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Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson
symmetry classes in three dimensions
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The disorder-induced metal-insulator transition is investigated in a three-dimensional simple cubic lattice
and compared for the presence and absence of time-reversal and spin-rotational symmetry, i.e., in the three
conventional symmetry classes. Large-scale numerical simulations have been performed on systems with linear
sizes up to L = 100 in order to obtain eigenstates at the band center, E = 0. The multifractal dimensions,
exponents Dq and αq , have been determined in the range of −1 � q � 2. The finite-size scaling of the generalized
multifractal exponents provide the critical exponents for the different symmetry classes in accordance with values
known from the literature based on high-precision transfer matrix techniques. The multifractal exponents of the
different symmetry classes provide further characterization of the Anderson transition, which was missing from
the literature so far.
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I. INTRODUCTION

The metal-insulator transition (MIT) and disordered sys-
tems have been at the forefront of condensed matter research
since the middle of the last century [1], and yet this topic still
has several open questions and is still actively investigated.
In the last few years experimental evidence has been obtained
about this topic; in particular, reporting Anderson localization
of ultrasound in disordered elastic networks [2,3], or light in
disordered photonic lattices in the transverse direction [4] or
in an ultracold atomic system in a disordered laser trap [5].
Richardella et al. [6] examined the MIT in a dilute magnetic
semiconductor Ga1−xMnxAs, which is a strongly interacting
and disordered system. They found a clear phase transition
together with multifractal fluctuations of the local density of
states (LDOS) at the Fermi energy, showing that multifractality
is a robust and important property of disordered systems.
Multifractal properties consistent with the theory of Anderson
localization are also found in the ultrasound system [3]. On
the theoretical side, we know that disorder plays a crucial
role in integer quantum Hall effect [7], and recently it was
shown that an enhanced correlation of multifractal wave-
function densities in disordered systems can increase the
superconducting critical temperature [8] or the multifractal
fluctuations of the LDOS close to criticality may lead to a new
phase due to the presence of local Kondo effects induced by
local pseudogaps at the Fermi energy [9]. Moreover, Anderson
localization has also been reported in the spectrum of the Dirac
operator within the lattice model of QCD at high temperatures
using spectral statistics [10], and multifractal analysis seems
to corroborate it as well [11].

These models show an increased interest in understanding
the nature of the Anderson transition in the presence of
various global symmetries. A comprehensive review of the
current understanding is given in Ref. [12]. These symmetry
classes have been introduced first to describe random matrix
ensembles, but the naming conventions are the same in the field
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of disordered systems. The classification considers two global
symmetries: time-reversal and spin-rotational symmetry. As it
turns out, beside these symmetries there are three further sym-
metry classes according to the presence of chiral symmetry,
and in addition there are four Bogoliubov-de Gennes classes
also, corresponding to particle-hole symmetry [12] prominent
in hybrid (superconductor-normal) systems. The effect of
symmetry classes at the Anderson transition has already been
investigated earlier [13] using spectral statistics, but there
is much less work based on the multifractal analysis of the
eigenstates, and multifractal exponents are known numerically
only for the orthogonal class [14].

Our goal in this article is to fill in this gap and apply
multifractal finite-size scaling (MFSS), developed originally
by Rodriguez, Vasquez, Römer, and Slevin [14], to the
Anderson models in the three conventional Wigner-Dyson
(WD) classes. The organization of the article is the following:
In Sec. II we define the model and describe its numerical
representation. In Sec. III we briefly describe the finite-size
scaling analysis of the generalized multifractal exponents of
the critical eigenstates, in Sec. IV we give the results obtained
for the three universality classes and finally in Sec. V we
summarize our results.

II. MODELS AND NUMERICAL REPRESENTATION

A. The model

In this article we investigate Anderson models belonging
to the three WD classes, without chiral and particle-hole
symmetry. We investigate the case of diagonal disorder and
nearest-neighbor hopping; therefore, the Hamiltonian reads

H =
∑
iσ

εic
†
iσ ciσ −

∑
ijσσ ′

tijσσ ′c
†
iσ cjσ ′ + H.c., (1)

where i,j and σ,σ ′ stand for site and spin index, εi are random
on-site energies, which are uniformly distributed over the
interval [−W

2 ,W
2 ], W acts as disorder strength. Using a uniform

distribution is just a convention, other distributions of disorder,
e.g., Gaussian, binary, etc. can be used as well.
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In the orthogonal class time-reversal and spin-rotational
symmetry are preserved. In this case the Hamiltonian is in-
variant under orthogonal transformations—hence the name—
therefore it is a real symmetric matrix. Since spin does not
play a role, we consider a spinless Anderson model. In the
numerical simulations the Hamiltonian is represented by an
N × N real symmetric matrix, where N = L3, and L is the
linear system size in lattice spacing. The diagonal elements are
are uniformly distributed random numbers, the off-diagonal
elements are zero, except if i and j are nearest neighbors:

HO
ij =

⎧⎪⎨
⎪⎩

εi ∈ U
[− W

2 ,W
2

]
, if i = j

−1, if i and j are neighboring sites

0, otherwise.

(2)

The energy unit is fixed by setting the hopping elements
to 1. To avoid surface effects, we use periodic boundary
conditions. However, this case was investigated very carefully
by Rodriguez et al. [14]; we consider this symmetry class
to verify our numerical method and to obtain a complete
description of all the WD classes.

In the unitary class time-reversal symmetry is broken,
which can be realized physically by applying a magnetic
field. It can be shown that either spin rotational symmetry is
broken or not, the model will belong to the unitary class [12].
The Hamiltonian is invariant under unitary transformations,
therefore it is a complex Hermitian matrix. We discuss the case
when spin-rotational symmetry is present, because this way
we can use spinless fermions again, which keeps the matrix
size N × N . However, one has to store about twice as much
data compared with the orthogonal case, because here every
off-diagonal matrix element is a complex number. Obviously,
finding an eigenvalue and an eigenvector takes more time, too.

For the numerical simulations we followed Slevin and
Ohtsuki [15]. Let us consider a magnetic field pointing in
the y direction with flux �, measured in units of the flux
quantum, h/e. Its effect can be represented by a unity phase
factor, the Peierls substitution for the hopping elements of the
Hamiltonian matrix. The upper triangular of the Hamiltonian
reads

HU
i�j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εi ∈ U
[− W

2 ,W
2

]
, if i = j

−1, if i and j are neighboring sites
in the x or y direction

−ei2π�x , if i and j are neighboring
sites in the z direction

0, otherwise.

