
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 91, 180505(R) (2015)

Vortices in normal part of proximity system
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The order parameter induced in the normal part of the superconductor-normal-superconductor proximity system
in the magnetic field can form vortices, which are similar but not the same as vortices in bulk superconductors,
or it can be modulated laminarly with the field-dependent decay length.
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The question of superconductivity induced in the normal
part (N ) of the superconductor-normal-superconductor (SNS)
proximity system has recently been revived by observations
of vortices in N [1]. The order parameter � induced in N

is not uniform even in zero field and is strongly suppressed
nearly everywhere in N except for the immediate vicinity of
interfaces. Hence, the formal problem of the order parameter
distribution within vortices in N is qualitatively different from
that of bulk superconductors and so are the physical properties
of “N vortices.” These properties are of interest both for the
basic physics and for the applications, enough to mention wires
in superconducting magnets which are in fact SNS systems.

Describing proximity effects, one encounters the question
of the length scale on which the induced order parameter
varies. This problem is reviewed in the first part of this Rapid
Communication for any field and temperature. In the following
part, a linear combination of the eigenfunctions of the equation
for � is constructed to represent vortices in N . In fact,
the seminal work of Abrikosov on type-II superconductors
suggests the form of this combination [2]. However, Abrikosov
combined eigenfunctions of the first Landau level, whereas in
the problem of interest here these functions are different.

As mentioned, the induced � is strongly suppressed
everywhere in N except for the vicinity of interfaces. Out
of this vicinity, equations of superconductivity in N can be
linearized. Formally, the situation is similar to that at the upper
critical field Hc2 where the magnetic field is uniform and the
small � satisfies a linear equation,

−ξ 2�2� = � or �2� = k2�, (1)

at any temperature T [3]. Here, � = ∇ + 2πi A/φ0, A is the
vector potential, φ0 is the flux quantum, and k2 = −1/ξ 2.
Notwithstanding the form, this equation differs from the
linearized Ginzburg-Landau (GL) equation; in the latter the
coherence length ξ diverges as T → Tc. At Hc2 and T �=
Tc, ξ (T ) is finite and is found by solving the self-consistency
equation of the theory,

�

2πT
ln

Tc

T
=

∑
ω>0

(
1

ω
− 2τS

β − S

)
, β = 1 + 2ωτ. (2)

Here, �ω = πT (2n + 1) are Matsubara energies, and τ is
the scattering time for nonmagnetic impurities. According to
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Helfand and Werthamer [3],

S(ξ ) = 2β


q

∫ ∞

0
e−s2

tan−1 s
q

β
ds, q2 = 2πHc2

φ0
= 1

ξ 2
,

(3)
where 
 = vτ is the mean-free path.

Equation (1) is equivalent to the Schrödinger equation for a
charge in uniform magnetic field; Hc2 = φ0/2πξ 2 corresponds
to the minimum eigenvalue. The corresponding eigenfunctions
belong to the first Landau level. A linear combination of these
functions, constructed by Abrikosov, represents the lattice of
vortices [2].

The normal metal within the proximity system may have
its own Tc,N < T and Hc2,N (T ). We are interested here in the
part of the phase diagram where the material is in the normal
phase outside of the region under Hc2,N (T ). In this domain,
the superconductivity induced by proximity with S is still
described by Eqs. (1) and (2), however with a more general
S(H,T ,τ ) [4,5],

S(H,T ,τ ) = √
πRe

∫ ∞

0
ds

(1 + us2)σ

(1 − us2)σ+1
erfc s, (4)

σ = 1

2

(
k2

q2
− 1

)
, u = 
2q2

β2
. (5)

Here erfc s = 2
∫ ∞
s

e−t2
dt/

√
π . Solving the self-consistency

Eq. (2) with the new S, one can evaluate ξ (H,T ,τ ) for any
H, T , and τ .

