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Structural instabilities and sequence of phase transitions in SrBi2Nb2O9

and SrBi2Ta2O9 from first principles and Monte Carlo simulations
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Despite their structural similarities, SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) undergo a different sequence
of phase transitions. The phase diagram of SBT as a function of the temperature includes an intermediate
phase between the high-temperature phase and the ferroelectric ground state, while in the niobium compound
the intermediate phase is suppressed and a direct transition between the high- and low-temperature structures
is observed. We present ab initio calculations that reveal the relevance of a trilinear coupling between three
symmetry-adapted modes to stabilize the ground state in both compounds. This coupling is much stronger in
SBN than in SBT. Within the framework of the phenomenological Landau theory, it is shown that, by solely
increasing the strength of the trilinear coupling, the topology of the phase diagram of SBT can change enough
to suppress the intermediate phase. Monte Carlo simulations on an idealized φ4 Hamiltonian confirm that the
trilinear coupling is the key parameter that determines the sequence of phase transitions, and that for higher
dimensionality of the order parameters the stability region of the intermediate phase is narrower.
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I. INTRODUCTION

The Aurivillius phases are layered bismuth compounds that
obey the general formula Bi2mAn−mBnO3n+m

[1]. The family
includes many members that present ferroelectricity at room
temperature, and they have been widely studied for potential
technological applications, mainly in thin-film nonvolatile
memories [2–4]. SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN)
are members of the family, with n = 2 and m = 1, and their
structure is formed by alternating two SrMO3 (M = Ta, Nb)
perovskite blocks and one Bi2O2 slab (Fig. 1).

Tantalum and niobium present very similar physical and
chemical properties, including the valence and atomic radii.
However, the substitution of Nb by Ta in some ferroelectric
oxides induces the lowering of the para-ferro transition
temperature like in LiNbO3-LiTaO3 [5], or even the complete
suppression of the polar phase like in KNbO3-KTaO3 [6,7].
Regarding SBT and SBN, they present isomorphous polar
structures at room temperature [8–13] and analogous mechan-
ical and electrical characteristics. However, in addition to the
expected wider stability range of the ferroelectric phase in
the niobium compound, their phase diagrams are qualitatively
different: on increasing the temperature SBT undergoes a
transition to a nonpolar orthorhombic phase that does not arise
in SBN [12–15].

Previous first principles calculations by Perez–Mato et al.
revealed that the trilinear coupling of two primary unstable
modes and a secondary hard mode is critical to stabilize the
ground state of SBT [16]. This work provided a simple and
plausible scheme in contrast with other alternatives where the
existence of a negative biquadratic coupling triggers the si-
multaneous condensation of several modes [17]. Later, the
key role of the trilinear coupling was found in several other
compounds [18–24] and its influence was proposed as the
origin of the so-called avalanche [25] phase transitions and
the hybrid improper ferroelectricity [19].
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In this work we revisit SBT and extend the ab initio study to
SBN in order to investigate the role of the trilinear coupling in
the stabilization of the ferroelectric structure and its influence
in the sequences of phase transitions.

II. SYMMETRY CONSIDERATIONS, DISTORTIONS,
AND PHASE TRANSITIONS

The high- and low-temperature structures of SBT and SBN
are isomorphous: tetragonal with space group I4/mmm (No.
139) at sufficiently high temperatures [8,12] and orthorhombic
A21am (No. 36) at low temperatures. In the case of SBN
there is a direct phase transition from the tetragonal to the
ferroelectric structure at 800 K [12,13], whereas SBT presents
an intermediate nonpolar orthorhombic Amam phase (No.
63) between 500–600 and 770 K [8]. The cell parameters
of the two orthorhombic phases are related to the tetragonal
ones according to cO = cT, aO = aT + bT, and bO = aT − bT,
which means that the volume of the unit cell is doubled in the
tetragonal-to-orthorhombic transitions.