(3)

Complex Hermiticity sets the off-diagonal elements in the
lower triangular part, j < i. Periodic boundary conditions and
flux quantization force a restriction for the magnetic flux;
namely, that � · L must be an integer. In the thermodynamic
limit, arbitrarily small magnetic field drives the system from
the orthogonal to the unitary class. However, in a finite system
the relationship between the system size L and the magnetic
length, LH = 1√

2π�
, matters. In the case of weak magnetic

field, L � LH , the system belongs to the orthogonal class, in
the case of strong magnetic field, L � LH , it belongs to the
unitary class. Since we use system sizes that are multiples of
ten lattice spacings, see Table I, we chose � = 1

5 . This leads

TABLE I. System sizes and number of samples for the simulation
for each WD symmetry class.

System size (L) Number of samples

20 15 000
30 15 000
40 15 000
50 15 000
60 10 000
70 7500
80 5000
90 4000
100 3500

to LH ≈ 0.892; therefore, this choice clearly fulfills the two
conditions above.

In the symplectic class time-reversal symmetry is present,
and spin-rotational symmetry is broken, which describes a
system with spin-orbit interaction. In this case the Hamiltonian
is invariant under symplectic transformations; therefore, it is
a quaternion Hermitian matrix. For the numerical simulations
we followed Asada, Slevin, and Ohtsuki [16]. Since in this
case we have to deal with the spin index also, the Hamiltonian
is an 2N × 2N complex Hermitian matrix. Diagonal elements
corresponding to the ith site and hopping elements between
sites i and j are 2 × 2 matrices because of the spin indexes,
having a form

εi =
(

εi 0
0 εi

)
, tij =

(
eiαij cos βij eiγij sin βij

−e−iγij sin βij e−iαij cos βij

)
, (4)

where εi is an uniformly distributed random on-site energy
from the interval [−W

2 ,W
2 ], αij , βij , and γij were chosen

to form an SU(2)-invariant parametrization, leading to the
so-called SU(2) model: αij and γij are uniform random
variables from the interval [0,2π ], and β has a probability
density function p(β)dβ = sin(2β)dβ in the range [0, π

2 ]. The
upper triangular of the Hamiltonian has the following form:

HS
i�j =

⎧⎨
⎩

εi , if i = j

tij , if i and j are neighboring sites
0, otherwise.

(5)

The off-diagonal elements are defined following complex Her-
miticity. To store the Hamiltonian requires about eight times
more memory compared to the orthogonal case, because here
every off-diagonal element contains four complex numbers.
Finding an eigenvalue is much slower than for the unitary
case, mainly because of the linear size of the matrix is twice
as large.

B. Numerical method

MFSS deals with the eigenvectors of the Hamiltonian,
which is a large sparse matrix. Recent high-precision calcula-
tions [14] use Jacobi-Davidson iteration with incomplete LU
preconditioning; therefore we decided to use this combination.
For preconditioning ILUPACK [17] was used, for the JD iteration
the PRIMME [18] package was used. Since the metal-insulator
transition occurs at the band center [12] (E = 0) at disorder
WO

c ≈ 16.5 for the orthogonal, at WU
c ≈ 18.3 for the unitary
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(depending on the strength of magnetic field), at WS
c ≈ 20 for

the symplectic class (for our parameters), most works study
the vicinity of these points. To have the best comparison, we
analyzed this regime, therefore 20 disorder values were taken
from the range 15 � W � 18 for the orthogonal class, 23
disorder values were taken from the interval 17 � W � 20
for the unitary class, and 20 disorder values were taken from
the interval 19.4 � W � 20.5 for the symplectic class. System
sizes were taken from the range L = 20..100, and the number
of samples are listed in Table I. We considered only one wave
function per realization, the one with energy closest to zero
in order to avoid correlations between wave functions of the
same system [14].

III. FINITE-SIZE SCALING LAWS FOR GENERALIZED
MULTIFRACTAL EXPONENTS

In recent high-precision calculations [14] the multifractal
exponents (MFEs) of the eigenfunctions of the Hamiltonian
have been used to describe the Anderson metal-insulator
transition. We use almost the same notation and methods
as Ref. [14], but for better understanding here we intro-
duce shortly the most important quantities and notations.
The method has recently been successfully extended for
the investigation of the quantum percolation transition in three
dimensions [19].

Considering a d-dimensional cubic lattice with linear size
L, one can divide this lattice into smaller boxes with linear size

. If � is an eigenfunction of the Hamiltonian, the probability
corresponding to the kth box reads

μk =
∑

i∈boxk

|�i |2. (6)

One can introduce the qth moment of the box probability
(frequently called generalized inverse participation ratio,
GIPR), and its derivative:

Rq =
λ−d∑
k=1

μ
q

k , Sq = dRq

dq
=

λ−d∑
k=1

μ
q

k ln μk. (7)

The average of Rq and Sq follows a power-law behavior as a
function of λ = 


L
, with exponent τq and αq :

τq = lim
λ→0

ln〈Rq〉
ln λ

, αq = dτq

dq
= lim

λ→0

〈Sq〉
〈Rq〉 ln λ

. (8)

τq can be rewritten in the following form:

τq = Dq(q − 1) = d(q − 1) + �q, (9)

where Dq is the generalized fractal dimension, and �q is the
anomalous scaling exponent. Employing a Legendre transform
on τq , we obtain the singularity spectrum f (α):

f (αq) = qαq − τq. (10)

τq , αq , Dq , and �q are often referred to as multifractal
exponents.

According to recent results [20] a symmetry relation exists
for αq and �q given in the form:

�q = �1−q, αq + α1−q = 2d. (11)

For numerical approaches one has to define the finite-size
version of these MFEs at a particular value of disorder:

α̃ens
q (W,L,
) = 〈Sq〉

〈Rq〉 ln λ
, (12)

D̃ens
q (W,L,
) = 1

q − 1

ln〈Rq〉
ln λ

, (13)

where ens stands for ensemble averaging over the different dis-
order realizations. One may define typical averaged versions
also:

α̃typ
q (W,L,
) =

〈
Sq

Rq

〉
1

ln λ
, (14)

D̃typ
q (W,L,
) = 1

q − 1

〈ln Rq〉
ln λ

. (15)

Similarly to α̃q and D̃q , �̃q or τ̃q can be defined, which are
called generalized multifractal exponents (GMFEs). Every
GMFE approaches the value of the corresponding MFE at
the critical point, W = Wc, only in the limit λ → 0. We
would like to emphasize that MFEs are defined through
ensemble averaging in principle [see Eq. (8)], and ensemble
and typical averaged MFEs are equal only in a range of q,
q− < q < q+ [12], defined by the two zeros of the singularity
spectrum, f (αq− ) = f (αq+ ) = 0. Therefore when in Sec. IV B
we compute MFEs, we will use ensemble averaged quantities
only.

