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Wave transport in one-dimensional disordered systems with finite-size scatterers
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We study the problem of wave transport in a one-dimensional disordered system, where the scatterers of the
chain are n barriers and wells with statistically independent intensities and with a spatial extension lc which may
contain an arbitrary number δ/2π of wavelengths, where δ = klc. We analyze the average Landauer resistance
and transmission coefficient of the chain as a function of n and the phase parameter δ. For weak scatterers, we
find: (i) a regime, to be called I, associated with an exponential behavior of the resistance with n; (ii) a regime,
to be called II, for δ in the vicinity of π , where the system is almost transparent and less localized; and (iii)
right in the middle of regime II, for δ very close to π , the formation of a band gap, which becomes ever more
conspicuous as n increases. In regime II, both the average Landauer resistance and the transmission coefficient
show an oscillatory behavior with n and δ. These characteristics of the system are found analytically, some of
them exactly and some others approximately. The agreement between theory and simulations is excellent, which
suggests a strong motivation for the experimental study of these systems. We also present a qualitative discussion
of the results.
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I. INTRODUCTION

The problem of wave transport in disordered systems has
been extensively studied in the literature, both for uncorrelated
disorder (see, e.g., Ref. [1–8] and references therein) as
well as for the case in which the disordered potential shows
correlations [2,9–15].

Common features of the problems investigated by our
group in Refs. [7,8] are that (i) uncorrelated disordered is
contemplated and (ii) the size of the individual scatterers that
compose the disordered system is the smallest one occurring
in the problem: In particular, it is much smaller than the
wavelength of the wave sent along the waveguide and is thus
of no physical relevance. In these models, each individual
potential, statistically independent from the others, is modeled
by use of a delta function, and the distance between successive
scatterers is subsequently taken to be very small, which
allows us to consider the so-called dense weak-scattering limit
(DWSL), an important ingredient in the analysis carried out in
those references. Various quantities of physical interest were
investigated within this framework, like the conductance, its
fluctuations, and the individual transmission coefficients of
the disordered system. A particularly attractive property that
was found is the insensitivity of the results to details of the
individual-scatterer statistical distribution, expressed in the
form of a central-limit theorem.

In the present paper we build on previous work [16] to
study the simplest extension of the problems contemplated in
Refs. [7,8]: the problem of wave transport in one-dimensional
(1D) disordered systems, in which the various scatterers have a
finite size. Specifically, we consider a succession of n barriers
and wells, to be referred to, generically, as steps, having a
finite width. The potential under study is shown schematically
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in Fig. 1. It contains n steps, assumed to be weak compared
with the energy E. The steps are characterized by:

(i) a fixed width lc which may fit an arbitrary number of
wavelengths δ/2π , where the parameter δ = klc, k being the
wave number of the incident wave, will be referred to as the
phase parameter;

(ii) random heights Vr (r = 1, . . . ,n), where the n heights
Vr are statistically independent of one another; the n distri-
butions are uniform, with zero average, and identical to one
another.

The same model has been analyzed in Ref. [17], using a
mapping to a “classical phase space” and iterating that map.

Systems with similar characteristics have been studied in
the past and denoted as periodic-on-average systems, and
authors would speak of Kronig-Penney-like models (see, e.g.,
Refs. [2,18–22]), e.g., they study models where all 1D states
are localized, but one group shows regular Anderson behavior,
and a second group, related to gap states, has nonuniversal
properties [18]. Also, the localization length is found to be
very small in the gaps and much larger in the bands [19].
In Ref. [20], the surprising result is found whereby the
transmission coefficient for frequencies associated with the
gap in the band structure of the periodic system increases with
increasing disorder for sufficiently weak disorder.

In the problem to be studied in the present paper (along the
lines of the model outlined above), we elaborate on previous
investigations on disordered systems which are periodic on
average and carry on the following analysis:

(i) We also find two regimes with different localization
properties, whose “evolution” we study in great detail as
function of δ (for fixed lc, this means as function of the incident
momentum k) and n.

(ii) We study in detail the transition between the two
regimes; interestingly, in the transition region the problem
exhibits interference fringes that give an oscillatory behavior.

(iii) We can perform such a detailed study thanks to the
fact that we are able to provide an exact theoretical solution
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for the average resistance of the system. We verify this exact
solution by means of computer simulations.

(iv) In addition to the exact solution, we also provide a
more qualitative analysis, based on: (a) perturbation theory,
which gives better physical insight, and (b) the behavior of a
finite stretch of a periodic Kronig-Penney model.

To carry on this program, the physical quantities we
study are the Landauer resistance of the chain [23] and
its Landauer-Büttiker conductance [24] (e2/h)T (R and T

being the reflection and transmission coefficients of the chain)
averaged over an ensemble of realizations, as functions of the
number of scatterers n and the phase parameter δ.

The point of view adopted in the present paper is very
much oriented towards condensed matter, although the results
are actually much more general, as they have to do with wave
propagation. We may mention that in the domain of ultracold
atoms, Anderson localization has been studied and, more
impressively, localized matter waves—in a Bose-Einstein
condensate—have been observed (see, e.g., Refs. [25–28]).
The potential considered is a “speckle potential,” an example
of a correlated disorder with correlation length σR . It
is remarkable that a transition is observed for kσR ∼ 1,
reminiscent of the transition for klc ≈ π that we observe in
our model: It is as if our “steps” could be considered as a
potential completely correlated for distances smaller than lc
and completely uncorrelated for distances larger than lc.

The paper is organized as follows. In the next section
we describe the theoretical model using the transfer-matrix
technique. Section III studies the exact theoretical results for
the average Landauer resistance R/T of the chain, as well
as the results of computer simulations. We first discuss the
average Landauer resistance as a function of the number of
scatterers n for fixed values of δ, a novel feature of these results
being their oscillatory behavior. We develop a perturbation
theory for values of δ not too close to π , which gives a
qualitative understanding of the oscillations. We then discuss
the average Landauer resistance as a function of δ for fixed
n. The remarkable fact is that we observe the “formation of
a gap” very close to δ = π (this region will be designated
as δ ≈ π ). In Sec. IV we perform a similar study for the
average transmission coefficient of the chain. In this case, the
theoretical results are subject to a number of approximations
and are compared with computer simulations, the agreement
between both being excellent. Just as in the case of the
resistance, salient features of the results are, on the one hand,
their oscillatory behavior and, on the other, the formation of
the gap observed for δ ≈ π . In Sec. V we present a more
qualitative explanation of the formation of the gap, based on:
(i) perturbation theory and (ii) the analogy with a finite stretch
of a periodic Kronig-Penney model. We finally conclude in
Sec. VI. A number of appendices are added in order not to
interrupt the presentation in the main text.

