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We report the role of long- and short-range order on the thermal conductivity and mode relaxation times of a
model Si0.5Ge0.5 alloy using molecular dynamics simulation. All interactions used the Stillinger-Weber potential
and the Si and Ge atoms differed only by their mass. The simulated alloys were generated using a Monte Carlo
approach to decouple the short-range order from the long-range order. The thermal conductivity is almost entirely
determined by the alloy’s nearest-neighbor short-range order. Changes to the mode relaxation times between
∼3 and ∼6 THz upon short-range ordering, and the observed f −2 power law trend, suggest that short-range
ordering reduces the anharmonic scattering rate of low frequency modes. The trend of thermal conductivity with
short-range order may be transferred to real Si0.5Ge0.5 and other semiconductor alloys to the extent that scattering
from mass disorder dominates their thermal conductivities.
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Altering the composition of Si1−xGex and other alloys is
one route for engineering their thermal conductivity k [1,2].
In addition to numerous experimental studies [3–6], there
have been many recent computational studies of the thermal
properties of SiGe using classical molecular dynamics [7–12]
and density functional theory [13,14]. Studies have focused
on the dependence of k on composition [7,14], grain size [10],
nanoparticle inclusions [13,15], and nanowire boundary scat-
tering [16], all in an effort to improve the thermoelectric
figure of merit [17,18]. Alloys possess two additional degrees
of freedom for tuning k: the arrangement of the atoms on
the lattice as characterized by the long-range [19] and short-
range [20] order parameters. In molecular dynamics studies of
a Lennard-Jones alloy, Duda et al. showed that the long-range
order can be used to tune k over an order of magnitude
at low temperatures [21,22]. Here, we take Si0.5Ge0.5 as a
representative model for semiconductor alloys and we report
the effect of long-range and short-range order on the thermal
conductivity and normal mode relaxation times at 300 K using
molecular dynamics simulation.

The Bragg-Williams long-range order parameter L gives
the probability that an atom occupies the correct lattice site
with reference to the ordered structure, and the probability is
duly normalized by the atom’s concentration in the alloy [19].
The Warren-Cowley short-range order parameters give the
probability of an atom having the correct neighbor in a certain
neighbor shell with reference to the ordered structure [20]. We
define a set of short-range order parametersSi , where i indexes
the neighbor shells, as the square root of the Warren-Cowley
short-range order parameters so that limi→∞ Si = L [20,23].
Assuming an equimolar binary alloy for which each lattice
site is eligible for a disordering substitution simplifies the
expressions for L and Si . Then, L ≡ |R − W |/N , where R

(W ) is the number of atoms occupying the right (wrong)
lattice site, and N is the total number of atoms [23]. Similarly,
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Si ≡ √|Ri − Wi |/Ni , where Ri , Wi , and Ni are the numbers
of right, wrong, and total neighbor pairs in neighbor shell i,
respectively [23].

Structures with varying L and S1 can be generated by a
Monte Carlo approach. For a binary alloy with the aforemen-
tioned simplifying assumptions, the seed structure is formed
from the definition of L and the compositional constraint.
Beginning from a zincblende reference structure [24], we
randomly selected and exchanged n Si atoms and n Ge
atoms, where n = N (1 − L)/4. At this point, Si ≈ L. Then,
in each Monte Carlo step, we randomly selected atoms to
swap that preserved the composition and L, accepting swaps
that brought S1 closer to the target value. No consideration
has been given to the temperature or configurational entropy
of these structures—they are not in equilibrium. Control
over L and Si in actual Si0.5Ge0.5 requires a nonequilibrium
growth process [25,26], which is likely the case for other
semiconductor alloys, too.

We used the Green-Kubo method [27,28] at thermal
equilibrium to measure k. The convergence time of the heat
current autocorrelation function was determined by the first
avalanche criterion [29] with an averaging window of 8.0 ps
(83 and 123 conventional cell samples) or 40.0 ps (183, 283, or
423 conventional cell samples) and a noise-to-signal cutoff of
1000 [30].

The relaxation times τ (ν) were calculated using the
normal mode decomposition method [28] in the frequency
domain [31]. The atomic trajectories are projected onto the
harmonic normal modes (calculated using GULP [32]), then
Fourier transformed and fit to a Lorentzian:

C
�(ν)/π

[f − f0(ν)]2 + �2(ν)
= t−1

f |Q̇(ν,f )|2. (1)

The fit yields τ = 1/(4π�) and the anharmonic linear fre-
quency f0 for each normal mode ν. At thermal equilibrium, the
coefficient C is guaranteed to be 1

2kBT from the equipartition
principle. The duration of data collection tf ought to be much
greater than the maximum τ (ν) for the material [33]. Q̇ is
the Fourier transform of the normal mode velocity coordinate
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q̇ [34]: Q̇ = ∫ tf
0 q̇ exp(−2πif t)dt [35]. Due to the sharpness

of the peak in |Q̇|2, we increased the weighting near the base
by taking the decimal logarithm of each side of Eq. (1). Only
points above 0.104 meV/THz (1 amu Å2ps−1) were used in the
fit. Because the global minimum of the root mean square of
the residuals lay in a narrow well surrounded by local maxima,
we found it necessary to do a grid search before regression,
with 31 points linearly spaced between ±0.1 THz of the peak
frequency and 31 points logarithmically spaced between � of
10−5 and 10−1 ps−1.