The choice of the investigated range of q is influenced
by the following three effects: If q is large, the qth power in
Eq. (7) enhances the numerical and statistical errors, leading to
a noisy dataset. If q is negative with large absolute value, the
relatively less precise small wave-function values dominate
the sums in Eq. (7), which also results in a noisy dataset.
These two effects together lead to a regime qmin � q � qmax,
where GMFEs behave numerically the best. The third effect
is coarse graining which suppresses the noise. For 
 > 1 in
an 
 × 
 × 
-sized box positive and negative errors on the
wave functions can cancel each other. Moreover, in a box,
large and small wave-function amplitudes appear together with
high probability, and this way the relative error of a μk box
probability is reduced. In other words coarse graining has a
nice smoothing effect, which can help to widen the range of q

that can be investigated.
The renormalization flow of the AMIT has three fixed

points: a metallic, an insulating, and a critical one. In the
metallic fixed point every state is extended with probability
one; therefore, the effective size of the states grows propor-
tional to the volume, leading to Dmet

q ≡ d. In the insulating
fixed point every state is exponentially localized, the effective
size of a state does not change with changing system size,
resulting in Dins

q ≡ 0 for q > 0, and Dins
q ≡ ∞ for q < 0.

Renormalization does not change the system at criticality,
therefore it is scale independent, which means self-similarity.
Therefore, wave functions are supposed to be multifractals; in
other words, generalized fractals [21].

Close to the critical point due to standard finite-size scaling
arguments one can derive the following scaling laws for the
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exponents α̃q and D̃q defined above:

α̃q(W,L,
) = αq + 1

ln λ
Aq

(
L

ξ
,



ξ

)
, (16a)

D̃q(W,L,
) = Dq + q

ln λ
Tq

(
L

ξ
,



ξ

)
. (16b)

Equations (16) can be summarized in one equation:

G̃q(W,L,
) = Gq + 1

ln λ
Gq

(
L

ξ
,



ξ

)
. (17)

(L,
) on the left-hand side and ( L
ξ
, 

ξ
) on the right-hand side

can be changed to (L,λ) and (L
ξ
,λ):

G̃q(W,L,λ) = Gq + 1

ln λ
Gq

(
L

ξ
,λ

)
. (18)

Our central goal is to fit the above formulas to the numerically
obtained data, where Wc, ν, y, and Gq appear among the fit
parameters. This fit procedure will provide us the physically
interesting quantities and their confidence intervals. In the
next sections we present different methods for the finite-size
scaling.

A. Finite-size scaling at fixed λ

At fixed λ, Gq in Eq. (18) can be considered as the constant
term of Gq ; therefore,

G̃q(W,L) = Gq

(
L

ξ

)
, (19)

where the constant λ has been dropped. Gq can be expanded
with one relevant [�(w)] and one irrelevant [η(w)] operator
the following way by using w = W − Wc:

Gq

(
�L

1
ν ,ηL−y

) = Gr
q

(
�L

1
ν

) + ηL−yGir
q

(
�L

1
ν

)
. (20)

All the disorder-dependent quantities in the above formula can
be expanded in Taylor series:

Gr
q

(
�L

1
ν

) =
nr∑

i=0

ai

(
�L

1
ν

)i
, (21)

Gir
q

(
�L

1
ν

) =
nir∑
i=0

bi

(
�L

1
ν

)i
, (22)

�(w) = w +
n�∑
i=2

ciw
i, η(w) = 1 +

nη∑
i=1

diw
i. (23)

The advantage of this method is that, in the Taylor series,
only one variable appears, �L

1
ν , so the number of parameters

(including Wc, ν, and y) is nr + nir + nρ + nη + 4, which
grows linearly with the expansion orders. This method is very
effective for computing Wc, ν, and y, but since λ is fixed, one
cannot obtain the MFEs. In all cases we used λ = 0.1, because
it leads to excellent results in Ref. [14]. It seems that it is small
enough to capture the details of a wave function, and it allows
many different system sizes in the range of 20 � L � 100,
which we investigated. This way we can also compare our
results to those of Ref. [14] very well.

B. Finite-size scaling for varying λ

In order to take into account different values of λ, the scaling
law given in Eq. (17) has to be considered. The expansion of
G in (17) is

Gq

(
�L

1
ν ,�


1
ν ,η′L−y ′

,η
−y
) = Gr

q

(
�L

1
ν ,�


1
ν

)
+ η′L−y ′G ′ir

q

(
�L

1
ν ,�


1
ν

)
+ η
−yGir

q

(
�L

1
ν ,�


1
ν

)
.

According to Rodriguez et al. [14] the most important
irrelevant term is the one containing the finite box size 
;
therefore, we took into account that one only. This leads
to

G̃q(W,L,
) = Gq + 1

ln λ

[
Gr

q

(
�L

1
ν ,�


1
ν

)

+,η
−yGir
q

(
�L

1
ν ,�


1
ν

)]
. (24)

The Taylor expansions of the above functions are

Gr
q

(
�L

1
ν ,�


1
ν

) =
nr∑

i=0

i∑
j=0

aij�
iL

j

ν 

i−j

ν , (25)

Gir
q

(
�L

1
ν ,�


1
ν

) =
nir∑
i=0

i∑
j=0

bij�
iL

j

ν 

i−j

ν , (26)

�(w) = w +
n�∑
i=2

ciw
i, η(w) = 1 +

nη∑
i=1

diw
i. (27)

The advantage of this method is that it provides the MFE,
Gq , since it is one of the parameters to fit. There are many
more data to fit compared to the fixed-λ case. Fixed λ means
that, at a given system size, one can use GMFEs obtained at a
certain value of 
—the one that leads to the desired λ—while
in this case one can fit to GMFEs obtained at different values
of 
. However, these GMFEs are correlated, because they are
the results of the coarse graining of the same wave functions
with different sizes of boxes. During the fitting procedure one
has to take into account these correlations; see Sec. III C.
Since the relevant and irrelevant scaling functions have two
variables, �L

1
ν and �


1
ν , one has to fit a two-variable function

with the number of parameters (nr + 1)(nr + 2)/2 + (nir +
1)(nir + 2)/2 + nρ + nη + 3. We can see that the number of
parameters grows as ∼n2

r/ir instead of as ∼nr/ir as for fixed λ.
This makes the fitting procedure incorporating the correlations
definitely much more difficult.