II. THE THEORETICAL MODEL

In this section we give a theoretical treatment of the 1D
system whose potential, represented schematically in Fig. 1,
was described in the Introduction. The r-th scatterer of the
chain is shown in Fig. 2 for the case of a barrier, Vr > 0; the
definitions given below and in the figure also apply to a well,
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FIG. 1. Schematic representation of an array of n steps of random
height Vr (r = 1, . . . ,n) possessing a fixed spatial width lc. The
incident energy E is taken larger than all the |Vr |’s. Also indicated is
the “initial system” with n scatterers and the addition of the building
block (BB) consisting of the (n + 1)-st scatterer.

letting Vr < 0. In the region of the barrier, the energy Ēr and
the wave number k̄r are given by

Ēr = E − Vr, (2.1a)

(k̄r )2 = k2 − Ur, (2.1b)

where

Ur = 2mVr

�2
, k2 = 2mE

�2
. (2.2)

Notice that k is the wave number in the absence of barriers.
We also introduce the dimensionless parameter

yr = Url
2
c = Ur

k2
(klc)2 ≡ Ur

k2
δ2, (2.3)

as a convenient measure of the intensity of the step potential.
The transfer matrix for the r-th scatterer has the structure

Mr =
[
αr βr

β∗
r α∗

r

]
, (2.4)

with the condition |αr |2 − |βr |2 = 1, so it fulfills the properties
of flux conservation and time-reversal invariance [7]. For
an incident energy E above a barrier (0 < yr < δ2), or for

E

(r - 1)l

E ∝ k 2

V  ∝ Ur

x

r

E  ∝ kr r
2

Vr

rlcc

FIG. 2. Schematic representation of the r-th scatterer of the chain
for the case of a barrier. It has a fixed spatial width lc and height Vr .
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arbitrary E in the case of a well, we find

αr = e−iδ

[
cos(

√
δ2 − yr ) + i

2δ2 − yr

2δ
√

δ2 − yr

sin(
√

δ2 − yr )

]

≡ α̃r , (2.5a)

βr = −ie−i(2r−1)δ yr

2δ
√

δ2 − yr

sin(
√

δ2 − yr )

≡ −ie−i(2r−1)δβ̃r , (2.5b)

where the quantities α̃r and β̃r are independent of the “running-
phase” factor exp(−2irδ). The transfer matrix associated with
a chain containing n (nonoverlapping) steps will be denoted
by (lower indices refer to individual scatterers)

M(n) = Mn · · · Mr · · · M2M1 (2.6a)

=
[

α(n) β(n)

(β(n))∗ (α(n))∗

]
=

[
eiϕ(n)

0
0 e−iϕ(n)

]

×
[√

1 + λ(n)
√

λ(n)√
λ(n)

√
1 + λ(n)

] [
eiψ (n)

0
0 e−iψ (n)

]
.

(2.6b)

Here ϕ(n) and ψ (n) are phases and λ(n) is the “radial” pa-
rameter in the polar representation of the transfer matrices [7].

Quantities of particular physical interest are the Landauer
resistance [23] λ(n) of the chain

λ(n) = |β(n)|2 = R(n)

T (n)
(2.7a)

and its dimensionless Landauer-Büttiker conductance given
by the transmission coefficient

T (n) = 1

1 + λ(n)
. (2.7b)

The ensemble of chains described in the Introduction is de-
fined by assuming that the yr ’s (r = 1, . . . ,n) are statistically
independent of one another, each being uniformly distributed
in the interval (−y0,y0). This is equivalent to saying that,
for fixed lc, each Ur is uniformly distributed in the interval
(−U0,U0), with y0 ≡ U0l

2
c . If each chain is represented as in

Eq. (2.6), the ensemble of chains is described by an ensemble
of transfer matrices.

It is relevant here to comment on the dependence of the
physical quantities of interest on the parameters that we have
introduced. Notice that, although the transfer matrix for a
single scatterer depends, in principle, on the three parameters
E,Ur,lc, Eqs. (2.5) show that these parameters occur in the
combinations δ and yr . Thus, for the full chain of n scatterers
and a specific realization of disorder, a quantity like the trans-
mission coefficient T (n) depends on the various parameters as

T (n) = f (δ,n,y1, . . . ,yn) . (2.8)

Its ensemble average is thus given by

〈T (n)〉 =
∫

· · ·
∫

f (δ,n,y1, . . . ,yn) py0 (y1)

· · · py0 (yn) dy1 · · · dyn (2.9a)

= F (δ,n,y0), (2.9b)

which is seen to depend on the three parameters δ, n, and y0

only.

III. AVERAGE LANDAUER RESISTANCE

We assume that the original system of n scatterers is
extended with the addition of one scatterer, to be called a
“building block” (BB), as shown in Fig. 1. The resulting
transfer matrix is given by

M(n+1) = Mn+1M(n). (3.1)

From this combination rule we find the recursion relation
for Landauer’s resistance of the chain, averaged over the
ensemble, given in Appendix A, Eqs. (A1). Notice that
Eqs. (A1) couple the average resistance of the chain, 〈|β(n)|2〉,
to the quantity 〈α(n)β(n)〉. The recursion relations (A1) are exact
and thus take into account all multiple-scattering processes
occurring in the chain.

Equations (A1) can be written as a recursion relation for
the quantities

A(n) = 1 + 2〈|β(n)|2〉, (3.2a)

b(n) = e2inδ〈α(n)β(n)〉, (3.2b)

which is given explicitly in Eq. (A2). Using the definition

z(n) =
[
A(n)

2
,
ib(n)√

2
, − ib∗(n)√

2

]T

, (3.3)

(T meaning transpose), we see that Eq. (A2), in turn, has the
simple structure

z(n + 1) = 
y0 (δ)z(n). (3.4)

We have assumed that all the individual scatterers are
equally distributed, so the various BB averages can be
evaluated for the first scatterer. In Eq. (3.4), 
y0 (δ) is the 3 × 3
matrix appearing on the right-hand side of Eq. (A2). The matrix

y0 (δ), which depends on y0 and δ, will be denoted by 
, for
short, when no confusion arises. The various BB averages
appearing in 
 are to be evaluated using the expressions of
Eqs. (2.5).

