
PHYSICAL REVIEW B 91, 184204 (2015)

Effect of dilute strongly pinning impurities on charge density waves
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We study theoretically the effects of strong pinning centers on a charge density wave in the limit that the
charge density wave coherence length is shorter than the average interimpurity distance. An analysis based on a
Ginzburg-Landau model shows that long-range forces arising from the elastic response of the charge density wave
induce a kind of collective pinning which suppresses impurity-induced phase fluctuations, leading to a long-range
ordered ground state. The correlations induced by impurities are characterized by a length scale parametrically
longer than the average interimpurity distance. Long-wavelength fluctuations are found to be gapped, implying
the stability of the ground state. We also present Monte Carlo simulations that confirm the basic features of the
analytical results.
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I. INTRODUCTION

Recent scanning tunneling microscopy (STM) data [1]
suggest that the charge density wave (CDW) in NbSe2 is a
topologically ordered Bragg glass, at least on the length scales
(∼30 unit cells) accessible in the experiment. Such a glass
phase with a power-law density correlation was predicted
theoretically [2–10] for three-dimensional systems with a
high density of weak pinning centers. However, analysis of
the STM data suggests that the impurities in NbSe2 are
strong pinning centers [1]. In this situation, conventional
theories [11–13] predict short-range order with a correlation
length Lc of the order of the average interimpurity distance l

and with a proliferation of topological defects [8,9], in apparent
contradiction to the experimental result. The NbSe2 sample
studied in Ref. [1] was found to have a CDW coherence length
ξ0 ≈ 1 nm and l ≈ 5 nm, so the pinning centers are dilute (note
that ξ0 is used here to denote the “BCS” coherence length,
which sets the length scale of CDW amplitude fluctuations
and is the ultraviolet cutoff for a Ginzburg-Landau-like theory
of phase fluctuations). This dilute-pinning limit has not been
extensively studied in the literature. Here, we present a
theoretical reexamination of the dilute impurity limit, which
indicates that in this limit unconventional and apparently
previously overlooked physics occurs, invalidating previous
conclusions and leading to long-range order. This paper
amplifies and extends the results presented in Ref. [1] in the
context of an analysis of experimental data.

Our work builds on ideas introduced many years ago by
Abe [14,15], who pointed out the importance of the ratio
between the CDW coherence length ξ0 and the average interim-
purity distance l. A charge density wave is characterized by an
amplitude and a phase. A strongly pinning impurity constrains
the charge density wave phase to take a particular value on
the impurity site (impurities also modulate the amplitude
of the CDW, but this modulation is both small in size and
rapidly decaying in space [1]; thus it may be neglected). Abe
presented a scaling argument indicating that for impurities
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acting as strong pinning centers, one should distinguish two
cases. He argued that when ξ0 < l, the phase is nearly constant,
except in a small region of size ξ0 around each impurity where
the phase varies rapidly to accommodate the values preferred
by the impurities. On the other hand, when ξ0 > l, he argued
that the pinning requirement could be satisfied by a CDW
phase that varies smoothly everywhere, leading to a correlation
length of the order of the interimpurity distance l. Abe’s
analysis demonstrates the importance of the l � ξ0 limit, but
as will be seen below his analysis of this case is not completely
correct. In this paper, we reconsider the l � ξ0 limit, finding
that a screening effect arising from the long-range nature of
elastic forces makes the net effect of impurities weak at long
length scales. The resulting state has no soft elastic modes, so
it is stable against thermal fluctuations if the temperature is
not too high.

In this paper, following Abe, we focus most of our attention
on the ground-state and near-ground-state properties, although
we present some Monte Carlo results based on annealing from
high temperatures. While this is an important first step towards
a full solution of the problem, we note that an analysis of
metastability and glassy behavior is needed for a full solution
to this problem.

The rest of this paper is organized as follows: Sec. II
presents the model we study and provides a formal solution.
Section III presents the details of an analytical solution of a
simplified model in which the impurities are placed on the
sites of a regular lattice, with randomness only entering in
the values of the phases preferred by impurities; effects of
vortices in the CDW phase field and the periodicity of the
pinning potential are also neglected. Thermal excitations are
discussed in Sec. IV. Section V presents a numerical analysis
of the ground state of the model defined in Sec. II, which
confirms that the predictions of the simplified model apply to
the full model. Section VI presents Monte Carlo analyses that
confirm the main aspects of the analytical results and Sec. VII
is a summary and conclusion.

