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Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally
anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to
incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC)
contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach
to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974)]. In the globally isotropic
case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar
and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched
anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with
that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections
to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the
apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator.
Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He
in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically
ordered aerogels and the absence of B and A phases with planar l̂ vector in a stretched aerogel.
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I. INTRODUCTION

The anisotropy added to Fermi superfluids with isotropic
Fermi surface has profound effects on the realization of
Cooper-pairing states. The isotropic superfluid 3He of the
bulk liquid has been thoroughly studied so far [1] and was
shown to, in zero field, consist of just two pairing states,
Anderson-Brinkman-Morel (ABM) state [2,3] and Balian
Werthamer (BW) one [4]. It has been suggested [5–7] that
superfluid 3He in an aerogel suffers from scattering events
due to the surface of the locally two-dimensional (2D) porous
material and will enhance the stability of the ABM state, i.e.,
the A phase. The ensuing theoretical study of the effects of a
global anisotropy of scattering events on superfluid 3He based
on the impurity-scattering model [6] has shown an enhanced
stability of A phase and, more importantly, realization of the
polar pairing state in the so-called stretched (or, 1D-like)
aerogel where the quasiparticle mean free path is longer
along the uniaxial anisotropy axis [8]. Reflecting the fact that,
in the isotropic bulk liquid, the polar pairing state gains a
strong-coupling (SC) contribution of the same extent as the
ABM state [9], this polar phase just below the superfluid
transition temperature Tc(P ) does not shrink with increasing
P , where P is the pressure.

Recent experiments on superfluid 3He in aerogels have
suggested the presence of novel pairing states essentially
differing from those appearing in the bulk liquid when the
aerogel has a well-defined global anisotropy [10–12]. First,
as convincingly argued in Ref. [8], the polar pairing state
has been realized in 1D-like nematically ordered aerogels
with lower porosities [10]. In the resulting phase diagram on
the nematically ordered aerogel, however, the region of the
polar state diminishes with increasing P , in contrast to the
tendency following from the conventional SC corrections [8,9]
mentioned above. In fact, previous measurements on other
nematically ordered aerogels [13,14] have shown the presence

of an anisotropic A phase with a polarlike distortion (which
we call AXY later) over significantly wider temperatures,
which seems to contradict the negligibly small strong-coupling
correction argued [7] in the experiment on globally isotropic
or much less anisotropic aerogels. Further, an experiment in
a different uniaxially stretched (1D-like) aerogel has shown
a surprising phase diagram: there, both the polar and BW
pairing states are absent, and just two equal spin pairing (ESP)
states are found, the familiar A phase at higher temperatures
and a biaxial A-like phase at lower temperatures [15]. In
addition, in the corresponding compressed (2D-like) aerogel,
the A phase has been found only in higher magnetic fields
than a threshold field. The absence of the A phase in
zero field in Ref. [12] implies that the naive picture [5–7]
based on the locally 2D-like nature does not hold. Another
unexpected fact in these two experiments [11,12] is that the l̂
vector in the high temperature A phases has counterintuitive
orientations: contrary to the conventional picture [8,15,16],
the l̂ vector in the A phase realized in the uniaxially stretched
(1D-like) aerogel is parallel to the uniaxial anisotropy axis,
while it lies in the perpendicular plane to the axis in the
2D-like compressed aerogel. Clearly, some factor is lacking
for describing superfluid 3He in anisotropic aerogels even
in the picture based on the conventional impurity scattering
model [6,8].

In this work, the previous theory [8] of superfluid 3He
in globally anisotropic aerogel is extended by incorporating
effects of the anisotropic scattering of quasiparticles in the SC
contribution to the free energy. The global anisotropy is mea-
sured by a parameter δu, and the case with a positive (negative)
δu describes a compressed (stretched) aerogel. Throughout this
paper, we restrict ourselves to the use of the conventional
spin-fluctuation (paramagnon) model [3] in describing the
SC contributions to the Ginzburg-Landau (GL) free energy,
because the dynamics (frequency dependence) of the effective
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interaction between the normal quasiparticles becomes impor-
tant. In the previous theory [8] on the anisotropic case, effects
of the global anisotropy on the SC correction have been simply
assumed to be negligibly small. Here, we show that, in the
δu �= 0 case with a global anisotropy, the SC correction to the
quadratic term in the GL free energy determining the mean-
field superfluid transition temperature Tc(δu) is not negligible
but plays important roles. In particular, this SC correction to
the quadratic term has the opposite pressure dependence to
the corresponding weak-coupling term derived in Ref. [8].
We will argue that the resulting anisotropy effect on Tc is
the origin of various unexpected observations in stretched or
1D-like aerogels, i.e., the observed P dependence of the polar
phase region in Ref.[10], the absence of the polar phase [11],
and the counterintuitive orientations of the l̂ vector [11,12].