The matrix 
 we have defined is complex symmetric and
independent of n. Thanks to this last property, the solution of
Eq. (3.4) for arbitrary n can be written as

z(n) = 
nz(0), (3.5a)

z(0) = [1/2,0,0]T . (3.5b)

This is done in detail in Appendix B, through the diagonaliza-
tion of the matrix 
.

For the average Landauer resistance [see Eqs. (2.7a) and
(3.2a)] we obtain

〈λ(n)〉 = 1
2 [A(n)−1]. (3.6)

A. Average Landauer resistance in regime I as function
of the number of scatterers n

Assume δ is far from π ; e.g., for δ = π/2, the three unper-
turbed eigenvalues of 
0 are {μ(0)

1 ,μ
(0)
2 ,μ

(0)
3 } = {1,−1,−1}.

We call regime I the region in which {μ(0)
2 ,μ

(0)
3 } are far away

from μ
(0)
1 , so they may be considered effectively decoupled
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when we turn on a weak interaction, y2
0 	 1. We then restrict

ourselves to the 1 × 1 block of 
 in Eq. (A2) consisting of the
11 matrix element and write the solution, Eq. (3.5a), as

A(n) ≈ 
n
11A(0) = (1 + 2〈|β1|2〉)n

= e2n 1
2 ln(1+2〈|β1|2〉) ≡ e2nlc/�, (3.7)

which defines the parameter �, to be interpreted below.
Equation (3.7) is the well-known exponential behavior found
by Landauer [23], where, in the present case,

lc

�
= 1

2
ln(1 + 2〈|β1|2〉), (3.8)

where β1 refers to the first scatterer. In the WSL, 〈|β1|2〉 =
〈R1/T1〉 	 1, and we can write

lc

�
≈ 〈|β1|2〉 = 〈R1/T1〉 ≈ 〈R1〉, (3.9a)

so

1

�
≈ 〈R1〉

lc
. (3.9b)

Thus 1/� is, approximately, the reflection coefficient per
unit length: We shall identify it with the inverse of the mean
free path (mfp) [8], which, in the present 1D problem, is of the
order of the localization length.

Explicitly, Landauer’s resistence for the chain consisting of
n scatterers in regime I takes the form

〈|β(n)|2〉 = 1
2 (e2nlc/�−1). (3.10)

Using Eq. (2.5b), we can express 〈|β1|2〉 appearing in (3.8) as
function of δ and y0 as

〈|β1|2〉 =
〈

y2
1

4δ2(δ2 − y1)
sin2(

√
δ2 − y1)

〉
. (3.11)

Although this average can be computed analytically and
expressed in terms of cosine-integral functions, in future cal-
culations it will be more convenient to compute it numerically.
However, it is worth noticing that in the WSL it can be
expanded in powers of y0/δ

2, giving the rather compact and
transparent expression

〈|β1|2〉 = lc

�̃
+ O

(y0

δ2

)4
,

lc

�̃
= y2

0

12δ4
sin2 δ. (3.12)

Notice that in the present problem the mfp depends on the
phase parameter δ.

We now compare the theoretical result of Eq. (3.10) with
numerical simulations. In the WSL we have y0/δ

2 	 1; we
fix y0 = 0.09 and consider δ in the interval (1,2.9). Figure 3
shows the theoretical results and numerical simulations for the
average Landauer resistance as functions of the length n of
the chain for various values of δ in the above interval: The
agreement is excellent, indicating that the decoupling leading
to the simple equation (3.10) for the resistance, as well as the
expression (3.12) for the mfp are very good approximations.

The results indicate the tendency of the system to delocalize,
with a corresponding increase in the mfp, as the phase
parameter δ increases towards π .

B. Average Landauer resistance in regime II as function
of the number of scatterers n

In the region 2.9 � δ � 3.4, {μ(0)
2 ,μ

(0)
3 } are not far enough

away from μ
(0)
1 to be effectively decoupled. We shall see that

a novel behavior shows up as a consequence of the coupling.

1. The behavior of the average resistance for δ = π

For δ = π , the three μ(0)
a are degenerate and equal to 1. In

this case, and for weak scattering, i.e., y0 	 1, 
 takes the
approximate form given in Eqs. (A4).

Theoretical results [obtained diagonalizing 
 of (A4) nu-
merically] and computer simulations for the average Landauer
resistance for δ = π are also shown in Fig. 3 as a function of
n. The excellent agreement between the two results indicates
that writing 
 as in Eqs. (A4) is a good approximation. What
we learn is that the system is less delocalized for δ = π than
for neighboring values of δ: i.e., the tendency to delocalize as
δ moves towards π is reversed for δ = π , where we notice an
enhancement of the average resistance.

2. Perturbation theory for δ not too close to π

For δ not too close to π , so the unperturbed eigenvalues do
not become degenerate, we may use perturbation theory (PT)
in the parameter y0 to find approximate expressions for the
eigenvalues and eigenvectors of the matrix 
 appearing in the
recursion relation (3.4), as is briefly discussed in Appendix
C. We write 
y0 (δ) = 
0(δ) + �
y0 (δ) as in Eqs. (A3) and
consider �
y0 (δ) as a perturbation; the latter contains the BB
expectation values appearing in Eq. (A2). The perturbation can
be calculated analytically in leading order in y2

0 , as we did with
〈|β1|2〉, Eq. (3.12). However, just as we mentioned right below
Eq. (3.11), it is convenient to have an exact expression for
these BB quantities to have a better control on the perturbation
expansion: They were thus evaluated numerically.

Figure 4 shows the results of perturbation theory and
simulations for the average Landauer resistance as a function
of n for four values of δ. A salient novel feature of these results
is their oscillatory behavior as a function of n; in the case of
scatterers with a vanishing size and for a fixed wavelength
as in previous studies [8], oscillations with the present origin
were absent. This behavior can be understood as follows. From
Eq. (C2), A(n) has the structure

A(n) ∼ A1e
n ln(1+�μ1) + [

A2e
n ln(e2iδ+�μ2) + c.c.