II. MODEL AND FORMAL SOLUTION

Although our work is motivated by experiments on
NbSe2 [1], which has a three-component order parame-
ter, for theoretical simplicity we consider here a generic
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one-component CDW in which the density modulation
δρ(�x) = Re[A(x)ei �Q·�x+φ(�x)] with the CDW amplitude A, phase
φ, and ordering vector �Q. Fluctuations of the CDW amplitude
A are small and are not relevant to the physics considered
here so we take the amplitude A to be constant. We also
assume that all impurities have the same pinning strength
V , with randomness entering via the value θa of the phase
preferred by the impurity at position �xa [see Eq. (1) for a precise
definition]. We believe that the qualitative behavior we uncover
is relevant also to the more complicated three-component,
amplitude-varying case of NbSe2.

Within our assumptions, the Ginzburg-Landau (GL) energy
density is reduced to the phase-only model [12–15],

E(�x) = 1

2
ρS[ �∇φ(�x)]2 − V

∑
a

cos[θa − φ(�x)]δ(�x − �xa),

(1)

where ρS is the CDW phase stiffness (elastic constant) and
the term proportional to V penalizes configurations in which
the phase φ(xa) at site a takes values different from the
value θa preferred by the impurity. We will focus on the
three-dimensional case, since both experimental [16] and
theoretical [17] studies indicate that the CDW in NbSe2 is
not extremely anisotropic.

If Eq. (1) is taken literally as a model defined in the
continuum, the phase variable is noncompact and vortices or
antivortices are forbidden. However, the model applies only at
length scales longer than the BCS CDW coherence length ξ0

which sets the scale of amplitude fluctuations. Physics relevant
on the length scale of ξ0 allows vortex-antivortex excitations
and makes the phase field compact. The model defined by
Eq. (1) arises also as the long-wavelength limit of the lattice
XY model of spins on a lattice with dilute random magnetic
fields, but the short-wavelength physics of this model differs
in detail from that of Eq. (1). In particular, the core energy of
a vortex will not be the same in the two models.

Minimization of Eq. (1) shows that φ obeys the Laplace
equation, ∇2φ = 0, for all �x not within a distance ξ0 of
an impurity site. Under these assumptions, the most general
solution of the Laplace equation is

φ(�x) =
∑

a

θ̄aξ0

|�x − �xa| , (2)

where the θ̄a are variational parameters and Eq. (2) applies only
if |�x − �xa| > ξ0 for all a. For |�x − �xa| < ξ0, we regularize the
formally divergent term in the sum as θ̄a . To determine the
parameters θ̄a , we substitute Eq. (2) into Eq. (1) and minimize
the result with respect to θ̄a . We focus here on the strong
pinning limit, in which we expect that the phase φ(x → xa) ≈
θa , so we can expand the impurity potential up to second order.
We find

E

V
� ε

2

∑
ab

Kabθ̄aθ̄b + 1

2

(
θa −

∑
b

Kabθ̄b + 2πna

)2

(3)

with

Kab ≡ δab + (1 − δab) ξ0/|�xa − �xb| (4)

and ε = 4πρSξ0/V 
 1. The integer na accounts for the
periodicity of the cosine potential. For a single impurity, na �=
0 simply increases the elastic energy compared to na = 0.
We expect that with many impurities, na �= 0 solutions are
generically energetically expensive, although at some sites
na �= 0 may be favored. In this section, we focus for simplicity
on solutions with na = 0, returning to the effects of nonzero
na in Sec. V.

Equation (3) is an analog of a Coulomb gas with the
constraint that the potential take specific values on particular
sites. Minimizing Eq. (3) in terms of θ̄a , we find

θ̄a =
∑

b

Jabθb, (5)

where

J =
∑

b

(εI + K)−1
ab θb (6)

and I is the identity matrix. Substituting Eq. (5) into Eq. (3) and
setting na = 0 yields a total energy E = 2πρSξ0

∑
ab Jabθaθb.