All simulations were performed using LAMMPS [36] with a
time step of 0.5 fs. The zincblende lattice constant was set to
5.43 Å, and the Si and Ge atoms only differed in their masses:
28.09 and 72.64 amu, respectively. The Stillinger-Weber
potential [37] was used for all interactions since the effect
of strain on k is small compared to that of mass disorder [7].
The system was equilibrated at 300 K for 1 ns in a canonical
ensemble enforced by a Nosé-Hoover thermostat [38,39] with
a coupling time of 2 ps. The system was then run for an
additional 1 ns in a microcanonical ensemble before data
were collected for 36 × 217 time steps (2.36 ns), printing the
conduction term of the heat current every ten time steps for
calculating k [40], and printing atomic velocities every 36 time
steps for calculating τ (ν).

Ten independent samples of size 83 conventional cells
were generated for each combination of L and S1 in the
range 0.0–0.9 for S1 � L and their thermal conductivities
were calculated. The uncertainty in k is reported as twice the
standard deviation of the ten calculated values. The relaxation
times of 2000 normal modes were calculated for one sample of
each set. These normal modes include all those below 3 THz
(excluding the zero frequency modes) with the rest randomly
distributed among the remaining modes. Size effects were
explored for select pairs of L and S1 by increasing the domain
size to 123, 183, 283, and 423 conventional cells and performing
a linear extrapolation procedure [12,41,42].

While only S1 was used as a metric for the Monte Carlo
generation, S(r), where r is the neighbor distance, systemat-
ically decreases towards L (Fig. 1). One might characterize
the approach of S(r) toward L by a decay length scale, which
would be less than 1.5 nm for each structure plotted in Fig. 1.
The caseS1 > L can be thought of as corresponding to an alloy
composed of grains defined by antiphase boundaries. Then,
S(r) would scale with the mean grain size and L would scale
with the ratio of volumes occupied by phase and antiphase
grains. For structures with L = 0, S(r) is substantially above
zero at all neighbor distances (Fig. 1). This is a consequence
of the small domain size and our choice to define Si using the
square root. The square root amplifies the small deviations of
|Ri − Wi |/Ni from zero; the deviations of this ratio from the
ideal value (defined with respect to L) were about the same
for all structures. The small domain size also inhibits the exact
convergence of S(r) to L when S1 � L. Nevertheless, the
structures exhibit unique S(r) profiles.

To within the uncertainty, the thermal conductivity depends
only on a structure’s S1, or possibly Si for small i (Fig. 2).
Thus, L affects k to the extent that it sets the lower limit for
S(r). Consistent with the low temperature trend observed by
Duda et al. [22], ∂k/∂S1 increases as S1 approaches one. We
observe the same trend in k with respect to ordering because

FIG. 1. (Color online) Short-range order parameters of the 83

unit cell SiGe structures. Each color represents a different long-range
order and each line is the average of ten independently generated
samples.

the structures investigated by Duda et al. [22], which were
generated from the definition of L, always had Si ≈ L.

A phonon is insensitive to material heterogeneities with
length scales much less than the phonon’s wavelength. Instead,
these phonons can be thought of as traveling through a material
with effective, averaged properties, e.g., density and elastic
moduli [2]. Ab initio calculations have shown that phonons

FIG. 2. (Color online) Thermal conductivities of the 83 unit cell
SiGe structures. The thermal conductivity is constant within the
uncertainty (2σ ) along the rows, indicating that the short-range order
is the dominant factor. Underlined data were also studied for size
effects (Fig. 3).
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FIG. 3. (Color online) Size effects on the thermal conductivity
for select SiGe structures. Each solid symbol is the average of ten
samples. The arcs along the k axis indicate the 95% confidence
interval of the intercept based on the 50 total samples for each (L,S1)
pair. The intercepts are ordered by S1 and not L, indicating that, just
as in Fig. 2, the bulk k is determined by S1. Previous studies of the
L = S1 = 0 alloy are also plotted.

with frequencies less than 2 THz carry 88% of the heat in
SiGe [14]. Making use of the dispersion calculated for an
empirical model of SiGe [11], this translates to a phonon
wavelength greater than ∼3.0 nm (longitudinal) or ∼1.8 nm
(transverse) in our systems. These wavelengths are greater than
the S(r) decay lengths of about 1.5 nm or less (Fig. 1), which
would suggest a reduced dependence of k on S1 as the system
size increases, introducing more long wavelength modes. Yet
Fig. 3 shows that the strong dependence of k on S1 persists out
to the bulk limit.