The tetragonal space group (I4/mmm) is a supergroup of
the two orthorhombic space groups: the intermediate phase
of SBT (Amam) and the ground state of both compounds
(A21am). In consequence, the low-temperature structures
can be described in terms of symmetry-adapted distortions
with respect to the parent tetragonal structure [26]. Table I
shows this decomposition in terms of the symmetry-adapted
modes that break the tetragonal symmetry for the experimental
structures of SBT and SBN obtained with the aid of the tool
AMPLIMODES [27,28]. The hierarchy of the modes is similar
in both compounds: the amplitude of X−

3 is dominant and
can be considered as the primary order parameter, while the
X+

2 distortion seems to play a secondary role. The analysis
of the �−

5 polar distortion is more delicate because, due
to the polar character of the ground state, its amplitude
depends on the origin. In Table I the chosen origin does
not change the arithmetic center of the parent structure.
According to the isotropy subgroups the intermediate phase
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FIG. 1. (Color online) Structure of SBT and SBN in the tetrago-
nal phase (M = Ta,Nb).

of SBT is naturally explained as a condensation of the X−
3

mode, and in terms of the Landau theory of phase transitions
the I4/mmm → Amam transition can be continuous. The
second transition to the ferroelectric structure should then
consist of the condensation of the polar mode. In the case
of SBN, a direct transition between the tetragonal and the
ferroelectric phase can be solely described by a simultaneous
condensation of at least any pair of the three modes and,
according to Landau theory, it should be first order: the
three relevant modes condense simultaneously in an avalanche
phase transition [25].

TABLE I. Summary of the mode decomposition of the experi-
mental and calculated distortions of the ferroelectric phases of SBT
and SBN with respect to their corresponding parent (calculated and
experimental) structures. Amplitudes are given for modes normalized
within the primitive unit cell of the polar structure. The second
row shows in parentheses the scalar product of the calculated and
experimental polarization vectors after normalization.

Amplitude (Å)

Isotropy SBT SBN

Irrep Direction subgroup Expt. [8] Expt. [9] Calc. Expt. Calc.

X−
3 (a, − a) Amam(63) 0.90 0.86 1.12 0.81 1.14

(0.99) (0.99) (0.99)
�−

5 (a,a) F2mm(46) 0.51 0.63 1.01 0.74 1.03
(0.94) (0.98) (0.81)

X+
2 (a, − a) Abam(64) 0.26 0.39 0.56 0.63 0.75

(0.84) (0.99) (0.99)

The orthorhombic strain is usually very small in Aurivillius
compounds and SBT is not an exception. The experimental
values of cell parameters in SBT are aT = bT = 3.917 Å
and cT = 25.114 Å for the tetragonal structure [12], and
aO = 5.531 Å, bO = 5.534 Å, and cO = 24.984 Å for the
ferroelectric phase [8]. The deformation of the cell is very
small with

√
2aT /cT ∼ aO/cO ∼ bO/cO (all within a 0.5%

margin), and the influence of strain can be considered as a
residual effect. The orthorhombic cell parameters of SBN are
aO = 5.519 Å, and bO = 5.515 Å, and cO = 25.112 Å [11],
and there are not experimental data for the tetragonal cell.

A complete description of the atomic displacements as-
sociated with the three modes can be found in Ref. [16]. In
summary, among the 18 degrees of freedom that constitute
a generic distortion that links the tetragonal and ferroelectric
structure, seven correspond to X−

3 , and they mainly account
for tiltings of the oxygen octahedra about the (1,1,0)T
direction of the tetragonal cell and displacements of the Bi
cations along the (1, − 1,0)T direction. The octahedra behave
as rigid units and, in consequence, neighboring octahedra
show antiphase tiltings. The polar �−

5 distortion involves
essentially an antiphase displacement of the Bi atoms and
the perovskite blocks, along the (1,1,0)T direction. Among
the eight independent displacements associated with the X+

2
distortion, the main amplitudes correspond to tiltings of the
oxygen octahedra about the z axis and antiphase displacements
of the oxygens in the Bi2O2 slabs along the (1,1,0)T direction.