The phase configurations given by the above expressions are,
in general, found to be smooth, although rare vortex-antivortex
pairs occur. These are allowed because the regularization of
1/|x − y| introduced above in effect allows vortex cores of size
ξ0. As will be seen below, vortices are, in practice, induced by
particular impurities that favor phase values very different from
the average. In the calculations we have performed, however,
the vortices are very dilute (typically ∼0.2%; see below).

It is also important to note at this point that what we have
constructed is a formal solution for the phase configuration that
minimizes the combination of elastic and pinning energies.
Whether this configuration can be accessed in an actual or
numerical experiment is a separate question that will be
discussed below.

III. SIMPLIFIED MODEL

The key physics of Eqs. (2) and (3) is that because of the
long-range nature of the elastic forces in a Laplacian problem,
the phase at a given site is determined by the collective
response at many impurity sites. To gain analytical insight
into this physics, we consider a simplified model in which the
impurities on the sites of a cubic lattice with lattice constant
l and the randomness enter only through the values of the
parameters θa . The kernels K [Eq. (4)] and J [Eq. (6)] are
then defined on the points of the lattice of impurities and,
taking �p to be a vector within the Brillouin zone of this lattice
(|px,y | < π/l), we find

K(p) = 1

r2
TFp

2
+ 1 · · · , (7)

while J has the familiar screening form,

J (p) � p2r2
TF

p2r2
TF + 1

+ · · · . (8)

Here, rTF =
√

l3/4πξ0 is a characteristic length that is para-
metrically larger than l, and · · · denotes terms that are smaller
by powers of ξ0/l and of O(ε) relative to the terms that
have been retained. Abe [15] considered a similar scenario
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but assumed a simple exponential form of J (x) instead of the
screening form given by Eq. (8).

The physics encoded in Eqs. (7) and (8) is that the
physical CDW phase at any given point, φ(�x), is determined
collectively, with important contributions from impurities very
far away, and this collective nature of the pinning suppresses
the impurity-induced phase fluctuations. Mathematically, the
phase parameters θ̄a that determine the effect on the CDW
phase of an impurity on site a are not independent, and
indeed have long-range (Coulombic) correlations even for
δ-correlated randomness 〈θaθb〉 ∼ δab. Explicitly, the use of
Eqs. (5) and (8) leads to (we have approximated the Brillouin
zone of the impurity lattice as a sphere of appropriate radius
because we are interested in the long-length-scale behavior)

〈φ(�x)φ(�y)〉 =
∑
ab

〈θ̄a θ̄b〉
|�x − �xa||�y − �xb|

≈ 8ξ 2
0 π2

3l3

∫ 2π/l

0
dp

p sin(p|�x − �y|)
|�x − �y|(p2 + r−2

TF

)2 , (9)

indicating that the phase-phase correlation is characterised
by rTF and, crucially, does not diverge as x → y, indicating
that the root-mean-square phase fluctuation induced by the
impurities remains bounded. Thus, the average of the CDW
order parameter 〈eiφ〉 = e− 1

2 〈φ2〉 is nonzero, so that even in the
presence of impurities the model has long-range order in the
ground state. In other words, the correlation function defined
as

C(�x) ≡ 〈�s(�x) · �s(0)〉 = 〈eiφ(�x)e−iφ(0)〉 (10)

with �s = (cos φ, sin φ) remains nonzero as x → ∞, since
C(x → ∞) → |〈eiφ〉|2.

IV. EXCITED STATES AND THERMODYNAMICS

We now consider states that are not the ground state. These
may be generated in two ways. One may consider states of
the form of Eq. (2) but with parameters θ̄a that do not satisfy
Eq. (5). These solutions will have very high energy because
they violate the pinning conditions, i.e., do not minimize the
term proportional to V in Eq. (1). Alternatively, one may
consider solutions φ(x) which correspond to elastic excitations
about the ground state but with the pinning condition [φ(x →
xa) ≈ θa] satisfied. To obtain such solutions, we write φ as the
sum of a term constructed to satisfy the pinning conditions,
plus an extra term 	; we then write the energy as a function
of 	 after choosing the variational parameters θ̄a such that the
pinning conditions are satisfied. Explicitly,