Next, to construct the theoretical phase diagrams fully, the
SC contributions to the quartic terms of the GL free energy are
also examined. In general, the quartic SC correction is present
at the lowest order of the anisotropy parameter δu so that the
stability of the ABM state is significantly affected by the sign
of δu for a large anisotropy. We find that the SC contributions to
the coefficients of the GL quartic terms tend to increase with in-
creasing δu, implying that the ABM state tends to be stabilized
(destabilized) in uniaxially stretched (compressed) aerogels.
This obtained feature is qualitatively consistent with that seen
in experiments of the Northwestern University group [11,12].

To compare theoretical results with the experimental obser-
vations [10–12], we have examined parameter dependencies of
the resulting phase diagrams. As for the parameters affecting
the phase diagram, there are three parameters to be changed in
the present approach, which are the anisotropy, the averaged
mean free path or the disorder strength, and an upper cutoff
Ec for the frequency carried by the paramagnon propagator.
This cutoff Ec inevitably appears in the present approach
where the conventional treatment in Ref. [3] for the bulk
liquid is applied to the case in aerogels. The resulting phase
diagram unexpectedly depends on the magnitude of Ec,
because the magnitude of Ec determines the pressure value
above which the superfluid phases with the above-mentioned
counterintuitive anisotropy and orientation of the l̂ vector
occur. Broadly speaking, for a large enough Ec, we obtain
phase diagrams in the stretched aerogel case with no polar
and BW states, which are qualitatively consistent with that in
Ref. [11], while the phase diagram following from an Ec of a
moderate magnitude is similar to that in the previous work [8]
but with the polar phase shrinking with increasing P and, thus,
is consistent with the observed ones in Ref. [10]. At present,
it is unclear what this Ec dependence of the resulting phase
diagram implies, and a further study based on other models of
the SC contribution would be needed.

This paper is organized as follows. In Sec. II, the model
Hamiltonian and the previous results in Ref. [8] where no
anisotropic SC contributions were considered are reviewed. In
Sec. III, the conventional paramagnon approach to the SC
contributions is reviewed and is applied to the evaluation
of a large isotropic SC contribution, which convincingly
results in the absence of the A phase in equilibrium in the
globally isotropic aerogel. In Sec. IV, the SC contributions
to the GL free energy terms in the globally anisotropic cases
are calculated. In Sec. V, the resulting phase diagrams are

discussed in details, and a summary and comments are given
in the last section. Details of the obtained coefficients are given
in Appendix.

II. MODEL AND REVIEW ON PREVIOUS RESULTS

In this section, we introduce the microscopic models and
review results on the GL free energy in the weak-coupling
approximation [8]. The SC correction will be considered in
the following sections.

We use the BCS Hamiltonian including the additional term

Himp =
∫

d3r
∑

σ

ψ̂†
σ (r) u(r) ψ̂σ (r), (1)

associated with the impurity scattering with a potential u(r),
where ψ̂ is the fermion operator. In the cases with a global
uniaxial anisotropy with the anisotropy axis along ẑ, the
random potential u(r) is assumed to have zero mean and to
satisfy

|uk|2 = 1

2πN (0)τo

(
1 + δuk̂2

z

)
(2)

in the Fourier representation, where the overbar denotes the
random average, N (0) is the density of states per spin on the
Fermi surface in the normal state, and k̂ = k/kF with the Fermi
wave number kF. The random-averaged Matsubara Green’s
function defined in the normal state takes the form

Gε(p) = 1

iε − ξp + isgn(ε)ηp
, (3)

where ε is a fermionic Matsubara frequency, and

ηp = 1

2τo

(
1 + δup̂

2
z

)
. (4)

Based on this, τo appeared in Eqs. (2) and (4) is regarded as
the relaxation time of a single quasiparticle in the isotropic
case. Then, the difference in the free energy density between
the superfluid and normal states is written as

F =
〈

1

|g|Tr(
†(p̂)
(p̂))

〉
p̂

− T ln〈Ts exp �〉, (5)

where

� =
∑

p

[
(
†(p̂))βα

∫ 1/T

0
ds ap,α(s) a−p,β (s)

]
+ H.c. (6)

and

(
(p̂))α,β = i√
2

(σμdμ(p)σ2)α,β (7)

is the pair field, and s is an imaginary time. Hereafter, the
notation dμ(p) = Aμ,ip̂i will be often used.