III. COMPUTATIONAL DETAILS

The WIEN2k code [29], based on the full potential LAPW +
lo method, was employed for the ab initio calculations.
Exchange and correlation effects were treated within the
generalized gradient approximation (GGA) approximation
with the Perdew–Burke–Ernzerhof parametrization [30]. The
RKmax parameter, which is related to the number of radial
basis functions used to describe the inside spheres, was
chosen to be 7.5 for both compounds. Calculations in the
tetragonal symmetry were performed using a Monkhorst–
Pack k point mesh of 8 × 8 × 8, which is equivalent to
56 independent k points in the irreducible Brillouin zone (IBZ).
For calculations in the orthorhombic symmetry, a k mesh of
5 × 5 × 5 representing 27 independent k points in the IBZ
was chosen. In the case of SBT the radii of the atomic spheres
chosen for the calculations were 2.0 (Sr), 2.26 (Bi), 1.8 (Ta),
and 1.6 (O) bohrs in the tetragonal structure and 2.25 (Sr), 2.3
(Bi), 1.8 (Ta), and 1.6(O) bohrs in the orthorhombic A21am

phase. For SBN, the radii were 2.26 (Sr), 2.26 (Bi), 1.8 (Nb),
and 1.66 (O) bohrs for both the tetragonal and the orthorhombic
basis. The choice of the parameters was preceded by energy
difference convergence tests which confirmed their validity.
The convergence criterion for the SCF calculations was of
0.0001 Ry for energy and 0.1 mRy/bohr for forces.

First, relaxations of the parent structures and ground states
for the two compounds were carried out. In the case of
SBT forces remained below 0.02 and 0.15 mRy/bohr in
the tetragonal and orthorhombic phases, respectively. For
SBN, the tetragonal relaxation accepted an accuracy under
0.1 mRy/bohr and all forces present in the orthorhombic
relaxed structure were under 0.17 mRy/bohr.
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TABLE II. Depths of the energy wells per formula unit (in
mRy) of the ferroelectric ground state (first column) and the pure
distortions X−

3 , �−
5 , and X+

2 with respect to the relaxed tetragonal
parent configuration.

Compound Abs. minimum X−
3 �−

5 X+
2

SBT 15.62 11.72 5.24 1.52
SBN 18.34 10.40 3.68 3.52

As mentioned in the previous section the orthorhombic
strain is very small in the Aurivillius compounds. In conse-
quence its effect was neglected and all the calculations were
performed assuming a fixed cell with tetragonal metric. The c

parameter of the idealized cell was fixed to the experimental
value of the ferroelectric phase and the a and b lattice constants
were forced to be equal and preserve the experimental volume
of the cell.

IV. ENERGETICS AND COUPLINGS

First, the atomic positions of both compounds were relaxed
under tetragonal and orthorhombic A21am symmetries, and
the distortions of the low-temperature structure were ana-
lyzed in terms of symmetry modes. As shown in Table I,
the calculated amplitudes are systematically larger than the
experimental values, which could be related to some degree
of disorder in the experimental structures that is not present
in the calculations. Table I also shows the the scalar product
of the calculated and experimental polarization vectors after
normalization. The extremely good agreement indicates that,
apart from a global amplitude, the calculated and experimental
relative atomic displacements are essentially the same.

The energy gains of the polar phase with respect to the
tetragonal phase, together with the depth of the energy wells
associated with the pure distortions are listed in Table II.
The primary character of the X−

3 order parameter is manifest
in both compounds. However, the role of the other two
distortions seems to be different in both compounds. In SBT,

�−
5 presents a well-defined energy minimum, while the X+

2
mode is slightly soft at low amplitudes and rapidly hardens
for medium amplitudes (Fig. 2) reinforcing its secondary
character. In SBN, the energy wells for the �−

5 and X+
2 modes

are very similar and a clear hierarchy between both distortions
cannot be established (Fig. 2).