At Hc2,N (T ), ξ 2 = φ0/2πH , i.e., k2/q2 = −1, and the
parameter σ = −1 [6]. Equation (2) in dimensionless form

−1

2
ln t =

∞∑
n=0

(
1

2n + 1
− tS

λ + t(2n + 1) − λS

)
(6)

(λ = �/2πTcNτ is the scattering parameter, t = T/TcN )
should give Hc2,N (T ) if one sets σ = −1 in S of Eq. (4).
Solving this numerically (see Appendix A) for the clean limit
one obtains the lower curve of Fig. 1.

If H → 0, σ diverges, whereas u → 0. It is readily shown
that S of this case has a closed form [5]

S(0,T ,τ ) = β

k

tanh−1 k


β
. (7)

Solving Eq. (2) with S(0,T ,τ ) one obtains the decay length
ξ = 1/k of the order parameter in the N part of the proximity
systems in zero field at any T and τ [7,8].

Thus, k2 = −ξ 2 < 0 at the curve Hc2,N whereas it must be
positive in zero field at t > 1 where it describes � attenuation
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FIG. 1. (Color online) The lower curve is Hc2,N of the clean limit
in units of 2πT 2

cNφ0/�
2v2; at this curve k2 = −q2 and σ = −1. At the

upper curve k2 = 0 and σ = −1/2. Between the upper and the lower
curves, k2 is negative. Above and to the right of the upper curve, k2

is positive.

in the N phase. This suggests that a curve exists on the plane
(H,T ) where k2 = 0 [4]. To check this we set σ = −1/2 in S

of Eq. (4) and solve it numerically for q2(t). The result for the
clean limit is the upper curve in Fig. 1, see Ref. [9].

Given k(H,T ), one can study the behavior of the induced
order parameter in the N phase, i.e., solutions �(x,y) of the
equation �2� = k2�. Choosing A = −Hy x̂ we have

(
∂

∂x
− i

2πH

φ0
y

)2

� + ∂2�

∂y2
= k2�. (8)

The equation does not contain x explicitly so that

� = �0e
ipxχ (y), (9)

with χ (y) satisfying

d2χ/dy2 − q4(y − p/q2)2χ = k2χ. (10)

In terms of ỹ = y − p/q2 the general solution is as follows:

χ = C1χ1 + C2χ2,

χ1 = e−q2ỹ2/2H(−σ − 1,qỹ), (11)

χ2 = eq2ỹ2/2H(σ,iqỹ),

with arbitrary constants C1,2 and σ of Eq. (5). The Hermite
functions H(μ,w) can be expressed in terms of the parabolic
cylinder functions and reduce to Hermite polynomials for
μ = 0,1,2, . . . , see Appendix B.

Note that χ1’s with σ being a negative integer are the
harmonic-oscillator wave functions which go to 0 as ỹ →
±∞; these are the eigenfunctions of Landau levels. We are
interested here in the part of the phase diagram where σ > −1
and χ1(ỹ) is real diverges as ỹ → −∞ and goes to 0 as
ỹ → +∞, see Fig. 2. For symmetric SNS systems, χ1 should
be discarded.

On the other hand, χ2 for σ > −1 has both real and
imaginary parts. An example of χ2(−0.7,1,ỹ) is shown in
Fig. 3. Both real and imaginary parts diverge at large ỹ. χ2

should be taken into account in finite samples.
Consider now a normal-metal layer between two thick

superconducting banks forming the SNS proximity sandwich.
The N slab is infinite in the x and z directions whereas
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FIG. 2. (Color online) χ1(σ,ỹ) for q = 1 in units of 2πTc/�v.
Ordering curves by their left edges clockwise: σ = −1 (Hc2), − 0.9
(with a minimum at the left), −0.5 (k = 0), and 1.

−W/2 < y < W/2. The temperature of the system is TcN <

T < TcS . In zero field Eq. (8) gives � ∝ cosh ky. In a
field along z less than Hc1,S , the field is confined to the N

domain, whereas the S banks are in the Meissner state. Since
superconductivity is induced in N by proximity with S, one
expects vortices to nucleate within the N layer. In small fields,
vortices should form a periodic chain in the slab middle.