C. General principles for the finite-size-scaling fit procedures

In this section we discuss the details of the methods and
criteria we used during the MFSS. In order to fit the scaling
law of Eqs. (19) and (24) we used the MINUIT library [22].
To find the best fit to the data obtained numerically, the order
of expansion of Gr/ir

q , � and η, must be decided by choosing
the values of nr, nir , n�, and nη. Since the relevant operator
is more important than the irrelevant one we always used
nrel � nir and n� � nη. To choose the order of the expansion
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we used basically three criteria: The first criterion we took
into account was to check how close the ratio χ2/(Ndf − 1)
approached unity, where Ndf stands for the number of degrees
of freedom. Let us denote the numerically obtained data points
by yi , the fit function value at the ith parameter value by
fi , and the correlation matrix of the numerically obtained
data points by C, which can be computed numerically with
a similar expression to the variance. With these notations, χ2

reads

χ2 =
∑
i,j

(yi − fi)(C
−1)ij (yj − fj ); (28)

for more details see Ref. [14]. If the data points are not
correlated, C is a diagonal matrix, and the expression leads
to the usual form

χ2 =
∑

i

(yi − fi)2

σ 2
i

. (29)

The number of degrees of freedom, Ndf , is the number of
data points minus the number of fit parameters. A ratio
χ2/(Ndf − 1) ≈ 1 means that the deviations from the best
fit are of the order of the standard deviation (correlation
matrix). The second criterion was that the fit has to be stable
against changing the expansion orders, i.e., adding a few new
expansion terms. From the fits that fulfilled the first two criteria
we chose the simplest model with the lowest expansion orders.
Sometimes we also took into account the error bars, and
we chose the model with the lowest error bar for the most
important quantities (Wc, ν, etc.), if similar models fulfilled
the first two criteria.

The error bars of the best fit parameters were obtained
by a Monte Carlo simulation. The data points are results
of averaging so, due to the central limit theorem, they have
a Gaussian distribution. Therefore, we generated Gaussian
random numbers with parameters corresponding to the mean
of the raw data points and standard deviation (or correlation
matrix) of the mean, and then found the best fit. Repeating this
procedure NMC = 100 times provided the distribution of the
fit parameters. We chose 95% confidence level to obtain the
error bars.

IV. RESULTS OF MULTIFRACTAL FINITE-SIZE SCALING
FOR ANDERSON MODELS IN WIGNER-DYSON

SYMMETRY CLASSES

With the numerical method described in Sec. II we
computed an eigenvector for every disorder realization of
the Hamiltonian. From the eigenvectors, every GMFE is
computable for the orthogonal and unitary class the |�i |2
expression in Eq. (6) is trivial, and it means summation for
the spin index for the symplectic class, since spatial behavior
is in our interest. At fixed q exponents τq and �q are linear
transforms of Dq , so we used only the α̃q and D̃q GMFEs
for the MFSS. We investigate the range −1 � q � 2, because
GMFEs behave the best in this regime for the reasons described
in Sec. III.

A. Results of multifractal finite-size scaling at fixed λ = 0.1

The typical behavior of the GMFEs is presented in Fig. 1.
In all cases there is a clear sign of phase transition: With
increasing system size the GMFEs tend to opposite directions
on both sides of their crossing point. Note that there is no well-
defined crossing point due to the irrelevant term in Eq. (20).
Applying the MFSS method described in Sec. III A with the
principles of Sec. III C to the raw data leads to a well-fitting
function; see red lines in Fig. 1. After the subtraction of the
irrelevant part from the raw data, plotting it as a function of
�L

1
ν results a scaling function also; see insets of Fig. 1.
The MFSS provided us the critical point Wc, the critical

exponent ν, and the irrelevant exponent y at every investigated
values of q; the results are given in Fig. 2. The parameters
of the critical point correspond to the system itself, therefore
it should not depend on the quantity we used to find it. In
other words, it should be independent of q, the averaging
method and the GMFE we used. From Fig. 2 it is clear that this
requirement is fulfilled very nicely. There is a small deviation
for the irrelevant exponent y, obtained from αtyp at q = −1
and q = −0.75 in the unitary and symplectic class, but since
y describes the subleading part, it is very hard to determine,
and we cannot exclude some sort of underestimation of the
error bar of this exponent. Another interesting feature of the
results is that the error bars get larger as q goes above 1.
As written in Sec. III C, large q enhances the errors through
the qth power in Eq. (7), leading to bigger error bars. A
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FIG. 1. (Color online) Dots are the raw data for different GMFEs in the conventional WD symmetry classes. Red line is the best fit obtained
by MFSS. Insets are scaling functions on a ln-ln scale, after the irrelevant term was subtracted. Error bars are shown only on the large figures
in order not to overcomplicate the insets.
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FIG. 2. Critical parameters of the Anderson models in WD classes obtained by MFS at fixed λ = 0.1. First row corresponds to the
orthogonal class, second row corresponds to the unitary class, and third row corresponds to the symplectic class.

similar effect can be seen around q ≈ −1, where the relatively
less precise small wave-function values dominate the sums in
Eq. (7), which can also contribute to the deviation of y obtained
from α̃typ in this regime. These two effects together lead to
our investigated interval −1 � q � 2, where GMFEs behave
the best. The results are strongly correlated, since they were
obtained from the same wave functions, therefore they cannot
be averaged. We chose a typical q point for every symmetry
class to describe the values of the critical parameters; see
Table II.

In the orthogonal class the critical parameters are in
excellent agreement with the most recent high-precision results
of Rodriguez et al. [14], WOλ

c Rod = 16.517 (16.498..16.533),
νOλ

Rod = 1.612 (1.593..1.631), and yOλ
Rod = 1.67 (1.53..1.80),

obtained from α̃0 with the same method (fixed λ). This

agreement verifies our numerics and fit method, and makes
it reliable for the other two universality classes.

In the unitary class the critical parameters match
with the results of Slevin and Ohtsuki [15], WU

c Sle =
18.375 (18.358..18.392) and νU

Sle = 1.43 (1.37..1.49), ob-
tained by transfer matrix method (they did not published
the value of the irrelevant exponent). They used a magnetic
flux � = 1

4 , while we used � = 1
5 and, according to Dröse

et al. [23], WU
c depends on the applied magnetic flux. However,

in Fig. 2. of Ref. [23] it can be seen that the critical points at
� = 1

4 and � = 1
5 are very close to each other, hence the

agreement between our critical point and the result of Slevin
and Ohtsuki.

In the symplectic class the critical parameters agree more
or less with the results of Asada et al. [16], WS

c Asa =

TABLE II. Result of the MFSS at fixed λ = 0.1 for the selected values of q.

Class Exponent Wλ
c νλ yλ Ndf χ 2 nrnirn�nη

Ort α̃ens
0.6 16.524 (16.511..16.538) 1.598 (1.576..1.616) 1.763 (1.679..1.842) 172 176 3 2 1 0

Uni α̃
ens/typ
0 18.373 (18.358..18.386) 1.424 (1.407..1.436) 1.633 (1.516..1.751) 198 179 4 2 1 0

Sym D̃
typ
−0.25 19.838 (19.812..19.869) 1.369 (1.305..1.430) 1.508 (1.309..1.743) 171 151 4 2 1 0
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20.001 (19.984..20.018), νS
Asa = 1.375 (1.359..1.391), and

yS
Asa = 2.5 (1.7..3.3), obtained by transfer matrix method.