The energy variations around the tetragonal configuration
in terms of the amplitudes of the three relevant modes can be
described by a polynomial composed of symmetry-invariant
terms. The knowledge of the coefficients in the energy
expansion allows the quantification of the energy for a general
distortion and the strength of the couplings between modes.
The energetic contribution of a general combination of X−

3 ,
�−

5 , and X+
2 can be expressed up to fourth order by

�E = EX−
3

+ E�−
5

+ EX+
2

+ EX−
3 �−

5

+EX−
3 X+

2
+ E�−

5 X+
2

+ EX−
3 �−

5 X+
2
. (1)

The energy due to the pure modes is given by

EX−
3

= 1
2κX−

3
Q2

X−
3

+ βX−
3
Q4

X−
3
,

E�−
5

= 1
2κ�−

5
Q2

�−
5

+ β�−
5
Q4

�−
5
,

EX+
2

= 1
2κX+

2
Q2

X+
2

+ βX+
2
Q4

X+
2
.

The biquadratic couplings read

EX−
3 �−

5
= δX−

3 �−
5
Q2

X−
3
Q2

�−
5
,

EX−
3 X+

2
= δX−

3 X+
2
Q2

X−
3
Q2

X+
2
,

E�−
5 X+

2
= δ�−

5 X+
2
Q2

�−
5
Q2

X+
2
,

and the trilinear coupling is

EX−
3 �−

5 X+
2

= γX−
3 �−

5 X+
2
QX−

3
Q�−

5
QX+

2
.

The coefficients of the polynomials for both compounds
were determined by fitting the ab initio energies calculated at
more than 60 points in the configuration space for each com-
pound (Table III). The most remarkable difference between
both compounds is the magnitude of the trilinear coupling, its

Δ
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5
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E
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5
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FIG. 2. (Color online) Energy per formula unit relative to the tetragonal structure of SBT (left) and SBN (right) in terms of the amplitudes
of the X−

3 , �−
5 , and X+

2 distortions.
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TABLE III. Polynomial coefficients of the energy expansion of
SBT and SBN obtained by least-square fits.

SBT SBN

κX−
3

(mRy/bohr2) −44.26 −40.42
κ�−

5
(mRy/bohr2) −21.41 −17.28

κX+
2

(mRy/bohr2) −16.39 −23.49
βX−

3
(mRy/bohr4) 11.03 10.1

β�−
5

(mRy/bohr4) 5.62 5.40
βX+

2
(mRy/bohr4) 11.50 10.25

δX−
3 �−

5
(mRy/bohr4) 6.20 7.76

δX−
3 X+

2
(mRy/bohr4) 10.60 12.60

δX+
2 �−

5
(mRy/bohr4) −2.30 3.83

γQ
X

−
3

Q
�

−
5

Q
X

+
2

(mRy/bohr3) −13.81 −22.55

value in SBN being much larger than in SBT. The magnitudes
of the rest of coefficients are quite similar although the stiffness
constants of �−

5 and X+
2 modes approximately exchange their

values and, in consequence, their role as the least unstable
distortion.

The condensation of two of the three relevant symmetry
modes is enough to lower the tetragonal symmetry down to
the ferroelectric space group. However, in both compounds the
simultaneous freezing of any pair of modes is penalized by the
strong and positive biquadratic couplings δ. Figure 3(a) shows
the renormalization of the energies due to the biquadratic
coupling for SBT: the presence of a nonzero �−

5 distortion sta-
bilizes the soft X−

3 mode and a simultaneous condensation of
both modes becomes energetically unfavorable. The inclusion
of the X+

2 mode is essential to explain the polar ground state
of SBT. In Fig. 3(b) is shown the energy of SBT as a function
of the amplitude of the pure X+

2 mode and when a mixed
distortion with QX−

3
= 0.90 Å and Q�−

5
= 0.84 Å is applied;

the slightly hard X+
2 mode becomes strongly unstable when

the two primary modes condense. This is a manifestation of the

critical relevance of the trilinear coupling between the three
modes in the stabilization of the ground state. The analysis of
the couplings in the case of SBN yields the same qualitative
picture.