The N slab is uniform in the x direction so that the
parameter p in the solution (9) can take any value. Consider a
linear combination,

� = eipxχ2(y − p/q2) + e−ipxχ2(y + p/q2), (12)

where the overall constant factor �0 is omitted. Clearly, if
�(x0,0) = 0, the zero should be repeated with the period δx0 =
π/p. If the penetration depth of S banks is small relative to
W , the flux quantization gives δx0WH = φ0 and

p = πWH

φ0
= q2W

2
. (13)
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FIG. 3. (Color online) χ2(ỹ) for σ = −0.7 and q = 1. Im χ2 is
an odd function of ỹ, whereas Re χ2 and |χ2| are even.
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FIG. 4. Contours of constant |�(x,y)| according to Eq. (12) with
σ = 1, p = q2 = 2 for −2 < x < 2 and −1 < y < 1.

It is convenient here to normalize lengths to W/2, then p =
q2. Since the right-hand side of Eq. (12) is dimensionless,
we keep the same notation x,y,p,q as for their dimensional
counterparts.

The structure of the solution (12) is illustrated in Fig. 4
where the modulus |�(x,y)| is plotted for W = 2, σ = 1, and
q2 = p = 2. As expected, the distance between singularities
(vortices) is δx0 = π/p ≈ 1.57. The solution shown is nor-
malized as to have � = 1 at the interfaces y = ±1.

The phase near one of the vortices is shown in Fig. 5.
Similar structures for the dirty N layer were obtained by
solving Usadel equations [1].

The linear combination (12) obeys the boundary condition
|�(y = ±1)| = const if σ = 2n + 1 is a positive odd integer.
We have for p = q2 at y = 1,

� = e2p−ipxH(σ,2i
√

p) + eipxH(σ,0). (14)
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FIG. 5. (Color online) Contours of the constant phase with the
step π/4 in clockwise order for the vortex at the origin of Fig. 4. The
phase jumps by 2π at the straight ray from the vortex center to the
left.

The integral representation (B2) of H shows that H(σ,0) ∝
cos(πσ/2) = 0 for σ = 2n + 1. Hence, in these cases, the
second term in Eq. (14) vanishes, and |�(1)| is x independent.
For other values of σ this boundary condition can be satisfied
only for p = 0, i.e., for a laminar vortex-free structure with
|�(y)| independent of x.

To compare energies of the vortex chain and the laminar
structure, we turn to the question of energy. Since Eq. (1)
formally coincides with the linearized GL equation, the
corresponding energy functional can be written as a volume
integral,

F = AN (0)
∫

dV (k2|�|2 + |��|2). (15)

Here A is the interface area, N (0) is the density of states at the
Fermi level per spin of the N metal, and the integral is extended
over the N region. Varying this with respect to �∗ one obtains
Eq. (1). However, there is a substantial difference with the
GL: Integrating by parts the term

∫
dV �� · �∗δ�∗, one has

to take into account the boundary condition � = �S at the
interface, which implies δ�∗ = 0. In particular, this boundary
condition is used in the calculation of the equilibrium energy.
Integrating by parts the term

∫
dV |��|2 of Eq. (15) one has

1

2

∫
dV

[
��

(
∇ − i

2π

φ0
A
)

�∗

+�∗�∗
(

∇ + i
2π

φ0
A
)

�

]

= −
∫

dV k2|�|2 +
∫

dS · ∇|�|2/2, (16)

where the surface integral is over the interface and dS is
directed to the superconducting side. Thus, we have

F
AN (0)

= 1

2

∫
dS · ∇|�|2. (17)

Note that ∇|�|2 is always directed toward the S side of
the NS interface so that F > 0, in other words, induced
superconductivity raises the energy of the normal metal.

One then obtains for the N slab of this Rapid Communica-
tion,

F
AN (0)

= Lz

∫ ∞

−∞
dx

∂|�|2
∂y

∣∣∣∣
y=1

= Lz

[
∂

∂y

∫ ∞

−∞
dx|�|2

]
y=1

, (18)

where Lz is the sample size in the z direction; in the x direction
the system is assumed to be large.