However, the difference does not seem to be very large: our
critical point is considerably different, even though we used
exactly the same model. Due to bigger computational resources
we could investigate much bigger system sizes than they did,
therefore it is possible that they underestimated the role of
the irrelevant scaling, resulting in a somewhat higher critical
point.

The critical points are higher in the unitary and in the
symplectic class than in the orthogonal class, showing that
broken time-reversal or spin-rotational symmetry requires
more disorder to localize wave functions. Since the value of
the critical point in the unitary and symplectic class can be
influenced by the strength of the applied magnetic flux and
spin-orbit coupling, the relationship between WUλ

c and WSλ
c

probably depends on these two parameters. However, because
of their close value of the critical exponents, νUλ and νSλ are the
same within our confidence interval, and the following relation
appears: νOλ > νUλ � νSλ. The situation for the irrelevant
exponent is similar; namely, they are the same within error
bar, but yOλ seems to be slightly higher than yUλ, which is a
bit higher than ySλ.

B. Results of the multifractal finite-size scaling at varying λ

As mentioned in Sec. III C, GMFEs obtained by typical
averaging are equal to ensemble-averaged GMFEs only in a
range of q, q− < q < q+. Since we intend to compute the
MFEs also, we restrict our analysis to ensemble averaged
GMFEs, and drop the label ens from the notation.

We fit the formula (24) to the raw data. To do that,
we choose a range of box size 
, which is used for the
MFSS. We always use the widest range of 
 that results in
convergence: χ2/(Ndf − 1) ≈ 1. We find that for our dataset
and for different values of q for αq or Dq , different ranges
of 
 were the best. We used minimal box sizes 
min = 2 or

min = 3 and maximal box sizes corresponding to λmax = 0.1
or λmax = 0.066. At α0.4 and α0.6 the fitting method sometimes
suffered from convergence troubles and resulted in large error
bars, because these points are close to the special case of
q = 0.5 where, by definition, α0.5 = d. Artifacts from this
regime were also reported in Ref. [14], so we decided not
to take into account these points for α. We tried several
combinations of 
min, λmax and expansion orders in the
symplectic class for α1.75 and α2, but none of them resulted in
stable fit parameters. Therefore, values computed from these
points are also missing from our final results, which are visible
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FIG. 3. Critical parameters of the Anderson models in WD classes obtained by two-variable MFFS with varying λ. First row corresponds
to the orthogonal class, second row corresponds to the unitary class, and third row corresponds to the symplectic class.
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TABLE III. Critical parameters of the Anderson models in the WD symmetry classes obtained by two-variable MFSS with varying λ.

Class Exponent Wc ν y Ndf χ 2 nrnirn�nη

Ort α̃0 16.524 (16.513..16.534) 1.595 (1.582..1.609) 1.749 (1.697..1.786) 241 267 3 2 1 0
Uni D̃0.1 18.371 (18.363..18.380) 1.437 (1.426..1.448) 1.651 (1.601..1.707) 275 232 4 2 1 0
Sym α̃0 19.836 (19.831..19.841) 1.383 (1.359..1.412) 1.577 (1.559..1.595) 361 352 3 2 1 0

in Fig. 3. The results are independent of q and the GMFE we
used, similar to the fixed-λ method. In Sec. IV A we already
saw that, according to the arguments of Sec. III C, error bars
get bigger if q grows beyond 1. This phenomenon is more
amplified here, especially for values coming from fits for αq ,
but larger error bars on values corresponding to Dq are present
on a moderate level also. Since Fig. 8 of Ref. [14] shows
results for this regime only for values corresponding to �q ,
which is a linear transform of Dq , we can compare their results
only to ours corresponding to Dq . One can see that our error
bars are similar, even though there are differences probably
due to the fact that they used system sizes up to L = 120,
which was not possible for us, mainly because of the long
runtime and large memory usage for the symplectic model.
They also use 
min = 1 and 
min = 2, while 
min = 1 was never
suitable for our dataset. We do not know the precise origin of
this behavior, but we have a few possible explanations. We
experience that larger system sizes allow a wider range of

 to be used. We have smaller system sizes than Ref. [14],
and fewer samples for the largest systems sizes. Noise also
gets bigger as 
 decreases, because of the smoothing effect of
boxing described in Sec. III C, which can also explain partly
our experience. Another important difference is that in Eq. (37)
of Ref. [14], the authors use an expression in the expansion
of the scaling function, which is proportional to the square of
the irrelevant term, (η
−y)2. According to our experience the
inclusion of this term produced no improvement in the scaling
analysis, so we used the scaling function described in Eq. (24).
Such a difference might be explained again by our different
dataset.

As written in Sec. IV A, the results for different values of q

are strongly correlated, therefore we chose one of them with
the lowest error bars that represents well the results for that
universality class.

The critical parameters listed in Table III are in a very
nice agreement with our previous results for the fixed method
of λ = 0.1, see Sec. IV A, and also with the results of
Refs. [14–16]. Comparing the critical parameters for the or-
thogonal case with the results of Rodriguez et al. [14] obtained
by the same method, WO

c Rod = 16.530 (16.524..16.536),
νO

Rod = 1.590 (1.579..1.602), we see a nice agreement again.
Moreover, these results are more accurate with this method
compared to the fixed λ method, leading to (for yO and yU only,
almost) significantly different critical exponents and irrelevant
exponents for the different WD classes, νO > νU > νS and
yO � yU > yS .