Analogous conclusions were obtained in Ref. [16] for the
case of SBT, i.e., the trilinear coupling between three modes is
determinant in the stabilization of the ferroelectric structure.
However, the authors studied the couplings between modes
that correspond to the eigenvectors of the force constant matrix.
Particularly, the displacement pattern associated with the X+

2
static distortion of this work involves contributions from two
phonons, one hard and one soft. In consequence, the values
of the coupling constants in Table III and some details of
Figs. 2 and 3 cannot be directly compared with the results of
Ref. [16]. A similar scenario has been found in several other
compounds [19–22], suggesting that the critical role of trilinear
couplings to stabilize the ground state could be rather common.

V. APPROXIMATE PHASE DIAGRAM

The expansion of the energy in the previous section
can be considered as the zero-temperature free energy of
the system, and a phenomenological free energy can be
approximated under the assumptions of the Landau theory
of phase transitions. Then, the temperature renormalization
is solely contained in the quadratic terms and the stiffness
constants present a linear dependence on temperature, such
that κi = ai(T − T0,i) for a given i mode, where a and T0,i

are constants. Thus, the ab initio stiffness constants are related
to the transition temperatures and renormalization constants
of the modes by κ0,i = −aiT0,i . In a first approximation
the temperature dependence of higher-order terms can be
neglected and the free energy reads

F =
3∑
i

[
ai

2
(T − T0.i)Q

2
i + βiQ

4
i

]

+EX−
3 �−

5
+ EX−

3 X+
2

+ E�−
5 X+

2
+ EX−

3 �−
5 X+

2
.

Δ
E

(m
R

y)

X−
3 = 1.0

X−
3 = 0.0

X−
3 = 0.0; Γ−

5 = 0.0

X−
3 = 0.90; Γ−

5 = 0.84

Δ
E

(m
R

y)

FIG. 3. (Color online) Energy per formula unit of SBT along selected lines of the configuration space (a) in terms of the amplitudes of the
the pure polar mode (squares), and of the same mode after the X−

3 distortion has been frozen to 1Å(circles); (b) in terms of the amplitude of the
pure X+

2 mode (squares) and of the same mode after the amplitudes of X−
3 and �−

5 distortions have been fixed to 0.90 and 0.84 Å, respectively
(circles). The plots have been shifted vertically to fix a common origin.
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FIG. 4. (Color online) Phase diagrams for SBT (left) and SBN (center). The variables on the horizontal axes correspond to the second most
unstable mode, �−

5 for SBT and X+
2 for SBN. The diagram for SBN presents a narrow passage that allows a direct transition from the ground

state to the parent phase. The right panel corresponds to SBT but with the value of the trilinear coupling switched to that of SBN, the passage
allowing a direct transition being considerably wider. The arrows show the same hypothetical paths along the three phase diagrams.

Figures 4(a) and 4(b) show the phase diagrams of the two
compounds in the space of the two most negative stiffness
constants: κX−

3
and κ�−

5
for SBT, and κX−

3
and κX+

2
for SBN.

The diagrams correspond to a particular section where the
difference between the stiffness constants κ�−

5
and κX+

2
remains

constant, which implies a similar temperature renormalization
in both order parameters. The stability regions of Fig. 4
correspond to the parent phase of symmetry I4/mmm (no
modes are frozen), the A21am ground state (the three modes
are frozen), and three phases associated with the condensation
of a single mode: Amam for X−

3 frozen, F2mmm for �−
5 and

Abam for X+
2 .

The phase diagram of SBN presents a passage that joins
the stability regions of the tetragonal and ferroelectric phases.
Thus, an appropriate renormalization of the order parameters
could drive the system directly from the ferroelectric state to
the parent structure without an intermediate phase. However,
the topology of the phase diagram for SBT forbids this
possibility and the intermediate phase must be present in a
finite range of temperatures. This result could explain the
existence of an avalanche phase transition only in the case
of SBN.