First, the GL free energy density in the globally isotropic
(δu = 0) case obtained within the mean field approximation is
reviewed. Based on model (2), the wave number dependencies
of the scattering amplitude are not considered in δu = 0 case
so that the impurity-induced renormalization of the pair-field
vertex (see Fig. 1) is not introduced. Then, the GL free energy
density F (wc) = F

(wc)
2 + F

(wc)
4 can simply be written in the
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FIG. 1. Diagram expressing the impurity-induced vertex correc-
tions. According to Eq. (2), the vertex correction expressed by the
dashed line with a cross carries the anisotropy parameter δu. The solid
line with an arrow denotes the quasiparticle Green’s function defined
in the normal state.

form

F
(wc)
2 (0) =

[
δi,j

3|g| − T
∑

ε

∑
p,p′

p̂i p̂
′
jGε(p,p′)G−ε(−p,−p′)

]

×A∗
μ,iAμ,j , (8)

with

F
(wc)
4 (0) � T

∑
ε,p

(Gε(p)G−ε(−p) )2 Tr(
†
p̂
p̂


†
p̂
p̂)

= β
(wc)
1 (0)|Aμ,iAμ,i |2 + β

(wc)
2 (0)(A∗

μ,iAμ,i)
2

+β
(wc)
3 (0)A∗

μ,iA
∗
ν,iAμ,jAν,j

+β
(wc)
4 (0)A∗

μ,iAν,iA
∗
ν,jAμ,j

+β
(wc)
5 (0)A∗

μ,iAν,iA
∗
μ,jAν,j , (9)

where β
(wc)
2 (0) = β

(wc)
3 (0) = β

(wc)
4 (0) = −β

(wc)
5 (0) = −

2β
(wc)
1 (0) = 2β(wc)(T ), ε̃ = ε + sgn(ε)/(2τo),

β(wc)(T ) = −β0(T )ψ (2)(y), (10)

β0(T ) = N (0)/(480π2T 2), and y = (4πτoT )−1 + 1/2. Here,
G(p,p′) is the Green’s function defined prior to the ran-
dom average, and ψ (2)(z) = −2

∑
n�0(n + z)−3 is the second

derivative of the digamma function ψ(z).
Next, the above expressions will be extended to the

anisotropic case with δu �= 0. Up to O(δu), its quadratic term
is expressed by

F
(wc)
2 (δu)

V N (0)
= α(wc)

z A∗
μ,zAμ,z + α(wc) A∗

μ,jAμ,j , (11)

where

α(wc) = 1

3

(
ln

T

Tc0
+ ψ(y) − ψ

(
1

2

)
+ δu

4πT τo

1

5
ψ (1)(y)

)
,

α(wc)
z = δu

4πT τo

16

45
ψ (1)(y). (12)

Here, the δu dependencies arise from both the self-energy term
in G and the vertex corrections drawn in Fig. 1.

The corresponding quartic term F4(δu) is also derived in a
similar manner, and its form is unaffected even if taking into
account the SC corrections to be included later. Up to O(δu),
it takes the form

F4(δu) = β1(δu)|Aμ,iAμ,i |2 + β2(δu)(A∗
μ,iAμ,i)

2 + β3(δu)A∗
μ,iA

∗
ν,iAμ,jAν,j + β4(δu)A∗

μ,iAν,iA
∗
ν,jAμ,j

+β5(δu)A∗
μ,iAν,iAν,jA

∗
μ,j + [(β1z(δu)Aμ,iAμ,iA

∗
ν,zA

∗
ν,z + β2z(δu)A∗

μ,iAμ,iA
∗
ν,zAν,z + β3z(δu)Aμ,iAν,iA

∗
μ,zA

∗
ν,z

+β4z(δu)A∗
μ,iAν,iA

∗
ν,zAμ,z + β5z(δu)A∗

μ,iAν,iA
∗
μ,zAν,z ) + c.c.]. (13)