To explore the dependence of k on S1 further, Fig. 4
shows the normal mode relaxation times. Figure 4(a) com-
pares our results for the completely disordered structure to
previous molecular dynamics simulations using normal mode
decomposition [9,11,12]. Though each work investigated
Si0.5Ge0.5 thermal conductivity at 300 K, slightly different
simulation and fitting procedures were used. Our relaxation
times agree with those of Hori et al. [11]. The agreement
with He et al. [9] is also good, especially considering their
use of a Tersoff potential [44] instead of the Stillinger-
Weber potential. The relaxation times of Larkin and Mc-
Gaughey [12] are significantly shorter than the others, although
a similar trend is shown. The disagreement may be due to
their use of the virtual-crystal modes for the normal mode
decomposition [45].

Figures 4(b)–4(d) show the mode relaxation times for two
paths between the ordering extrema: (L,S1) = (0.0,0.0) →
(0.9,0.9). That Figs. 4(c) and 4(d) are so similar, and Fig. 4(b)
shows no significant change in τ (ν) with L, supports the
conclusion of Fig. 2: that S1 accounts for the entire change
in k upon ordering.

FIG. 4. (Color online) Mode relaxation times for slices through
L-S1 parameter space. (a) Comparison of our fully disordered SiGe
structure to previous results. (b) Constant S1 slice. The majority
of modes are unaffected by L. Note the change in ordinate scale.
(c) Constant L slice. All modes are sensitive to S1. (d) L = S1 slice.
The relaxation times are nearly identical to those of (c), in agreement
with the thermal conductivity trends of Figs. 2 and 3.

The relaxation times below 10 THz are roughly fit by a f −2

power law [Figs. 4(b)–4(d)]. The fitted exponents fell within
−2 ± 0.15 for each plotted (L,S1) pair. The relaxation times
below ∼1.5 THz have a greater variance for two reasons.
The total simulation time (4.36 ns) was comparable to the
fitted relaxation time, so these modes are nonthermalized,
invalidating the assumption of equipartition for those modes.
The relaxation times are also comparable to the period of data
collection, reducing the accuracy of the Lorentzian fit. It is
likely that the power law trend in this regime continues as
f −2, but with a reduced variance [2,14], although this cannot
be verified by the present simulations.

Figures 4(c) and 4(d) also show a change in the character
of the relaxation times, especially in the range of 3–6 THz.
The curve is smooth for S1 = 0. But as S1 increases, peaks
and valleys form where the momentum and energy selection
rules for phonon scattering become more and less restrictive.
Furthermore, a band gap forms at ∼11 THz.

We therefore attribute the dependence of k on S1 (instead of
L) to the alteration of the phonon eigenvectors caused by short-
range ordering. As S1 increases, the eigenvectors approach
those of the zincblende crystal. While high frequency modes
might significantly contribute to k in the limit S1 → 1, most
of the increase for the ordering range studied here is caused by
a reduction in the anharmonic scattering of the low frequency
modes. The reduction in anharmonic scattering may be due to
fewer states that satisfy momentum and energy selection rules,
a reduction in the scattering cross section, or both mechanisms.
The same trend of k with disorder was observed by Garg et al.,
who saw a reduction in k with greater disorder when they went
from a virtual crystal to an explicitly disordered supercell [14].
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They found that the change in k was due to altered mode relax-
ation times, caused by a modification of the mode eigenvectors.

The findings may be cautiously generalized to other
simulated and real alloys provided the thermal conductivities
of their disordered states arise primarily from the same
mechanisms as those found in the present model of Si0.5Ge0.5,
namely, the scattering of lattice vibrations by mass disorder.
That k depends almost solely on S1 has implications for
the characterization and theoretical modeling of such alloys.
When examining an alloy with the purpose of understanding
its thermal conductivity or predicting it, a characterization
technique sensitive to the short-range order must be used,
e.g., diffuse x-ray scattering [46]. Similarly, future efforts to
theoretically model thermal transport in ordered alloys should
focus on the short-range order or its effect on anharmonic
phonon scattering.

In summary, we performed molecular dynamics simula-
tions of a Si0.5Ge0.5 alloy, representing a model semiconductor
alloy, and calculated the thermal conductivity as it depends
on the long- and short-range ordering. We found that the bulk

thermal conductivity depends almost wholly on the short-range
order of the alloy for a fixed composition. Relaxation time
calculations support this dependence. Changes in the character
of the mode relaxation times upon ordering imply that the
corresponding increase in thermal conductivity is caused by a
reduction in disorder-induced anharmonic phonon scattering.
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