The fundamental influence of the strength of the trilinear
coupling in the features of the phase diagrams is shown
in Fig. 4(c). It corresponds to SBT but with the trilinear
coupling constant changed to that of SBN, that is, γ =
−22.55 mRy/bohr3 instead of γ = −13.81 mRy/bohr3. The
higher value of the coupling induces a wide direct passage
that allows an avalanche phase transition. This suggests that
the trilinear coupling not only stabilizes the ground states of
the two compounds but also governs their sequence of phase
transitions.

VI. DIMENSIONALITY OF ORDER PARAMETERS
AND TRILINEAR COUPLING

The expressions of the previous section are not completely
general since they do not take into account the correct
dimensionality of the the order parameters. As usual in such

calculations, the expansion of the energy in terms of distortions
from the high-symmetry configuration has been done by fixing
the orientation of the multidimensional order parameters along
a specific direction: the direction that corresponds to one of
the observed domains of the low-temperature structure. In the
case of SBT and SBN the three order parameters, X−

3 , �−
5 ,

and X+
2 , are two dimensional and the experimental distortion

corresponds to the specific direction indicated in Table I and
the symmetry-equivalent ones.

General distortions must be expressed as two-dimensional
vectors and, in order to simplify the notation, we will use the
following correspondences in cartesian and polar coordinates:

QX−
3

= ϕ ≡ (ϕ1,ϕ2) = (ρϕ cos θϕ,ρϕ sin θϕ),

Q�−
5

= ψ ≡ (ψ1,ψ2) = (ρψ cos θψ,ρψ sin θψ ),

QX+
2

= η ≡ (η1,η2) = (ρη cos θη,ρη sin θη).

The invariant polynomials for general directions of the
order parameters obtained with the aid of the INVARIANTS [31]
utility are given in Table IV in cartesian and polar coordi-
nates. The lowest-order term that includes anisotropy is the
third-order invariant that represents the trilinear coupling;
moreover, the presence of this term is enough to explain the
observed ground state. For a negative trilinear coupling the
absolute minimum corresponds to the experimentally observed
directions of the order parameters (Table I), whereas a positive
coefficient should give a different structure with the same space
group but X−

3 , �−
5 , and X+

2 oriented along (a, − a), (a,a), and
(−a,a), respectively.

Following the approach of Ref. [32], a simple microscopic
Hamiltonian that retains the main features of SBT and SBN can
be developed from an extended version of the two-dimensional
φ4 model. The Hamiltonian for a single isolated mode can be
written as

Hφ = Eφ

∑
i

[|φ(i)|2 − 1]2 + Cφ

2

∑
〈i,j〉

[φ(i) − φ(j )]2 ,

with φ = ϕ,ψ,η. Eφ is the depth of the double wells at sites
i, Cφ are the harmonic couplings between nearest neighbours,

184106-5



URKO PETRALANDA AND I. ETXEBARRIA PHYSICAL REVIEW B 91, 184106 (2015)

TABLE IV. Invariant polynomials up to fourth order of the com-
ponents of the order parameters in cartesian and polar coordinates. ϕ,
ψ , and η correspond to X−

3 , �−
5 and, X+

2 , respectively.

Cart. coor.

2nd order |ϕ|2, |ψ |2, |η|2
3rd order ϕ1ψ1η1 + ϕ2ψ1η2 − ϕ2ψ2η1 − ϕ1ψ2η2

4th order |ϕ|4, |ψ |4, |η|4,
ϕ4

1 + ϕ4
2 , ψ4

1 + ψ4
2 , η4

1 + η4
2,

|ϕ|2|ψ |2, |ϕ|2|η|2, |ψ |2|η|2,
ϕ1ϕ2ψ1ψ2, ϕ1ϕ2η1η2, ψ1ψ2η1η2

Polar coor.
2nd order ρ2

ϕ , ρ2
ψ , ρ2

η

3rd order ρϕρψρη[cos θϕ cos(θψ + θη) − sin θϕ sin(θψ − θη)]
4th order ρ4

ϕ , ρ4
ψ , ρ4

η ,
ρ4

ϕ(3 + cos 4θϕ), ρ4
ψ (3 + cos 4θψ ), ρ4

η (3 + cos 4θη),
ρ2

ϕρ
2
ψ , ρ2

ϕρ
2
η , ρ2

ψρ2
η ,

ρ2
ϕρ

2
ψ sin 2θϕ sin 2θψ , ρ2

ϕρ
2
η sin 2θϕ sin 2θη,

ρ2
ψρ2

η sin 2θψ sin 2θη

and the ratio between both determines the behavior of the
system from order-disorder (E � C) to displacive (E 	 C).