Each of the coefficients βi (βiz) is the sum of a weak coupling contribution β
(wc)
i (β(wc)

iz ) and a SC one β
(sc)
i (β(sc)

iz ) to be presented

later. The coefficients β
(wc)
i and β

(wc)
iz are given by

β
(wc)
3 (δu) = −2β

(wc)
1 (δu) = − 2β0(T )

[
ψ (2)(y) + δu

4πT τo

1

7
ψ (3)(y)

]
,

β
(wc)
2 (δu) = β

(wc)
4 (δu) = −β

(wc)
5 (δu) = β

(wc)
3 (δu) − 1

2πT τo

β0(T )

[(
5

18
+ δu

54

)
ψ (3)(y) + δu

4πT τo

1

18
ψ (4)(y)

]
,

β
(wc)
3z (δu) = −2β

(wc)
1z (δu) = − δu

2πT τo

β0(T )
46

63
ψ (3)(y),

β
(wc)
2z (δu) = β

(wc)
4z (δu) = −β

(wc)
5z (δu) = β

(wc)
3z (δu) − δu

2πT τo

β0(T )

[
1

9
ψ (3)(y) + 1

4πT τo

4

27
ψ (4)(y)

]
(14)

up to O(δu). All of the expressions given above have been
derived in the previous work [8], although the present notation
is slightly different from the previous one. In the ensuing
sections, the corresponding SC contributions to α(wc) and α(wc)

z

need to be derived together with β
(sc)
i and β

(sc)
iz .

III. SPIN-FLUCTUATION MODEL OF
STRONG-COUPLING CONTRIBUTION

As a simple model, we will use the spin-triplet pairing
interaction between quasiparticles stemming from the bare
interaction of Stoner type Hbareint = I

∫
r n̂α(σx)α,β n̂β/2, where

n̂α is the bare fermion density with the spin projection α.
This bare interaction results in the ferromagnetic spin critical
fluctuation (paramagnon) [17]. If this paramagnon is treated
in the Gaussian approximation so that any mode-couplings
between the paramagnons are neglected, the resulting free
energy F (s) corresponding to that of the free paramagnon is
given by

F (s) = T

2

∑
μ,ν

∑
ω

∫
q
[ln(1 − Iχμ,ν(q,ω)) + Iχμ,ν(q,ω)],

(15)
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where
∫

q = ∫
d3q/(2π )3, and the dynamical susceptibility is

expressed in the form

χμ,ν(q,ω) = −T

2

∑
ε,p,p′

(σμ)α,β (σν)γ,δ

× [Gβ,γ (p−,p′−; ε)Gδ,α(p′+,p+; ε + ω)

−Fβ,δ(p−,p′−; ε)F†
γ,α(p′+,p+; ε + ω)] (16)

when the interaction Hamiltonian of quasiparticles takes the
quadratic form (5) according to the mean-field approximation,
even in the presence of an impurity disorder, and F and F†

are the anomalous Matsubara Green’s functions. When F (s) is
expanded in powers of the difference

δχμ,ν(q,ω) = χμ,ν(q,ω) − χμ,ν(q,ω)|
=0, (17)

its lowest-order term is [18]

F
(s)
2 = −4T k3

F

N (0)

∑
μ

∑
ω

∫
dqq2

(2π )2
〈δχμ,μ(q,ω)〉q̂

× I
2

1 − I + q2I/3 + π |ω|/(8EFq)
, (18)

where 〈δχμ,μ(q,ω)〉q̂ is the average of δχμ,ν(q,ω) on the
orientation of q, q = q/(2kF), and q = |q|. According to the
Brinkman et al. (BSA) [3], F (s) will be treated as follows. Up
to O(|
|2) and with no impurity-induced vertex correction, we

have

δχμ,ν(q,ω)

= T

2

∑
ε,p

[
Tr

(
σμ
T

pσ T
ν 
∗

p

)|Gp−(ε)|2|Gp+(ε + ω)|2

+ 2Tr(σμσν
p · 
†
p)Gp+(ε − ω)Gp−(−ε)(G−p− (ε))2

]
.