φ(�x) = 	(�x) +
∑

a

θ̄ ′
aξ0

|�x − �xa| . (11)

	 does not obey the Laplace equation because the configura-
tion does not minimize the energy. The θ̄ ′

a [whose dependence
on 	(x) is not explicitly notated here] are determined by
minimizing the energy for fixed 	(x), in particular insuring
that the impurity pinning condition is fulfilled. By substituting

Eq. (11) into Eq. (1), we obtain

E[	(x)] � ρS

2

∫
d3x(∇	)2 + V

2

∑
a

(

a −

∑
b

Kabθ̄
′
b

)2

+ 2πρSξ0

[∑
ab

Kabθ̄
′
aθ̄

′
b + 2

∑
a

(	a − 	0)θ̄ ′
a

]
,

(12)

where 	a = 	(x = xa) and 
a is the sawtooth function of
(θa − 	a) [in other words, 
(x) = x for −π � x � π and
periodically repeated] introduced to recover the periodicity
2π , and taken to be in [−π,π ]. 	0 is the value of 	 at infinity.
Minimizing Eq. (12) with respect to the θ̄ ′

a gives

θ̄ ′
a =

∑
b

Jab
b, (13)

and substituting this into Eq. (12) leads to (noting that terms of
order ε and the multibranch structure of the sawtooth function
are not important here)

E[	(x)] = ρS

2

[∫
d3x (∇	)2 − 4πξ0

∑
ab

Jab	a	b

]

+ const. (14)

To analyze Eq. (14), we again consider the model in which the
impurities are on a regular lattice of lattice constant l and use
Eq. (8) for the Fourier transform of Jab, obtaining finally

E = ρS

2

∫
d3p

(2π )3

r2
TFp

4

r2
TFp

2 + 1
|	(p)|2. (15)

Since this is positive definite, the ground state must have
	(p �= 0) = 0; long-range order is preserved. The thermal
fluctuation is

δφ ≡ φ −
∑

a

θ̄aξ0

|�x − �xa| , (16)

where the second part is the ground-state configuration with θ̄a

given by Eq. (5). The phase-phase correlation of the fluctuating
part δφ in the thermodynamic limit is found to be

〈δφ(�x)δφ(0)〉 ∼ T

ρS

∫
d �p

(2π )3
ei �p·�x r2

TF

p2r2
TF + 1

. (17)

This function decays exponentially in terms of �x, and,
thus, the long-range order still survives. The nonvanishing
energy required to excite even a long-wavelength fluctuation
originates from the fact that impurities fix the fluctuations at
impurity sites to zero, δφ(xa) = 0.

V. NUMERICAL ENERGY MINIMIZATION

The analysis presented in Sec. III relied on three simplifi-
cations: placing the impurities on a regular lattice so that the
randomness only enters via the value of the phase preferred by
the impurities, neglecting vortex configurations of the phase
field, and ignoring the periodicity of the pinning potential
under φ → φ + 2π . In this section, we numerically investigate
the consequences of relaxing these assumptions. We find
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that the simplifications do not affect the qualitative physics.
However, there is a notable quantitative difference between
the full model and the approximate model of Sec. III arising
from the effects of vortex-antivortex pairs, with correlation
lengths changing by as much as a factor of two.

The probability that vortex-antivortex pairs will be pro-
duced depends both on the CDW stiffness ρS and on the details
of the short-distance physics, which control the core energy
of a vortex. Specifically, the presence of a vortex-antivortex
pair near an impurity site can allow the phase to relax rapidly
from the value preferred by the impurity towards a background
value, thus reducing the elastic energy at the expense of
introducing core energy. The magnitude Ecore of the core
energy depends upon short-distance physics, which is beyond
the scope of this work. To estimate the change in elastic
energy, we assume that the presence of the vortex-antivortex
pair completely screens the impurity, so it is equivalent to
removing one defect from the elastic energy. To estimate the
change in energy arising from removing one impurity, we use
the screened Coulombic form of K−1 and note that the θa are
random variables. From the energy expression below Eq. (6),
we find the elastic energy gain is roughly

Eelastic � 2πρSξ0(1 + ε)−1θ2
a + O(ξ0/l). (18)

The elastic energy gain is thus seen to depend on a property
of the impurity, namely, the phase change it produces, and on
two properties of the CDW: the phase stiffness and a short-
distance cutoff (here specified by the coherence length ξ0).
The net energy cost of creating a vortex-antivortex pair is thus
the sum of Eelastic and the core energy Ecore which general
Ginzburg-Landau considerations suggest should also be of
the order of ρSξ0 [1]. Whether the total energy is positive or
negative thus depends on θ2

a and on an intrinsic property of the
CDW, namely, the ratio

κ = 2πρSξ0/Ecore. (19)

Ecore depends on microscopic details beyond the scope of this
paper. For example, in the XY model, there is a significant
elastic contribution [18] suggesting that Ecore of the XY model
may be larger than the one of the phase-only model, effectively
leading to a smaller value of κ; it is harder to make vortex pairs
in the XY model.