The trilinear coupling can be included as an on-site
interaction:

Hϕ,ψ,η = γ√
2

∑
i

[ϕ1(i)ψ1(i)η1(i) + ϕ2(i)ψ1(i)η2(i)

−ϕ2(i)ψ2(i)η1(i) − ϕ1(i)ψ2(i)η2(i)],

and its contribution at the absolute minimum is −|γ |ρϕρψρη,
as in the one-dimensional case. In order to focus on the effect
of the trilinear coupling term and to maintain the analogy with
the one-dimensional case of Ref. [32], we have not included
in the Hamiltonian the rest of the fourth-order terms that are
allowed by symmetry. The complete Hamiltonian reads H =
Hϕ + Hψ + Hη + Hϕ,ψ,η.

We limited the study to some particular combinations of the
parameters of the Hamiltonian. First, we considered the same
displacive and order-disorder degree for the three order param-
eters (Eϕ/Cϕ = Eψ/Cψ = Eη/Cη = C/E) and two cases:
order-disorder (E/C = 10) and displacive (E/C = 0.1). The
dominance of the instability of the X−

3 (≡ϕ) distortion in
both compounds has been taken into account by assuming
Cψ = Cη = 0.8Cϕ , and in consequence Eψ = Eη = 0.8Eϕ .
This choice yields the same statistical behavior for ψ and η and
the relation Tψ = Tη = 0.8Tϕ for the transition temperatures
of the pure modes, i.e., without the trilinear coupling.

We studied the statistical properties of the model by Monte
Carlo simulations. Calculations were carried out using cubic
supercells containing 24 × 24 × 24 sites and statistics were
collected during at least 106 Monte Carlo steps after a proper
equilibration. Figure 5 shows the equilibrium amplitudes of the
order parameters for the order-disorder case (E/C = 10) and
three different values of the trilinear coupling. Temperature
is given in units of Cϕ . Three different regimes can be
observed: for low values of γ [Fig. 5(a)] both transitions
are continuous and the range of stability of the intermediate
phase is quite wide, for medium values of the trilinear coupling
[Fig. 5(b)] the intermediate phase is stable in a narrow range of
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FIG. 5. (Color online) Amplitudes of the order parameters ϕ

(solid circles) and ψ (open circles) for E/C = 10 and three values
of the trilinear coupling: (a) γ = 0.1Eϕ , (b) γ = 0.2Eϕ , and (c)
γ = 0.3Eϕ . The amplitudes of η are the same as those of ψ and
are not shown in the figure.

temperatures and the low-temperature transition is first order,
and finally, for stronger couplings [Fig. 5(c)] the intermediate
phase disappears and a direct discontinuous avalanche phase
transition between the tetragonal and ferroelectric phase occurs
with the simultaneous condensation of the three distortions.

Although results are qualitatively similar to those of
previous works with one-dimensional order parameters, the
different calculation methods, mean-field approximation and
Monte Carlo simulations, prevent a quantitative evaluation
of the role of dimensionality in the stability of the phases.
Therefore, we also performed Monte Carlo simulations of the
one-dimensional model and the comparison between the phase
diagrams for both cases are shown in Fig. 6. An accurate
estimation of the transition temperatures was obtained by
inspecting the probability distributions of the amplitudes of
the distortions with simulations close to the critical regions.
In the displacive regime the intermediate phase is suppressed
for γ ∼ 2.5Eϕ and γ ∼ 2.0Eϕ for one- and two-dimensional
(1D and 2D) order parameters, respectively [Fig. 6(a)]. The
influence of the dimensionality is more remarkable in the
order-disorder regime, where the avalanche phase transition
appears for γ ∼ 0.45Eϕ in the 1D case, and γ ∼ 0.3Eϕ when
the multidimensionality of the order parameters is considered.
It can be concluded that, for higher dimensionalities, of the
irreducible representations associated to the order parameters,
the trilinear coupling is more efficient to favor a direct phase
transition between the high- and low-temperature phases.