]
, (3.13)

where A1, A2 are constants independent of n and �μi = μi −
μ

(0)
i . For δ = π + ε and neglecting �μi ,

en ln e2iδ = en2iδ = e2in(π+ε) = e2inε . (3.14)

This result oscillates with n, with a period τn that satisfies
2ετn = 2π , so, for δ fixed, we estimate

τn ∼ π

ε
. (3.15)

This estimate for the period τn is independent of y0; it decreases
as δ moves away from δ = π and is consistent with the results
of Fig. 4.
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FIG. 3. Theory and computer simulations for 〈(R/T )(n)〉 as a function of n for the 1D system described in the text. For the numerical
simulation, an ensemble of 104 realizations was used. Results are shown in regime I for a number of δ’s: (a) 1 < δ < 2 and (b) 2.3 < δ < 2.9;
δ = π , from regime II, is also shown. We can observe the localization properties described in the text. We chose the parameter y0 = 0.09. The
error bar due to the finite sample size is very small and is not indicated in the figure: e.g., for δ = π/2 and n = 5000, the error is ∼10−2.

3. Exact solution for δ very close to π (δ ≈ π )

If δ is very close to π , perturbation theory fails and 
 has
to be diagonalized exactly. This has been done for a number
of cases, shown in Fig. 5. The analytical results are a plot
of the solution for the average Landauer resistance given
in Eqs. (3.6), in which the matrix 
y0 (δ) was diagonalized
numerically. These results, which are essentially exact, have
been verified with the aid of computer simulations, also shown
in the figure. Notice again the oscillatory behavior of the
resistance as a function of n: the period τn of the oscillations
decreases as δ goes away from π , as we already noted in
relation with Eq. (3.15).

C. Average Landauer resistance in regimes I and II as function
of δ for fixed n

We gain a global picture of the two regimes if we study the
behavior of the average resistance 〈R/T 〉 for a fixed length n

of the chain as a function of the phase parameter δ.
Figure 6 shows the analytical results for n = 5000 scatterers

and 1 < δ < 4, covering regimes I and II. We observe in
Fig. 6(a) that the average resistance decreases as δ moves
towards π , in agreement with the picture we have described
of the system becoming more delocalized. The theoretical
curve corresponding to regime I (1 < δ < 2.9 and δ > 3.4)
was again obtained from Eq. (3.10), the comparison with the
simulation being excellent.
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FIG. 4. (Color online) Perturbation theory and computer simulations for 〈(R/T )(n)〉 as a function of n for δ = 3.1200,

3.1280,3.1300,3.1380 and y0 = 0.09. Perturbation theory was carried out up to second order in �
 in the eigenvalues and the eigenvectors.
The description is reasonable, especially in the first three cases [(a), (b), and (c)]; in the fourth case (d) the agreement deteriorates, as δ is too
close to π . Notice the oscillatory behavior as a function of n. The insets in (a), (b), and (c) are a zoom of the results for the first few oscillations.
The estimate of the period from Eq. (3.15) is indicated in each panel and is consistent with the numerical data.
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FIG. 5. Numerical simulations and analytical solution for 〈(R/T )(n)〉 vs n, obtained diagonalizing numerically the matrix 
y0 (δ), for
y0 = 0.09 and for four values of δ ≈ π : [(a)–(c)] δ = 3.1380,3.1400,3.1405; (d) δ = π . The analytical solution is essentially exact. The results
are symmetric around δ = π in the vicinity of this value. As a verification of the theoretical results, also shown are computer simulations using
an ensemble of 104 realizations. For δ = π , the statistical error bar is smaller than 10−5 and is not indicated. The estimate from Eq. (3.15) of
the period τn of the oscillations is indicated in each panel and is consistent with the numerical simulations and the analytical results.
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FIG. 6. Theory and numerical simulations for 〈(R/T )(n)〉 as a function of δ, for a chain of n = 5000 scatterers and for y0 = 0.09, in regimes
I and II. The simulations use 105 realizations. In regime II, Eqs. (3.6) and (B6) were employed, diagonalizing numerically the matrix 
; the
computer simulations (with a statistical error bar ∼10−5 for δ = π ) constitute a verification of the theoretical results. Well inside regime II, we
observe the dramatic enhancement of the average resistance by nearly three orders of magnitude, explained in the text. The inset in panel (a)
and panels (b) and (c) show this latter region in greater detail. Notice the oscillatory behavior of the average Landauer resistance as a function
of δ for fixed n. The period of the oscillations can be estimated from Eq. (3.16) as τδ ∼ 6 × 10−4, which is consistent with what we observe in
the figure (in spite of δ being quite close to π ).
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In regime II, the matrix 
 was diagonalized as before.
These results were verified by computer simulations, also
shown in Fig. 6. In agreement with the earlier discussion of
Fig. 3, we observe that well inside regime II the propensity
of the average resistance to decrease as δ moves towards π is
reversed, indicating the formation of a gap. A discussion of
the physical interpretation of this phenomenon will be given
in Sec. V.

The inset in Fig. 6(a) exhibits an oscillatory behavior of
the average Landauer resistance as a function of δ for fixed
n. Again, this effect was not there in earlier studies in which
the scatterers had a vanishing size. We can estimate the period
from the perturbative result given in Eq. (3.14) as

τδ ∼ π

n
, (3.16)

if δ is not too close to π .

IV. AVERAGE TRANSMISSION COEFFICIENT
(LANDAUER-BÜTTIKER CONDUCTANCE)

A. Average transmission coefficient in regime I as function
of the number of scatterers n

In this section we analyze the average transmission co-
efficient 〈T 〉 in regime I for the chains that we have been
studying. Since for this quantity we have not succeeded in
finding a recursion relation of the type obtained in Eq. (3.4) for
the average Landauer resistance, we resort to an approximate
treatment.