Now we turn to the numerical energy minimization. We
solved the matrix Eq. (5) without any simplifying assumptions
by placing impurities at random on the nodes of a L × L × L

lattice of lattice constant ξ0 with randomly chosen preferred
phases [13,15]. Note that putting the problem on a lattice
is a particular way of imposing an ultraviolet cutoff and,
in particular, permits vortices whose cores reside inside an
elementary plaquette. We calculated K and J numerically but
neglected the periodicity of the pinning potential by setting
(at this stage) the na = 0. Figure 1 compares the analytical
expression for the phase-phase correlation, given by Eq. (9),
to results obtained by averaging the numerical solution of
Eq. (5) over 50 realizations of the impurity potential. We see
that the analytical expression agrees well with the numerical
results. A typical phase configuration of na = 0 computed
for an impurity density nimp = 4% is shown in Fig. 2(a1). It
exhibits a smooth phase modulation with fluctuations of size
l. The lower panel shows the positions of the impurities as

0 1 2 3 4
x/l0.0

0.2
0.4
0.6
0.8
1.0

〈φ(x)φ(0)〉

FIG. 1. Points: normalized phase-phase correlation obtained by
averaging numerical solutions of Eq. (5) over 50 realizations of
randomly placed impurities with l = 5.0ξ0 and linear sample size
L = 60. Dashed line: normalized phase-phase correlation calculated
from Eq. (9).

well as the locations of the vortices and antivortices. We see
that vortices and antivortices occur only in tightly bound pairs,
always near impurity sites. The density of vortices is very low;
nV = 0.2%. Figure 3 shows that the autocorrelation saturates
at a nonzero value as the distance goes to infinity, with the
value independent of the size of the system. We conclude that
this approximation model has long-range order.

We next consider the consequences of the periodicity
of the pinning potential, by allowing configurations with
na �= 0. After minimization over the θ̄ parameters, the energy
expression below Eq. (6) then becomes

E = 2πρSξ0

∑
ab

Jab(θa + 2πna)(θb + 2πnb), (20)

which we now minimize as a function of na . To do this,
we search for the lowest-energy state in the {na} space by
a gradient annealing method. We start from the original state
with na = 0, and cycle through all a. For each a, we propose
the change na → na ± 1. If the change gives a lower energy,
we accept it, and move on to the next a; otherwise, we do
not update na but still move on to the next a. We repeat the
procedure, cycling repeatedly over all impurity sites, until we
get a converged result. For 4% impurities, about 5% to 10%
of the impurities turn out to have nonzero na = ±1. We do
not observe |na| bigger than 1. Initial states with randomly
chosen {na} from {−1,0,1} are always trapped in local minima
with high energy. Typical phase configurations are depicted in
Fig. 2(b1), whose impurity distribution is the same as that of
Fig. 2(a1). We can see from this figure that allowing na �= 0
removes strong local strains by introducing large fluctuations
on a larger length scale than l. Thus, the phase fluctuations of
size l seen in Fig. 2(a1) disappear, leaving a bigger structure
in Fig. 2(b1). The number of vortex-antivortex pairs increases
significantly from na = 0 solutions (nV ≈ 1.4%) [Fig. 2(b2)].