One can now compare energies of a laminar structure p = 0
with the vortex chain corresponding to p of Eq. (13). To this
end, we calculate the dimensionless quantity,

f = F
AN (0)�2

SLz

=
[

∂

∂y

∫ ∞

−∞
dx|�|2

]
y=1

, (19)

where |�| is normalized to �S . For the vortex chain (12) with
σ = 1, we have χ2 = 2iqỹ eq2ỹ2/2 and

� = eipxχ2(y − 1) + e−ipxχ2(y + 1)

χ2(2)
(20)
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FIG. 6. Contours of constant |�| for the parameters of Fig. 4 and
a factor of 4 in front of e−ipx of Eq. (12).

(the boundary condition |�| = 1 at y = ±1 is obeyed). We
obtain after straightforward algebra,

f = 2Lx

W

(
1 + H

2πW 2

φ0

)
. (21)

For the in-field laminar structure p = 0, the dimensionless
|�|2 = y2eq2(y2−1). This yields

f0 = 4Lx

W

(
1 + H

πW 2

2φ0

)
. (22)

Comparing f0 with f for the vortex chain, we obtain that
for σ = 1 the chain is preferred if H < φ0/πW 2. In fields
larger than φ0/πW 2, the laminar vortex-free structure wins.
Physically, this means that vortices within the chain repel each
other and since their separation δx0 = π/p = π/q2 ∝ 1/H ,
the chain energy grows until at H = φ0/πW 2 it reaches the
energy of the laminar structure.

The form (12) is not the only possibility. Linear combi-
nations with various complex coefficients all satisfy �2� =
k2�. The choice of these coefficients is dictated by boundary
conditions. If, e.g., a factor of 4 is added to the second term
in Eq. (12), one obtains a distribution shown in Fig. 6. In this
example |�| is normalized on its value at y = 1. The constant
value reached at y = −1 is clearly larger than 1. Thus, this
type of linear combination might be useful in describing the
proximity effect in asymmetric SNS′ systems with different S

banks for which vortices in N tend to be closer to the bank
with smaller order parameter.

The boundary condition |�| = |�S | at the interface, chosen
above for the sake of simplicity, may not hold in real proximity
systems, see, e.g., Ref. [7]. However, for solutions discussed
here the relevant feature is that �S is x independent, which
is so for uniform and flat S banks. The numerical factor in
the “critical field” φ0/W 2 may differ from 1/π . Moreover,
the straight chain may turn unstable with an increasing field
with respect to, e.g., “sawtooth” perturbations (observed in
superconducting strips [10,11]), and the question is out of the
scope of this Rapid Communication.

Hence, vortices appear at the bottom of the suppressed
order parameter valley. They have normal cores in a sense that
� = 0 at the center of each vortex, and the phase changes
by 2π if one circles the center. Still, they differ from their
Abrikosov “brethren.” The order parameter changes differently
with the distance from the center along the x or y directions.

Unlike Abrikosov’s case, one cannot define the core size
as the distance from the center to a place with depairing
current density. The self-energy of these vortices should be
quite small because they appear in the region where � is
suppressed even in zero field. The magnetic field is practically
constant in the N layer (exactly so within our model). Hence,
methods of observing vortices by detecting the vortex field
(decoration or scanning superconducting quantum interference
device microscopy) will probably not work for N vortices.
On the other hand, a scanning tunneling microscope (STM)
that probes the order parameter value should discern zeros
of �. In fact, the recent STM data show vortices between
superconducting Pb islands separated by the normal wetting
layer [1].

There are many questions that remain on the properties of
vortices within domains of proximity-induced superconductiv-
ity. Currents through the SNS sandwich in the magnetic field
should cause vortex motion. If so, what is the drag coefficient?
On the other hand, if the N -layer structure of � is laminar,
the flux-flow dissipation should be absent. Hence, measuring
in-field current-voltage characteristics of an SNS sandwich
one, in principle, can confirm the presence of N vortices.
The above statement that the vortex chain may appear only if
σ = 2n + 1 was obtained for a particular SNS geometry (at a
given T , vortices appear at a discrete set of fields; alternatively,
at a given H—at a discrete set of temperatures). It is not clear
whether this discreteness survives for other geometries.