From Eq. (3.7), valid in regime I, and treating n approxi-
mately as a continuous variable, we write

∂A(n)

∂n
≈ 2

lc

�
A(n). (4.1)

In terms of the polar representation [7] already employed in
previous sections, i.e., λr = |βr |2 for the r-th scatterer and
λ(n) = |β(n)|2 for the chain consisting of n scatterers, Eq. (4.1)
becomes

∂〈λ〉s
∂s

= 1 + 2〈λ〉s , (4.2)

where

s = nlc/� = L/�. (4.3)

This “evolution” with s of 〈λ〉s coincides with that found from
the evolution equation for the λ probability density, ws(λ),
known as Melnikov’s equation [7,29],

∂ws(λ)

∂s
= ∂

∂λ

[
λ(1 + λ)

∂ws(λ)

∂λ

]
. (4.4)

We propose the validity of Melnikov’s equation for regime I
and verify the consequences numerically. In particular, from
this assumption we can find the statistical properties of the
transmission coefficient T which, in terms of λ, can be written
as

T = 1

1 + λ
; (4.5)

indeed, from Melnikov’s equation (4.4), the expression for the
p-th moment of T can be reduced to quadratures, with the
result [16]

〈T p〉 = 2e−s̃/4

�(p)

∫ ∞

0
e−s̃t2

∣∣∣∣�
(

p − 1

2
+ it

)∣∣∣∣
2

t tanh(πt)dt,

(4.6)
from which we find the first moment as

〈T 〉 = 2e−s̃/4
∫ ∞

0
e−s̃t2

πt[tanh(πt)/ cosh(πt)]dt. (4.7)

In Fig. 7 we compare result (4.7) with numerical sim-
ulations obtained for various values of δ in regime I as a
function of the length n of the chain: The agreement is
excellent, indicating that the approximation involved in using
Melnikov’s equation is reasonable. The localization properties
are consistent with what we observed for the resistance in
Fig. 3: The transmission reduction shown in Fig. 7(b) is also
consistent with the resistance enhancement shown in Fig. 3(b).

0 1500 3000 4500
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0.6

0.8

1

0 1500 3000 4500

0.98

0.99

1

Simulation
Theory δ=1

δ=π/2

〈T
〉

n

δ=1.3

δ=1.8

δ=2

δ=2.3 δ=2.5

δ=2.7

δ=2.9
(a) (b)

n

δ=π

reduction
Transmission

FIG. 7. Theory and numerical simulations for the average transmission coefficient 〈T 〉 as a function of the number n of scatterers and for
various values of the phase parameter δ in regime I, in the ranges (a) 1 < δ < 2 and (b) 2.3 < δ < 2.9, as in Fig. 3. For the simulation, an
ensemble of 104 realizations was used. As usual, we chose the parameter y0 = 0.09. The theoretical results, obtained from Eq. (4.7), lie on top
of the numerical ones. The error bar due to the finite sample is not indicated in the figure: e.g., for δ = π/2 and n = 5000, the error is ∼10−2.
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FIG. 8. The theoretical average transmission coefficient 〈T 〉 vs n, obtained from the approximation of Eq. (4.8), for y0 = 0.09 and for four
values of δ ≈ π : [(a)–(c)] δ = 3.1380,3.1400,3.1405 and (d) δ = π (as in Fig. 5), compared with numerical simulations. The agreement is
excellent, suggesting that the approximation of Eq. (4.8) is justified. The estimate from Eq. (3.15) of the period τn of the oscillations is indicated
in each panel and is consistent with the analytical results and the numerical simulations.

B. Average transmission coefficient in regime II as function
of the number of scatterers n

In regime II, the theoretical analysis uses the approximation
[see Eq. (2.7b)]

〈T 〉 ≈ 1 − 〈λ〉, (4.8)

since 〈λ〉 	 1 (see Fig. 6), and 〈λ〉 is obtained from the results
of the previous section which make use of the exact recursion
relation (3.4) and diagonalization of the matrix 
. The results,
together with numerical simulations, are shown in Fig. 8 for
δ = π and very close to π . From the excellent agreement we
see that our basic approximation, Eq. (4.8), appears justified.

Again, the oscillations shown in Fig. 8 are a novel feature
of these results, arising from finite-size scatterers. The period
τn of the oscillations can be taken over from the footnote to
Fig. 5 and is consistent with what we observe in Fig. 8.

C. Average transmission coefficient in regimes I and II
as function of δ for fixed n

Just as we did in the case of the resistance in Sec. III C, we
now analyze the behavior of the average conductance 〈T 〉 for a
fixed length n of the chain as a function of the phase parameter
δ. Figure 9 shows the analytical and numerical results for n =
5000 scatterers and 2.5 < δ < 4, covering regimes I and II.
In regime I, the analytical results are obtained from Eq. (4.7),
which gives an excellent description of the data. In regime II,
the analytical results are obtained from Eq. (4.8) and 〈λ〉 is
extracted from the results of Sec. III.

Figure 9 shows that the average conductance exhibits a
“gross structure” in the form of a “bump.” For the case of
weak scatterers, the system is almost transparent in regime II,

and regime I is more localized. This gross-structure behavior
is not entirely surprising. A single barrier with fixed width
and strength becomes completely transparent (T = 1) at the
resonance values k̄lc = nπ , n = 1,2, . . . , where k̄ is the wave
number in the region of the barrier (δ � π for low barriers).
For a well, T = 1 at δ � π . For a fixed step width and random
strength with zero average, and still for n = 1, 〈T 〉 reaches a
maximum value smaller than unity at δ = π . As the number
of scatterers n increases, the gross structure seen in 〈T 〉 as a
function of δ is still similar to the above description for one
random scatterer, in that regime II (δ ∼ π ) shows the system
to be almost transparent and less localized than in regime I.

The behavior of 〈T 〉 for δ ≈ π is consistent with that of
〈R/T 〉 shown in Fig. 3: The transmission reduction at δ = π

is in agreement with the resistance enhancement in Fig. 3. The
physical interpretation of this result will be discussed in the
next section.

V. DISCUSSION OF THE BEHAVIOR FOR δ ≈ π

The aim of this section is to give a more qualitative and
physical explanation of the reversal in the trend of the average
resistance and transmission coefficient as δ approaches π ,
a phenomenon which has been described exactly by our
mathematical recursion relation.

In Sec. III B 2 we found that a perturbative approximation
in the small parameter y0 can be written down analytically and
thus gives a more qualitative description than just the exact
numerical solution; indeed, we were able to describe, within
this approximate method, the oscillations as a function of n.