C. Analysis of multifractal exponents

MFSS for varying λ provided us the MFEs in all WD
classes, which are listed in Table IV, and depicted in Fig. 4.
For the orthogonal class one can find matching results with
the listed MFEs in Ref. [14]. Since the precise values of the
MFEs in three dimensions were determined first in Ref. [14]
for the orthogonal class only, the lack of reliable analytical
and numerical results for the other symmetry classes makes
our results more important. The most conspicuous thing in
Fig. 4 is that curves for different symmetry classes are very
close to each other; they are almost indistinguishable at the
first sight. This shows that the broken time-reversal or spin

TABLE IV. MFE αq , Dq , and f (αq ), and values for the corresponding symmetry relation Eq. (11) obtained for the WD symmetry classes.

q Class αq Dq f (αq ) αq + α1−q �q − �1−q

−1 Ort 5.555 (5.490..5.626) 3.926 (3.914..3.938) 2.297 (2.338..2.250) 6.275 (6.042..6.661) − 0.102 (−0.218..0.000)
−1 Uni 5.671 (5.629..5.707) 3.970 (3.966..3.976) 2.269 (2.303..2.245) 6.331 (6.215..6.444) − 0.130 (−0.195.. − 0.062)
−1 Sym 5.751 (5.690..5.799) 4.001 (3.994..4.010) 2.251 (2.298..2.222) 6.379 (6.197..6.584) − 0.134 (−0.237.. − 0.063)
−0.75 Ort 5.225 (5.187..5.267) 3.715 (3.708..3.722) 2.582 (2.599..2.564) 6.153 (5.988..6.353) − 0.035 (−0.094..0.032)
−0.75 Uni 5.333 (5.317..5.349) 3.751 (3.749..3.754) 2.565 (2.573..2.557) 6.176 (6.131..6.239) − 0.062 (−0.098.. − 0.025)
−0.75 Sym 5.406 (5.387..5.430) 3.773 (3.770..3.777) 2.549 (2.558..2.537) 6.221 (6.113..6.349) − 0.060 (−0.114.. − 0.023)
−0.5 Ort 4.876 (4.856..4.896) 3.492 (3.488..3.496) 2.800 (2.803..2.796) 6.061 (5.959..6.149) − 0.008 (−0.045..0.025)
−0.5 Uni 4.975 (4.958..4.994) 3.517 (3.512..3.521) 2.788 (2.789..2.785) 6.103 (6.000..6.167) − 0.009 (−0.025..0.004)
−0.5 Sym 5.030 (5.019..5.039) 3.532 (3.531..3.534) 2.784 (2.787..2.781) 6.103 (6.039..6.206) − 0.019 (−0.041.. − 0.001)
−0.25 Ort 4.488 (4.477..4.499) 3.254 (3.252..3.255) 2.945 (2.946..2.944) 6.016 (5.951..6.094) 0.000 (−0.012..0.010)
−0.25 Uni 4.563 (4.553..4.574) 3.267 (3.266..3.268) 2.943 (2.945..2.941) 6.037 (5.998..6.081) − 0.006 (−0.011..0.002)
−0.25 Sym 4.607 (4.603..4.611) 3.274 (3.274..3.275) 2.941 (2.941..2.941) 6.033 (5.997..6.072) − 0.004 (−0.011..0.003)
0 Ort 4.043 (4.035..4.049) 3 (3..3) 3 (3..3) 5.991 (5.965..6.012) 0 (0..0)
0 Uni 4.094 (4.087..4.101) 3 (3..3) 3 (3..3) 6.000 (5.974..6.026) 0 (0..0)
0 Sym 4.124 (4.121..4.127) 3 (3..3) 3 (3..3) 6.010 (5.999..6.023) 0 (0..0)
0.1 Ort 3.849 (3.843..3.855) 2.895 (2.894..2.895) 2.990 (2.989..2.991) 5.995 (5.978..6.014) − 0.001 (−0.003..0.002)
0.1 Uni 3.890 (3.883..3.897) 2.890 (2.889..2.891) 2.990 (2.988..2.991) 5.997 (5.981..6.014) 0.000 (−0.002..0.002)
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TABLE IV. (Continued.)

