of Eqs. (E1) yield

εfm = δm3

+∞∑
s=−∞,s �=0

a−sbs

ik0b0s
,

(E15)

εfm∂qfn = δm3δq3δn3εf3
df3

dZ
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so that, from Eq. (51), we obtain

κij = εij3ηκ0, (E16)

where

κ0 = i

b0

+∞∑
s=−∞,s �=0

a−sbs

s
. (E17)

In matrix form, Eq. (E16) reads

κ =
⎛⎝ 0 ηκ0 0

−ηκ0 0 0
0 0 0

⎞⎠ . (E18)

Inserting Eqs. (E2) into Eq. (E17) we obtain

κ0 = i

b0λ2

∫ λ

0
dZ1

∫ λ

0
dZ2

ε(Z1)

ε(Z2)

+∞∑
s=−∞,s �=0

e
i2πs

(
Z1−Z2

λ

)
s

.

(E19)
After noting that the even contribution in the numerator
within the series does not contribute and using the rela-
tion

∑+∞
s=1

sin(2πsξ )
s

= π [−ξ + 1
2 sign(ξ )] valid for |ξ | < 1, Eq.

(E20) yields

κ0 = [ε−1]−1 2π

λ2

∫ λ

0
dZ1

∫ λ

0
dZ2

ε(Z1)

ε(Z2)

[(
Z1 − Z2

λ

)
− 1

2
sgn

(
Z1 − Z2

λ

)]
, (E20)

where the first of Eqs. (E3) has been used.
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