We can also employ a similar perturbative approach to
describe the average resistance as a function of δ and
investigate whether we can find an indication of the reversal
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FIG. 9. Theoretical results (as described in the text) and numerical simulations for 〈T 〉 vs δ in regimes I and II for a chain of n = 5000
scatterers and 105 realizations. The main figure shows the “gross-structure” behavior and the dip for δ ≈ π exhibiting the formation of a band
gap or forbidden region: A zoom of the latter is shown in the insets. The agreement between simulation and theory is excellent. Notice the
interference fringes in the inset; the period τδ of the oscillations was estimated using Eq. (3.16) and agrees well with the data (in spite of δ

being quite close to π ). The statistical error bar for δ = π is ∼10−5.

in the trend as δ moves towards π . Of course, we cannot rely
on perturbation theory if δ gets too close to π .

Figure 10 compares computer simulations of the average
Landauer resistance with the results of second-order pertur-
bation theory as a function of the phase parameter δ and for
a fixed number of scatterers, n = 5000. We observe that the

3.12 3.125 3.13 3.135 3.14 3.145 3.15 3.155 3.16
1e-06

0.0001

0.01

1

Simulation
2nd Order Perturbation Theory

〈R
/T

〉

δ=klc

FIG. 10. (Color online) Results of perturbation theory, up to
second order for eigenvalues and eigenvectors, and computer sim-
ulations for the average Landauer resistance as a function of δ for
n = 5000 scatterers. The matrix elements of �
 of the perturbation
were calculated numerically. The tendency of 〈R/T 〉 to decrease
with increasing δ and subsequently recover as δ approaches π is
reproduced by the perturbative approach. Very close to δ = π , the
approximation clearly fails.

tendency of the average resistance to decrease with increasing
δ and subsequently recover as δ approaches π is reproduced
by the approximate, perturbative approach.

The behavior of the system that we have described in the
above paragraphs is reminiscent of the incipient formation of a
band gap that occurs in a finite stretch of an otherwise infinite,
periodic Kronig-Penney model. We now exhibit the similarity
of this phenomenon in the the two problems.

The finite stretch of the periodic problem can be formulated
by means of a recursion relation in terms of the 2 × 2 transfer
matrix for the unit cell, assumed to have a length d (see inset in
Fig. 11), as indicated in Eqs. (D1) (see, e.g., Ref. [30], p. 100).
Alternatively, the problem can be also formulated by means of
a recursion relation in terms of a 3 × 3 matrix, again defined
for the unit cell, whose structure is similar to that appearing
in Eqs. (3.4), (3.5), and (A2) for the disordered problem. With
the definitions

A(n) = 1 + 2|β(n)|2, (5.1a)

b(n) = e2inkd (α(n)β(n)), (5.1b)

z(n) = [A(n)/2, (b(n)
√

2)e−ikd , (b∗(n)
√

2)e−ikd ]T , (5.1c)

we rewrite the recursion relations Eqs. (D1) as

z(n + 1) = 
KP
y0

(kd)z(n), (5.2)

which leads to

z(n) = (
KP )nz(0), (5.3a)

z(0) = [1/2,0,0]T . (5.3b)
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FIG. 11. (Color online) The transmission coefficient for a stretch
of 5000 identical scatterers, each consisting of a barrier and a well.
Each unit cell has a length d . In the vicinity of kd = π , T shows a dip,
which becomes ever deeper as n increases. One observes interference
fringes on each side of the dip.

We thus see that in the ordered problem, the quantity kd (d
being the size of the unit cell) which appears in the recursion
relations (5.1) to (5.3), plays a role similar to klc for the
disordered problem (lc being, in this case, the “minimum unit
cell”), which enters the recursion relations (3.4) and (3.5).

We give evidence for the similarity in the response of the
two problems by comparing Fig. 11 with Fig. 9. In Fig. 11 we
observe the incipient formation of a forbidden band, which
manifests itself as a dip in the transmission coefficient T in the
vicinity of kd = π , with interference fringes on each side. We
call it “incipient,” because n is finite. This is similar to what
we observe in Fig. 9 for the disordered case in the vicinity
of δ = klc = π . In both cases, (i) the dip becomes ever more
conspicuous as n increases. This is shown in Fig. 11 for the
ordered case and was verified for the disordered one. As a
result, in a scattering experiment carried out in this region, the
transmission coefficient in the ordered case, and the average
transmission in the disordered one, suffer a reduction, with a
peak-to-valley ratio that increases with n. Also, in both cases,
(ii) the dip becomes wider as the strength of the potential
increases (this we verified by changing y0), and (iii) we see
interference fringes at the edges, as seen in the insets of Figs. 9
and 11. The above behavior is consistent with the one observed
for the average resistance, 〈R/T 〉, described at the beginning
of the present section.

In the ordered case, the effect discussed above results from
the coherent contribution of all the barriers and wells; indeed, it
has been described as the collective behavior of the poles of the
S matrix for this problem [31]. In the disordered case, we be-
lieve it to be a consequence of the barriers and wells having the
same width lc, and we conjecture a similar collective behavior.

VI. CONCLUSIONS

To summarize, we have discussed the problem of wave
transport in 1D-disordered systems consisting of n weak
barriers and wells having a finite, constant width lc and
random strength. For the calculation of the average Landauer

resistance, the problem is reduced to the diagonalization of
a three-dimensional complex symmetric matrix. Approximate
results can be obtained analytically by truncating the matrix
when the phase parameter δ = klc is very far from π (regime
I). In regime II, the method is improved by using perturbation
theory when δ is not too close to π . When δ ≈ π (well
inside regime II), the diagonalization was done numerically,
giving essentially exact results. The average conductance was
calculated approximately, making use of Melnikov’s equation
in regime I and, in regime II, using the results obtained for
the resistance. The theoretical results were verified in the two
regimes using computer simulations.

In regime I, the average Landauer resistance was found, for
a fixed δ, to increase exponentially with n. The mfp depends
on δ: as δ increases towards π , both the average Landauer
resistance and the average conductance show that the system
becomes more delocalized.

As we enter regime II, a new feature appears, compared with
older calculations: The transport properties show an oscillatory
behavior as functions of n and/or δ, which we could explain
using perturbation theory.

Well inside regime II (δ ≈ π ), a second phenomenon shows
up: We found an incipient band gap, or forbidden region,
where (i) the average conductance suffers a reduction and
(ii) the average Landauer resistance increases by various
orders of magnitude. In this region, a small change in δ

modifies drastically the transport behavior as a function of n.
A more qualitative and physical explanation of this behavior is
presented in Sec. V: (i) in terms of an approximate, perturbative
approach and (ii) as a reminiscence of the incipient formation
of a band gap in a finite stretch or an otherwise infinite,
Kronig-Penney problem.