q Class αq Dq f (αq ) αq + α1−q �q − �1−q

0.1 Sym 3.913 (3.911..3.915) 2.887 (2.886..2.887) 2.989 (2.989..2.990) 6.005 (5.998..6.013) 0.001 (−0.000..0.002)
0.2 Ort 3.645 (3.638..3.651) 2.789 (2.786..2.790) 2.960 (2.957..2.962) 5.998 (5.985..6.011) − 0.001 (−0.005..0.003)
0.2 Uni 3.678 (3.673..3.684) 2.778 (2.777..2.780) 2.958 (2.956..2.961) 5.999 (5.987..6.011) − 0.000 (−0.004..0.004)
0.2 Sym 3.693 (3.691..3.695) 2.772 (2.772..2.773) 2.956 (2.955..2.957) 5.999 (5.995..6.004) 0.001 (−0.000..0.003)
0.25 Ort 3.541 (3.534..3.547) 2.734 (2.733..2.737) 2.936 (2.933..2.939) 6.000 (5.987..6.012) − 0.001 (−0.006..0.003)
0.25 Uni 3.569 (3.563..3.575) 2.721 (2.720..2.722) 2.933 (2.931..2.935) 5.999 (5.987..6.011) − 0.000 (−0.002..0.001)
0.25 Sym 3.579 (3.577..3.581) 2.715 (2.714..2.715) 2.931 (2.930..2.932) 5.997 (5.992..6.001) 0.001 (−0.001..0.003)
0.3 Ort 3.436 (3.430..3.441) 2.681 (2.678..2.684) 2.907 (2.903..2.911) 6.001 (5.991..6.012) − 0.001 (−0.006..0.004)
0.3 Uni 3.459 (3.453..3.464) 2.665 (2.664..2.666) 2.903 (2.900..2.905) 5.999 (5.987..6.010) − 0.000 (−0.002..0.001)
0.3 Sym 3.465 (3.462..3.467) 2.657 (2.656..2.658) 2.899 (2.898..2.901) 5.995 (5.991..6.000) 0.001 (−0.001..0.003)
0.4 Ort 2.573 (2.570..2.577) − 0.001 (−0.006..0.004)
0.4 Uni 2.551 (2.550..2.553) − 0.000 (−0.002..0.002)
0.4 Sym 2.542 (2.540..2.543) 0.001 (−0.001..0.003)
0.5 Ort 3 (3..3) 2.466 (2.459..2.471) 2.733 (2.730..2.736) 6 (6..6) 0 (0..0)
0.5 Uni 3 (3..3) 2.439 (2.437..2.441) 2.719 (2.719..2.721) 6 (6..6) 0 (0..0)
0.5 Sym 3 (3..3) 2.427 (2.425..2.429) 2.714 (2.712..2.715) 6 (6..6) 0 (0..0)
0.6 Ort 2.358 (2.352..2.366) 0.001 (−0.004..0.006)
0.6 Uni 2.327 (2.325..2.329) 0.000 (−0.002..0.002)
0.6 Sym 2.314 (2.311..2.317) − 0.001 (−0.003..0.001)
0.7 Ort 2.566 (2.561..2.571) 2.252 (2.242..2.263) 2.472 (2.466..2.479) 6.001 (5.991..6.012) 0.001 (−0.004..0.006)
0.7 Uni 2.540 (2.535..2.545) 2.217 (2.214..2.220) 2.443 (2.438..2.448) 5.999 (5.987..6.010) 0.000 (−0.001..0.002)
0.7 Sym 2.530 (2.528..2.532) 2.203 (2.199..2.207) 2.432 (2.429..2.435) 5.995 (5.991..6.000) − 0.001 (−0.003..0.001)
0.75 Ort 2.459 (2.454..2.465) 2.198 (2.186..2.209) 2.394 (2.387..2.401) 6.000 (5.987..6.012) 0.001 (−0.003..0.006)
0.75 Uni 2.430 (2.424..2.436) 2.163 (2.159..2.168) 2.363 (2.358..2.369) 5.999 (5.987..6.011) 0.000 (−0.001..0.002)
0.75 Sym 2.417 (2.415..2.419) 2.148 (2.143..2.156) 2.350 (2.347..2.353) 5.997 (5.992..6.001) − 0.001 (−0.003..0.001)
0.8 Ort 2.354 (2.347..2.360) 2.147 (2.135..2.157) 2.312 (2.304..2.319) 5.998 (5.985..6.011) 0.001 (−0.003..0.005)
0.8 Uni 2.320 (2.314..2.326) 2.111 (2.099..2.125) 2.278 (2.271..2.286) 5.999 (5.987..6.011) 0.000 (−0.004..0.004)
0.8 Sym 2.307 (2.304..2.309) 2.095 (2.090..2.100) 2.264 (2.261..2.267) 5.999 (5.995..6.004) − 0.001 (−0.003..0.000)
0.9 Ort 2.146 (2.135..2.159) 2.046 (2.029..2.060) 2.136 (2.124..2.149) 5.995 (5.978..6.014) 0.001 (−0.002..0.003)
0.9 Uni 2.107 (2.097..2.117) 2.009 (1.991..2.025) 2.097 (2.087..2.108) 5.997 (5.981..6.014) − 0.000 (−0.002..0.002)
0.9 Sym 2.092 (2.088..2.099) 1.988 (1.981..1.997) 2.082 (2.077..2.088) 6.005 (5.998..6.013) − 0.001 (−0.002..0.000)
1 Ort 1.948 (1.930..1.963) α1 α1 5.991 (5.965..6.012) 0 (0..0)
1 Uni 1.905 (1.886..1.925) α1 α1 6.000 (5.974..6.026) 0 (0..0)
1 Sym 1.886 (1.877..1.896) α1 α1 6.010 (5.999..6.023) 0 (0..0)
1.25 Ort 1.520 (1.508..1.535) 1.727 (1.715..1.738) 1.477 (1.418..1.551) 6.009 (5.985..6.034) − 0.001 (−0.006..0.003)
1.25 Uni 1.473 (1.442..1.499) 1.688 (1.660..1.708) 1.422 (1.391..1.457) 6.036 (5.995..6.073) 0.006 (−0.002..0.011)
1.25 Sym 1.437 (1.424..1.450) 1.644 (1.634..1.655) 1.371 (1.338..1.409) 6.044 (6.027..6.061) 0.004 (0.001..0.007)
1.5 Ort 1.185 (1.161..1.206) 1.534 (1.518..1.550) 1.007 (0.912..1.079) 6.061 (6.017..6.102) 0.005 (−0.009..0.019)
1.5 Uni 1.096 (1.073..1.124) 1.468 (1.453..1.483) 0.958 (0.836..1.017) 6.072 (6.031..6.118) 0.009 (−0.004..0.025)
1.5 Sym 1.060 (1.044..1.080) 1.450 (1.437..1.465) 0.889 (0.827..1.011) 6.090 (6.063..6.118) 0.024 (0.015..0.034)
1.75 Ort 0.920 (0.889..0.949) 1.372 (1.349..1.395) 0.590 (0.422..0.818) 6.145 (6.076..6.216) 0.029 (−0.001..0.058)
1.75 Uni 0.841 (0.814..0.873) 1.301 (1.273..1.329) 0.479 (0.459..0.529) 6.175 (6.130..6.222) 0.041 (0.015..0.065)
1.75 Sym no stability 1.262 (1.242..1.290) 0.050 (0.030..0.077)
2 Ort 0.719 (0.683..0.754) 1.231 (1.203..1.256) 0.190 (−0.068..0.727) 6.274 (6.173..6.380) 0.083 (0.031..0.132)
2 Uni 0.622 (0.583..0.690) 1.173 (1.147..1.205) 0.131 (0.039..0.230) 6.293 (6.212..6.396) 0.113 (0.076..0.154)
2 Sym no stability 1.118 (1.099..1.167) 0.120 (0.083..0.184)

rotational symmetry has a very small effect on the MFEs in
three dimensions. Taking a closer look (or from Table IV) one
can see that the curve of Dq and αq are the steepest in the
symplectic class, the second steepest in the unitary class, and
the less steep in the orthogonal class. From Table IV it is also
clear that at most of the q values there is a significant difference
between the MFEs of different symmetry classes.

There are no critical states in the two-dimensional or-
thogonal class [12], but one can find values of α0 for the
two-dimensional unitary class (integer quantum Hall), αU

0 2D =

2.2596 ± 0.0004 [24], and symplectic class, αS
0 2D = 2.172 ±

0.002 [25]. Comparing the difference between these exponents
in two dimensions, we get αU

0 2D − αS
0 2D = 0.0876 ± 0.0024,

while our result for three dimensions is αU
0 3D − αS

0 3D =
−0.03 ± 0.015. There is about a factor of three between the
magnitude of these values, and even their sign is opposite,
which shows very a different effect of presence or absence of
spin-rotational symmetry in different dimensions.

We tested the symmetry relation Eq. (11) for αq and �q ,
the results are listed in Table IV and depicted in Fig. 5. The
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LÁSZLÓ UJFALUSI AND IMRE VARGA PHYSICAL REVIEW B 91, 184206 (2015)

1

1.5

2

2.5

3

3.5

4

-1 -0.5 0 0.5 1 1.5 2

D
q

q

orthogonal
unitary

symplectic

0

1

2

3

4

5

6

-1 -0.5 0 0.5 1 1.5 2

α
q

q

orthogonal
unitary

symplectic

-2

-1.5

-1

-0.5

0

0.5

-1 -0.5 0 0.5 1 1.5 2

Δ
q

q

orthogonal
unitary

symplectic
-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

f
(α

)

α

orthogonal
unitary

symplectic

FIG. 4. (Color online) MFEs of the Anderson models in the WD universality classes. Corresponding data are listed in Table IV.

symmetry relation is fulfilled in the range −0.25 � q � 1.25
(in the symplectic class only for −0.25 � q � 1), and small
deviations are visible outside this interval. In this regime error
bars are growing very large, coming mainly from the large
errors of αq�1.5 and Dq�1.5. Similar effects were already seen
for the critical parameters in Fig. 3. It is really hard to estimate
the correct error bars in this large-q case, and the deviations
from symmetry are small; therefore we believe that differences
appear only because of slightly underestimated error bars of
αq�1.5 and Dq�1.5. All in all we find numerical results that
basically match Eq. (11).