The average energy gain due to a change of one of the na

by unity depends on the concentration of the impurities; it is
well fitted by (Fig. 4)

	E(l/ξ0) ≈ 12.0

(l/ξ0)0.64
, (21)

in the unit of 2πρSξ0. Considering the number of na �= 0, this
is a significant change in total energy; the solution with all
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(b1)
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(c1)

(c2)
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FIG. 2. (Color online) Upper panels are typical phase configurations for the same impurity distributions obtained by three methods: (a)
Eqs. (7) and (8) without na variations, (b) the same as (a) but with na variations, and (c) Monte Carlo simulations. The vortex densities nV are
0.2%, 1.4%, and 0.5%, respectively. Lower panels correspond to the vortex configurations of the same field of views.

na = 0 is of much higher energy than the state we found.
We note that sites with na �= 0 occur mostly when θa is close
to ±π , while other impurities nearby prefer ∓π . Since the
number of impurities inside the sphere of radius rTF grows as
l increases, the fluctuation of local phase at the center of the
sphere, which induces the change of na , decreases; thus, the
energy gain due to changing the value of na at a single site
also decreases as l becomes bigger.

Although the energy of the na = 0 solution is higher than
that of the true ground state, the conclusion that the system
has long-range order does not change even if modifications of

0 5 10 15 20 25 30 x
0.2
0.4
0.6
0.8
1.0

C(x)

GL(L=32)

GL(L=64)

GLn(L=32)

GLn(L=64)

MC(L=32)

MC(L=64)

FIG. 3. (Color online) Autocorrelations based on phase config-
urations obtained from three methods. Blue lines are based on the
numerical solutions of Eqs. (7) and (8) without na variations (labeled
as GL). The ones with na variations are labeled as GLn and plotted
by black lines. Red lines are from Monte Carlo simulations. Dashed
(solid) lines correspond to L = 32 (64).

na are allowed. For example, when we calculate the phase-
phase correlation, now the average over the impurity phases is
replaced by

〈(θa + 2πna)(θb + 2πnb)〉. (22)

We find that the autocorrelation of na’s decays almost imme-
diately over the average interimpurity distance l, indicating
〈nanb〉 ∝ δab. Similarly the correlation between θa and na is
found to be local. Thus, essentially, the calculation leading
to the long-range order does not change. The numerically
obtained autocorrelation indeed indicates long-range order,
although the final value is much smaller than the value without
na variations due to the larger phase fluctuations (Fig. 3).

5 10 15
limp/ξ1

2
3
4
5
6
ΔE

FIG. 4. The impurity density dependence of the energy gain for
each phase slip na = 0 → ±1. The dashed line is the power-law fit
given in Eq. (21).
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VI. MONTE CARLO RESULTS

In order to test our analysis presented so far and to further
understand the physics of the model, we study the phase-only
model, given by Eq. (1), placed on a regular periodic lattice by
a Monte Carlo (MC) simulation. The model is now mapped to a
three-dimensional XY model with random and dilute magnetic
fields,

E = −
∑
〈i,j〉

�si · �sj −
∑
i∈{a}

�hi · �si, (23)

with adjacent sites 〈i,j 〉, random impurity sites {a}, and unit
vectors �si . We consider the hi = ∞ limit with the orientations
of �hi randomly chosen in the range [−π,π ]. This model
captures the same large-distance physics as the phase-only
model, given by Eq. (1), while the short-distance properties
are different; in particular, we expect that κ in Eq. (19) is
smaller.

We perform standard Metropolis Monte Carlo simulations.
During the MC steps, we do not update the spins on impurity
sites. We will count eight over-relaxation steps and two
Metropolis steps as one MC step [19]. Starting from a cold
initial condition, where all θi = 0, the first 2 × 103 MC steps
are used for thermalization and the following 1 × 104 MC steps
are used for measurements. We recorded observables every
25 MC steps. We have found that the autocorrelation time is,
at most, 10 MC steps regardless of the size and temperatures;
it is relatively short due to the over-relaxation steps. The range
of the acceptance rate for Metropolis steps is from 40% to
60%.

First, we focus on a low temperature, T = 0.1, to compare
with the solutions of Eqs. (7) and (8). Typical phase configura-
tions are given in Fig. 2(c1) given the same impurity configu-
rations as Figs. 2(a1) and 2(b1). While both vortex-antivortex
pairs and na variations remove the local strain and lead to a
similar structure in phase configurations, a small number of
vortex-antivortex pairs in MC (nV ≈ 0.5%) does not induce
as much phase fluctuation as na variations; the larger value
of Ecore in the XY model suppresses vortex-antivortex pairs.
In Fig. 3, the autocorrelations based on Eq. (10) are plotted
for L = 32 and L = 64. Compared to the autocorrelations
from the GL analyses, which show rapid saturation to nonzero
values, the ones of the MC simulations show a relatively slow
decay with no apparent saturation. Furthermore, while there
is very little size dependence in the GL calculations, the MC
results depend on the size.