The phenomena we described in the paper and the success
of our theoretical analysis in their description suggest the
importance of the system’s experimental realization. One
possibility we may suggest is in the microwave domain (see,
e.g., Refs. [32]). One could construct a medium consisting
of plastic pieces, all of the same thickness, but with different
indices of refraction. One could then shuffle the plastic pieces
and create a different random realization of the sample. The
quantity to be measured is the transmission coefficient of each
sample. Another possibility is in the domain of elastic waves
in metallic bars. This is a problem which, in the past few years,
has received great attention (see, e.g., Refs. [33]). One could
construct a bar with indentations and bulges, all of the same
length, but with different and random depths and heights. A
collection of such bars would then constitute an approximation
to the ensemble we need.
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APPENDIX A: THE RECURSION RELATION FOR THE AVERAGE LANDAUER RESISTANCE

From the combination rule given in Eq. (3.1) we find a recursion relation for Landauer’s resistance of the chain, averaged over
the ensemble, as

[1 + 2〈|β(n+1)|2〉] − [1 + 2〈|β(n)|2〉] = 2〈|βn+1|2〉[1 + 2〈|β(n)|2〉] + 2[〈αn+1β
∗
n+1〉〈α(n)β(n)〉 + c.c.], (A1a)

〈α(n+1)β(n+1)〉 − 〈α(n)β(n)〉 = 〈αn+1βn+1〉[1 + 2〈|β(n)|2〉] + (〈
α2

n+1

〉−1
)〈α(n)β(n)〉 + 〈

β2
n+1

〉〈α(n)β(n)〉∗, (A1b)

where c.c. denotes “complex conjugate.” Using the definitions of Eqs. (3.2), Eqs. (A1) take the form⎡
⎢⎢⎣

A(n+1)
2

ib(n+1)√
2

− ib∗(n+1)√
2

⎤
⎥⎥⎦ =

⎡
⎢⎣

1 + 2〈|β̃1|2〉
√

2eiδ〈α̃1β̃1〉
√

2e−iδ〈α̃1β̃1〉∗√
2eiδ〈α̃1β̃1〉 e2iδ〈α̃2

1〉 〈β̃2
1 〉√

2e−iδ〈α̃1β̃1〉∗ 〈β̃2
1 〉 e−2iδ〈α̃2

1〉∗

⎤
⎥⎦

⎡
⎢⎢⎣

A(n)
2

ib(n)√
2

− ib∗(n)√
2

⎤
⎥⎥⎦ , (A2)

which can be written in the abbreviated form of Eq. (3.4).
The 3 × 3 matrix appearing in Eq. (A2) will be designated as

y0 (δ). It is often useful to write this matrix as


y0 (δ) = 
0(δ) + �
y0 (δ), (A3a)


0(δ) =
⎡
⎣μ

(0)
1 0 0
0 μ

(0)
2 0

0 0 μ
(0)
3

⎤
⎦ =

⎡
⎣1 0 0

0 e2iδ 0
0 0 e−2iδ

⎤
⎦,

(A3b)

the unperturbed matrix 
0(δ) being the limiting value of 
y0 (δ)
in the absence of a potential, i.e., for y0 = 0.

For δ = π , the three μ(0)
a are degenerate and equal to 1. In

this case, and for weak scattering, i.e., y0 	 1, 
 takes the
approximate form


y0 (π ) ≈ I + y2
0
red, (A4a)


red = 1

12π3

⎡
⎣ 0 −√

2 −√
2

−√
2 −(2π + i) 0

−√
2 0 −(2π − i)

⎤
⎦,

(A4b)

where 
red is approximately (i.e., for y0 	 1) independent of
y0. In the present case, �
y0 (δ) of Eq. (A3a) is �
y0 (δ) =
y2

0
red.

APPENDIX B: DIAGONALIZATION OF THE MATRIX �,
EQ. (A2)

The matrix 
 is complex symmetric; provided it has no
double characteristic values, it can be diagonalized by a
complex orthogonal transformation: calling

D =
⎡
⎣μ1 0 0

0 μ2 0
0 0 μ3

⎤
⎦ (B1)

the matrix of eigenvalues and O the complex orthogonal matrix
whose columns are the eigenvectors of 
, we have


 = ODOT . (B2)

The new vector

z′(n) = OT z(n) (B3)

has the particularly simple solution

z′(n) = Dnz′(0), (B4a)

with components

z′
a(n) = (μa)nz′

a(0). (B4b)

The original vector z(n) thus can be expressed as

z(n) = (ODnOT )z(0). (B5)

The first component of this equation gives A(n)/2. Using the
initial condition (3.5b) and Eq. (B5), we thus find (assuming
that 
 has no double characteristic values)

A(n) =
3∑

a=1

(O1a)2(μa)n. (B6)

We notice that only the first component of each of the three
eigenvectors enters the expression for A(n).

APPENDIX C: PERTURBATION THEORY

We consider the eigenvalue equation


vi = μivi , i = 1,2,3. (C1)

The eigenvectors vi were previously designated as the columns
of the matrix O of Eq. (B2). The quantity A(n) of Eq. (B6)
can be written in terms of the above eigenvectors as

A(n) = μn
1(v1)2

1 + μn
2(v2)2

1 + μn
3(v3)2

1, (C2)

where (vi)1 designates component 1 of the eigenvector vi .
If we express A(n) of Eq. (C2) as

A(n) =
3∑

a=1

A(a)(n), (C3a)

A(a)(n) = (va)2
1 μn

a, (C3b)

we can write

log A(a)(n) = log[(va)2
1] + n log μa. (C4)

The first term in Eq. (C4) and the coefficient of n are the
two parameters of a straight line representing log A(a)(n) as
a function of n. If we develop perturbation theory in the
eigenvalues and eigenvectors of 
 to give corrections of the
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same order in �
 in both terms of Eq. (C4), we shall be
building a consistent approximation to the two parameters
that define the straight line that we have just described. A
perturbation theory with this criterion is briefly developed
in what follows and used in the main text. The theory is
taken over, almost verbatim, from the perturbation theory
developed in any textbook on quantum mechanics, being
careful to consider 
 not as a Hermitean matrix but as a
complex-symmetric matrix.