Multidimensional order parameters are ubiquitous in struc-
tural phase transitions. For instance, in completely different
compounds, such as the ferroelectric Ca3Mn2O7, antiferro-
electric PbZrO3 (PZO), and double perovskites Sr2MWO6

(M = Zn, Ca, and Mg) that do not present any dielectric
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FIG. 6. Transition temperatures of the one- and two-dimensional order parameters in terms of γ for (a) order-disorder and (b) displacive
systems obtained by Monte Carlo simulations. The grey area shows the stability region of the intermediate phase.

anomaly, the trilinear coupling is critical to stabilize the
ground state as in SBT and SBN. Table V shows the relevant
irreducible representations and their dimensions. Whereas the
case of Ca3Mn2O7 is similar to SBT and SBN the high
dimensionality of the irreps in the case of PZO could favor
the observed strongly discontinuous transition observed upon
cooling from the cubic phase.

VII. CONCLUSIONS

Despite the different sequence of phase transitions that SBT
and SBN go through, first principles calculations show that the
nature and main features of the instabilities in both compounds
are qualitatively very similar, and that most of the conclusions
about SBT obtained in Ref. [16] can be extended to SBN.
Among the three symmetry-adapted distortions (X−

3 , �−
5 , and

X+
2 ) that take part to drive the tetragonal I4/mmm parent

phase to the polar A21am structure, X−
3 is dominant with the

highest amplitude and the deepest energy well (∼11 mRy per
formula unit). The depths of the secondary distortions �−

5 and
X+

2 are similar in SBN (∼3.5 mRy per formula unit), while in
SBT X+

2 is nearly stable and �−
5 slightly deeper (5.2 mRy per

formula unit).

TABLE V. Three examples of the multidimensionality of order
parameters that couple trilinearly (the labels of the irreducible
representations and their dimensions are listed). The M cation in
Sr2MWO6 corresponds to Zn, Ca, and Mg.

Compound

Ca3Mn2O7 X+
2 (2) X−

3 (2) �−
5 (2)

PbZrO3 R−
5 (3) �2(12) S2(12)

Sr2MWO6 �+
4 (3) X+

3 (3) X+
5 (6)

SBT and SBN X−
3 (2) �−

5 (2) X+
2 (2)

In both compounds, the simultaneous condensation of the
primary instability X−

3 with any of the other two distortions
is penalized energetically by positive strong biquadratic
couplings. Thus, the trilinear coupling is the key ingredient
that allows the simultaneous condensation of the three modes
and its role is essential to stabilize the observed ground state.

The most noticeable difference between SBT and SBN
is associated with the magnitude of the trilinear term. The
polynomial expansion of the energy of both compounds shows
that the trilinear coupling is much stronger in SBN than in SBT,
suggesting that its magnitude could be crucial to suppress
the intermediate phase in SBN. Moreover, the analysis of
phenomenological phase diagrams for SBT and SBN shows
that a higher value of this constant is enough to change
the topology of the phase diagram, allowing a direct phase
transition from the parent phase to the ground state.

Finally, a simplified φ4 Hamiltonian that retains the sym-
metry requirements and the correct dimensionality of the order
parameters has been developed for SBT and SBN. Monte Carlo
simulations do not show qualitative differences in comparison
with the one-dimensional case [32]: the different sequence
of phase transitions observed in both compounds can be
reproduced by changing the strength of the trilinear coupling.
However, according to the present calculations, the increment
of the fluctuations associated with the higher dimensionality
of the order parameters tends to favor the suppression of the
intermediate phase and to reinforce the first-order character
of the direct transition between the high- and low-temperature
structures.
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