To further investigate this size dependence, we look at the
end-point value of the autocorrelations C(L/2) from L = 16
to L = 128 at various temperatures with nimp = 4% (Fig. 5).
For temperatures well below Tc ≈ 1.9, this is well fitted by a
power law as [20]

C(L/2) ∼ L−η (η ≈ 0.4), (24)

indicating quasi-long-range order. Close to the transition,
T = 1.7, the exponent increases to η ≈ 0.5. Similar size
dependence is checked on magnetization with negligible
difference on the values of η(T ). Therefore, up to the size
available for our simulations, our MC results indicate that
the low-temperature phase has quasi-long-range order, with a
low density of topological defects, i.e., a Bragg glass. However,
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FIG. 5. (Color online) Size dependence of autocorrelations ob-
tained by Monte Carlo simulations at nimp = 4% at various tempera-
tures. Only the data for L � 32 is used for fitting; the data for L = 16
and L = 24 (in the gray area) deviates from the power-law behavior
in the log-log plot due to their small sizes.

the Bragg glass phase found here differs markedly from the
conventional Bragg glass phase with weak disorder [7,8]; the
correlation- length exponent we find, η ∼ 0.4, is much smaller
than the conventional value, ηBG ∼ 1.0.

We do not have a definitive interpretation of the differences
between our MC results and the results obtained by energy
minimization, nor a clear account of the difference in exponent
relative to the conventional Bragg glass phase. One possibility
is that frustration (glassy behavior) prevents the calculations
from accessing the analytically determined ground state; a
second possibility is that the behavior revealed in the MC
calculations is a crossover, visible over a much wider range
because the short-length-scale physics of the XY model is
different from that of the phase-only model. In this scenario,
the anomalously small exponent would be an artifact of the
crossover region, with the true behavior being a saturation at
longer scales. Determining the behavior at longer length scales
is an important open question.

VII. CONCLUSIONS

In summary, we investigated the effect of dilute (long
interimpurity distance compared to coherence length) but
strong impurities on a CDW state. We find that an effect
analogous to screening arising from the long-range nature
of the elastic forces associated with the pure CDW state
substantially suppresses phase fluctuations and leads to a
state with long-range order. The state is characterized by a
screening length parametrically larger than the interimpurity
distance. Numerical simulations of two models (the phase-only
model and a XY model), whose small-wavelength limits are
the same, confirm this basic picture. However, the quantitative
behaviors are found to be different. For the phase-only model,
we find long-range order without size dependence. On the other
hand, our Monte Carlo simulations of a XY model indicate
that the low-temperature state is characterized by power-law
correlations with an unusual exponent of ≈ 0.4. We suggest
the apparent exponent is a crossover phenomenon due to the
finite-size effects, but the issue warrants further research.

184204-6



EFFECT OF DILUTE STRONGLY PINNING IMPURITIES . . . PHYSICAL REVIEW B 91, 184204 (2015)

An important generic issue in random-field systems in-
cluding pinned charge density waves is glassy behavior. Our
simulations to date have not indicated strong evidence of
metastability or slow dynamics when started in “cold” initial
states, but with random initial conditions, we sometimes see
that the system is trapped in an atypical metastable state with
high energy.

Before we conclude, we briefly touch on several relevant
Monte Carlo simulations for the three-dimensional XY model
with random magnetic fields. Gingras and Huse studied
a XY model with random magnetic fields applying on all
sites [21]. Their findings suggest vanishing of vortices at weak
magnetic fields at low temperatures. Fisch considered q = 6
and 12 Potts models with dilute, but infinitely strong magnetic
fields, and found long-range order at low temperatures and

quasi-long-range order at intermediate temperatures for nimp =
6.25% [22]. These results are qualitatively consistent with our
basic finding of long-range order in this random-field model.
Recently, Proctor and Chudnovsky [23] presented a very
detailed large-scale numerical study of the issues raised both
here and in Ref. [1], finding results in general agreement with
ours but providing much more information on metastability.
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