An interesting question concerns superconducting fluctua-
tions in the N phase. According to the results of Schmid [12]
and Prange [13] based on the linearized GL equation, the
diamagnetic susceptibility χd in the N phase is proportional to
ξ (in zero field, χd diverges as T approaches Tc from above).
Here, a method is offered to evaluate ξ (H,T ) at any H and
T . It would be of interest to look at possible differences in χd

within the region where k2 = −1/ξ 2 is negative (between the
curves of Fig. 1) and out of it where k2 is positive.

The author is grateful to V. Dobrovitski, L. Bulaevskii, D.
Rodichev, R. Mints, S. Bud’ko, R. Prozorov, P. Canfield, D.
Finnemore, and M. Hupalo for helpful discussions. The Ames
Laboratory is supported by the Department of Energy, Office
of Basic Energy Sciences, Division of Materials Sciences and
Engineering under Contract No. DE-AC02-07CH11358.

APPENDIX A

To account for the branch point at s = 1/
√

u, the integral (4)
is rewritten as

S =
√

π

u

∫ 1

0

dη(1 + η2)σ

(1 − η2)σ+1

[
erfc

η√
u

− cos(πσ )erfc
1

η
√

u

]
.

(A1)
For the calculation of Hc2,N (T ), it is convenient to measure
length in units of �v/2πTcN . Then, we have

√
u = q

λ + t(2n + 1)
, q2 = �

2v2H

2πT 2
cNφ0

≈ H

Hc2,N (0)
, (A2)

where λ = �/2πτTcN , Hc2,N (0) is the zero-T clean limit
upper critical field and t = T/TcN .
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APPENDIX B

The general solution of

f ′′(w) − 2μw2f ′(w) + 2μf (w) = 0 (B1)

is f = C1H(μ,w) + C2e
w2H(−μ − 1,iw). For a non-

negative integer μ = n, the Hermite functions H(μ,w) reduce
to Hermite polynomials. An integral representation useful for
our purpose is as follows:

H(μ,w) = 2μ+1

√
π

ew2
∫ ∞

0
e−t2

tμ cos

(
2wt − πμ

2

)
dt. (B2)

APPENDIX C

The assumption of a finite TcN in the main text is in fact not
necessary. However, the formal treatment of the case TcN = 0
should take into account that � = 0 when the effective
coupling is zero. Nevertheless, proximity with S results in
nonzero Green’s functions F (ω) in the normal metal. One can
show that this leads to β − S = 0 and to different exponential
decay lengths of F for different ω = πT (2n + 1)/�’s. The
longest length corresponds to n = 0 so that calculating the
depth of pairs’ penetration one can disregard all n �= 0 [4,14].

Since in this situation there is no standard energy
scale related to � or Tc (and no length scale �v/Tc),
one can use the following reduced temperature and
field:

t0 = 2πτ

�
T , h0 = 2π
2

φ0
H. (C1)

In these variables, β = 1 + t0 and u = h0/(1 + t0)2. To find
k(t0,h0) one has to solve β − S = 0 with S taken at n = 0.
Consider, as an example, the curve k(t0,h0) = 0 at which σ =

0
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FIG. 7. (Color online) The curve k(t0,h0) = 0 for TcN = 0. Note
that this curve holds for any mean-free path; the actual temperature
and field are T = �t0/2πτ and H = φ0h0/2π
2. Hence, on approach-
ing the clean limit, this curve shrinks to the origin so that k > 0
everywhere. On the other hand, the domain of k < 0 expands with
increasing scattering.

−1/2. Using the form (A1), we have

S0 =
√

π

u

∫ 1

0

dη√
1 − η4

erfc
η√
u

. (C2)

This integral is expressed in terms of generalized hyperge-
ometric functions, which are easily treated with the help
of Mathematica. Solving numerically 1 + t0 = S0(u,σ ) one
obtains the curve of Fig. 7.
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