If we write for the eigenvalues μi of Eq. (C1) the expansion

μi = μ
(0)
i + μ

(1)
i + μ

(2)
i + · · · , (C5)

we find

μ
(0)
i =

⎧⎨
⎩

1 , i = 1
e2iδ , i = 2

e−2iδ , i = 3
, (C6a)

μ
(1)
i = �
ii, (C6b)

μ
(2)
i =

∑
j (�=i)

�
ij�
ji

μ
(0)
i − μ

(0)
j

, (C6c)

· · · .

Similarly, for the eigenvectors vi of 
 we write the
expansion

vi = v(0)
i + v(1)

i + v(2)
i + · · · (C7)

and find

v(0)
i =

⎧⎨
⎩

(1,0,0)T , i = 1
(0,1,0)T , i = 2
(0,0,1)T , i = 3

, (C8a)

v(1)
i =

∑
j (�=i)

�
ji

μ
(0)
i − μ

(0)
j

v(0)
j , (C8b)

v(2)
i =

∑
j,k(�=i)

�
jk�
ki(
μ

(0)
i − μ

(0)
j

)(
μ

(0)
i − μ

(0)
k

)v(0)
j

−
∑
j (�=i)

�
ii�
ji(
μ

(0)
i − μ

(0)
j

)2 v(0)
j

− 1

2

⎡
⎣∑

j (�=i)

�
ij�
ji(
μ

(0)
i − μ

(0)
j

)2

⎤
⎦ v(0)

i , (C8c)

· · · .

Substituting these results in Eq. (C2), we can verify the
identity A(0) = 1 up to second order in �
.

APPENDIX D: RECURSION RELATIONS FOR A FINITE
STRETCH OF A PERIODIC KRONIG-PENNEY MODEL

A finite stretch of a Kronig-Penney problem obeys the
recursion relation

M(n+1) = Mn+1M(n) (D1a)

= D−1((n + 1)kd)Pn+1, (D1b)

where

P = D(kd)M̊1 (D1c)

and

D(kd) =
[
eikd 0

0 e−ikd

]
, (D1d)

written in terms of the 2 × 2 transfer matrix for the unit cell,
assumed to have a length d (see, e.g., Ref. [30], p. 100); here
M̊1 is the transfer matrix for the unit cell translated to the
vicinity of the origin.

Alternatively, with the definitions (5.1), we write Eqs. (D1)
as (5.2), where


KP
y0

=

⎡
⎢⎣

1 + 2|β̊1|2
√

2eikd (α̊1β̊
∗
1 )

√
2e−ikd (α̊1β̊

∗
1 )∗√

2eikd (α̊1β̊1) e2ikd α̊2
1 β̊2

1√
2e−ikd (α̊1β̊1)∗ (β̊∗

1 )2 e−2ikd (α̊∗
1 )2

⎤
⎥⎦ . (D2)

This leads to Eqs. (5.3).

APPENDIX E: REDUCTION TO THE RESULTS OF THE
DENSE WEAK-SCATTERING LIMIT

In this Appendix we briefly investigate the limit in which
the results of the present model—consisting of finite-size
scatterers—reduce to those obtained in the dense-weak-
scattering limit of Ref. [8], consisting of a succession of delta
scatterers.

1. The present model

A barrier lower than the energy requires [see Eq. (2.3)]
yr < δ2, so very weak barriers are characterized by y0 	 δ2.
We further require the wavelength λ to be much larger than
the barrier width lc, i.e., δ = klc 	 1. We thus have the joint

requirements

y0 	 δ2 	 1. (E1)

Equation (3.12) for the mfp (designated here by �) can be
written in the following equivalent ways:

1

k�
= y2

0

12δ3
, (E2a)

η ≡ 1

ν�
= y2

0

12δ2
, (E2b)

δ = y0√
12η

, (E2c)

1

k�
= η

δ
, (E2d)
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with ν = 1/lc being the density of scatterers. A problem is
thus specified by the three parameters η, y0, and δ, related by
one of the above equations, like (E2c). To satisfy the inequality
(E1) we need

12η 	 y0 	
√

12η. (E3)

We follow the steps:
(i) propose η 	 1;
(ii) propose y0 to be consistent with (E3) (this is used to

set up the numerical barrier model); and
(iii) find δ from (E2c).

2. The DWSL model

The DWSL model of Ref. [8] consists of a succession of
equally spaced (spacing = d) δ potentials, with an rms intensity
u0, having units of k.

The relation defining the mfp can also be written in various
equivalent ways:

1

k�
= u2

0

12k3d
, (E4a)

= v2
0

3kd
, (E4b)

d

�
= v2

0

3
. (E4c)

Here d is the distance between successive δ potentials and
v0 = u0/2k.

In this model, too, the problem is specified by three
parameters: k�, kd, v0, related by one of the above equations,
like (E4c).

3. Connection between the two models

We need to connect the two models: (i) choose k� to
be the same in the two models and (ii) choose kd of the

0 0.5 1 1.5 20

5

10

15

20

25

30

〈R
/T

〉

L/l

d/l=10-4, vo=√3×10-2,       kd=5×10-2,  kl=500.
〈R/T〉 of106 Realizations of 1D chains of random delta potentials

〈R/T〉 of 106 realizations of 1D chains of random barriers and wells.
η=lc/l=10-4, yo=√3×10-3, δ=klc=5×10-2,  kl=500.

FIG. 12. (Color online) Results of computer simulations for the
average Landauer resistance for the present model and the DWSL
model of Ref. [8]. The parameters chosen for each model are indicated
in the figure and conform to the criteria explained in the text. The
agreement is excellent.

DWSL delta-potential model to coincide with klc = δ of the
finite-size scatterer model. This implies that the fraction of
wavelength contained in the interval between the centroids
of two successive scatterers is the same in the two models
(compare Fig. 1 of the present paper with Fig. 3 of Ref. [8]).
(iii) From kd and k� we find d/� and hence v0 from Eq. (E4c),
which is to be used to set up the numerical delta-potential
model.

Figure 12 shows computer simulations for the average
Landauer resistance for the two models as a function of L/�,
L being the length of the chain, for the parameters indicated
in the figure. The agreement is excellent. This figure is similar
to Fig. 3 of Ref. [8]).
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