Assuming that �q is an analytic function of q, and using
the symmetry relation, Eq. (11), one can expand �q in Taylor

series around q = 1
2 :

�q =
∞∑

k=0

ck

(
q − 1

2

)2k

=
∞∑

k=0

ck

[
q(q − 1) + 1

4

]k

=
∞∑

k=0

ck

k∑
i=0

(
k

i

)
[q(q − 1)]i

(
1

4

)k−i

=
∞∑

k=1

dk[q(1 − q)]k, (30)

where the condition �0 = �1 = 0 enforced by the definition
of �q [see Eq. (9)] was used in the last step, leading to k = 1
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FIG. 5. (Color online) Test for symmetry relation Eq. (11) in the WD symmetry classes. Points are shifted horizontally a little bit for better
visualization. Only the range q � 0.5 is visible because expression αq + α1−q (�q − �1−q ) is symmetric (antisymmetric) for q = 0.5.
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as the lower bound for the summation. Similar expression can
be derived for αq by using the connection αq = d + d

dq
�q

derived from Eqs. (8) and (9):

αq = d + (1 − 2q)
∞∑

k=1

ak[q(1 − q)]k−1, (31)

where ak = kdk , and a1 = d1 = α0 − d. One can obtain the dk

and ak coefficients by fitting the expressions Eq. (30) and (31).
We used only the range q � 1.25, because beyond this regime
error bars grow extremely large, and there are small deviations
from the symmetry relation (11) also. We plotted �(q)

q(1−q) and
α(q)−d

1−2q
in Fig. 6 to make the presence of higher-order terms of

the expansion visible.
We fit expressions Eq. (30) and (31) up to third order in all

cases, the resulting expansion coefficients are listed in Table V.
From the data listed one can see that the expansion coefficients
fulfill the relation ak = kdk . However αq and �q were obtained
from the same wave functions, they are results of completely
independent fit procedures. Therefore the fact that they satisfy
the equation ak = kdk further confirms our result for their value
listed in Table IV for q � 1.25 and shows the consistency of
the MFSS.

As one would expect for expansion coefficients, dk and
ak show decreasing behavior as k grows. Only d1 and a1

are significantly different for the different symmetry classes,
while d2, d3, a2, and a3 are the same within error bars. Their
real value is probably different, but the relative error of the
expansion coefficients naturally increases as k grows, leading
to indistinguishable values for the different symmetry classes
for k � 2.

Wegner computed analytically [26] the value of �q with
ε expansion using nonlinear σ model up to fourth-loop order
for the orthogonal and the unitary symmetry class, resulting
an expansion in dimensions d = 2 + ε for ε � 1 [12]:

�O
q = q(1 − q)ε + ζ (3)

4
q(q − 1)(q2 − q + 1)ε4 + O(ε5)

=
(

ε − ζ (3)

4
ε4

)
q(1 − q)

+ ζ (3)

4
ε4[q(1 − q)]2 + O(ε5), (32)

�U
q =

√
ε

2
q(1 − q) − 3

8
ζ (3)ε2[q(1 − q)]2 + O

(
ε

5
2
)
.

(33)

Even though ε � 1 should hold, one can try to extrapolate to
three dimensions by inserting ε = 1. This leads to dO

1 ≈ 0.699,
dO

2 ≈ 0.301, dU
1 ≈ 0.707, and dU

2 ≈ −0.451. As one can see,
these values are rather far from our numerical results, but this
is not surprising for an ε expansion at ε = 1. These results
capture well the tendency at least that dO

1 is slightly smaller
than dU

1 . On the other hand it leads to dO
2 and dU

2 having
opposite signs, which is highly inconsistent with our numerical
results. It is interesting that the first-loop term, which is
proportional to ε and leads to parabolic �q , results in dO

1 = 1
and aO

1 = α0 − d = 1, which are very close to our numerically
measured values. In this sense parabolic approximation is
better for the orthogonal class, as compared to the fourth-loop
order approximation. If higher-order terms were obtained, or if
�q were expanded by using another approach, our coefficients

TABLE V. Expansion coefficients of Eqs. (30) and (31) obtained by the fit depicted in Fig. 6.

Ort Uni Sym

d1 1.044 (1.041..1.047) 1.097 (1.095..1.098) 1.123 (1.122..1.125)
d2 0.095 (0.085..0.105) 0.096 (0.091..0.100) 0.088 (0.084..0.093)
d3 0.018 (0.011..0.025) 0.017 (0.014..0.020) 0.014 (0.010..0.017)
a1 1.045 (1.042..1.048) 1.099 (1.096..1.102) 1.124 (1.123..1.126)
a2 0.182 (0.168..0.195) 0.185 (0.174..0.197) 0.185 (0.179..0.191)
a3 0.044 (0.035..0.053) 0.043 (0.035..0.050) 0.044 (0.038..0.049)
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could provide relatively accurate values as compared with
analytical results.

V. SUMMARY

In this paper we examined the three-dimensional Anderson
models belonging to the conventional WD symmetry classes
with the help of multifractal finite-size scaling using two
methods: a simpler method for fixed λ leading to a single-
variable scaling function, and a more complicated one for
varying λ, resulting in a two-variable scaling function. Both
methods confirmed the presence of multifractality in all three
symmetry classes, and we obtained critical parameters listed in
Tables II and III in agreement with each other and with previous
results known from the literature. The more complicated
varying-λ method provided more precise values for the critical
parameters, as listed in Table III, and significantly different
critical exponents for the different WD symmetry classes.

Applying the method of varying λ we also calculated
the multifractal exponents that basically fulfill the expected
symmetry relation Eq. (11), small deviations were detected
for large q values probably due to slightly underestimated
error bars. In Fig. 4 one can see that the MFEs of different
symmetry classes are very close to each other, but Fig. 6

or Table IV shows significant differences between them for
most of the values of q. We compared the difference of α0

in the unitary and symplectic class to available results in two
dimensions and found completely different relations between
the two- and three-dimensional cases. We expanded the MFEs
in terms of the variable q(1 − q), and determined the expansion
coefficients up to third order numerically. The expansion
coefficients of Eqs. (30) and (31) fulfill the expected relation
ak = kdk giving a further confirmation for the validity of our
results for the MFEs listed in Table IV. We also compared the
numerical results to available analytical estimates, and found
in some cases similar, but in other cases opposite, qualitative
behavior for expansion coefficients for the orthogonal and the
unitary classes. Nevertheless, we believe that the numerical
precision of our results should be used as tests for future
renormalization or other type of expansion approximations.
Therefore, our results await analytical comparison.
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