(19)

After integrating this expression over ξ , which is the kinetic
energy measured from the Fermi energy, the denominator
1/[(vp · q)2 + ω2] appears, where vp is the velocity ‖ p.
The denominator of the paramagnon propagator seen in
Eq. (18) implies that the q integral is dominated in the

region q �
√

1 − I , and |ω| < EF

√
1 − I , suggesting that

Max(|ε|,|ω|)/(vFq) can be regarded as a small parameter. For
this reason, by considering the average of the denominator
1/[(vp · q)2 + ω2] over the direction of q̂, this denominator
will be replaced with

δp·q,0

(
π

2vF|q||ω| − 1

v2
Fq

2

)
, (20)

which recovers the |ω|/(vFq)-expansion of 〈1/[(vp · q)2 +
ω2]〉q̂ properly. The second term of Eq. (20), which has not
been taken into account in Ref. [3] will also be included
hereafter. Then, Eq. (19) is expressed in the form

δχμ,ν(q,ω) = π2T N (0)

4vF|q| 〈p̂i p̂j δp·q,0〉p̂

[
−A∗

ρ,iAρ,j δμ,ν

∑
ε

sgn(ε)sgn(ε − ω)

(
1

ε̃2
+ 1

| ˜ε − ω|2
)

+
∑

ε

2

|ε̃|| ˜ε − ω| (δμ,νA
∗
ρ,iAρ,j − A∗

μ,iAν,j − A∗
ν,iAμ,j ) + 4

πvF|q|
∑

ε

1

|ε̃| (A∗
μ,iAν,j + A∗

ν,iAμ,j )

]
, (21)

where the angle average 〈p̂i p̂j δp⊥q,0〉p̂ is given by δT
i,j /2 with δT

i,j ≡ δi,j − q̂i q̂j .

If using Eq. (21) in F
(s)
2 , some contribution to the A∗

μ,jAμ,j term is obtained. However, this SC contribution to the quadratic
term may be neglected, because this does not lead to distinguishing various pairing states from one another and may be absorbed
into a definition of Tc. On the other hand, when applying Eq. (19) to the next-order term of F (s),

F
(s)
4 = − T (2kF)3

8(N (0)π )2

∑
μ,ν

∑
ω

∫ 1

0
dqq2

(
I

1 − I + q2I/3 + π |ω|/(8EFq)

)2

〈(δχμ,ν(q,ω))2〉q̂ , (22)

the following corrections to the coefficients β1 and β2 of the GL quartic terms are found [19]:

β
(sc)
1,se = β0(T )

300
ψ (2)

(
1

2

)
t δ

∑
m

(
D

(d)
1 (m)

)2
,

β
(sc)
2,se = β

(sc)
1,se

[∑
m

(
9
(
D

(d)
2 (m)

)2 − 6D
(d)
1 (m)D(d)

2 (m) − 2
(
D

(d)
1 (m)

)2

] [∑
m

(
D

(d)
1 (m)

)2

]−1

,

β
(sc)
3,se = 1

6

(
β

(sc)
2,se + 5β

(sc)
1,se

)
,

β
(sc)
4,se = β

(sc)
3,se + 5β

(sc)
1,se,

β
(sc)
5,se = 7β

(sc)
1,se, (23)
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(a) (b)

FIG. 2. Diagrams ignored previously [3,21] in incorporating the
SC corrections to the GL quartic terms for the bulk liquid. The wave
line denotes the paramagnon (spin-fluctuation) propagator defined in
the normal state.

where tδ (∝ T/EF) is a parameter defined in Ref. [3], and

D
(d)
1 (m) = 1

2

(
1

|m| + 1

|m| + (2πτoT )−1

)
× (ψ(y + |m|) − ψ(y)) , (24)

D
(d)
2 (m) = 1

2
ψ (1)(y + |m|). (25)

These are nothing but the extension in the relaxation time
approximation of the BSA results in the clean limit to the
disordered case. Contrary to the experimental suggestion [5,7],
however, this relaxation time approximation rather enhances
the temperature region in which the A phase is more stable
than the B phase and, thus, is insufficient as a description of
the superfluid 3He in a globally isotropic aerogel [20].

Inclusion of the O(|
|4) contribution to δχμ,ν(q,ω) in F
(s)
2

also induces corrections to βj . In the previous studies [3,21],
the quartic terms following from F

(s)
2 have been neglected.

This omission has been justified there based on the use of the
static approximation for the four-point vertex �4, i.e., on the
neglect of the frequency dependence of �4 which, in the present
paramagnon approach, corresponds to the normal paramagnon
propagator. For instance, the diagram of Fig. 2(a) under
this static approximation becomes identically zero. Further,
Fig. 2(b) has been interpreted as being absorbed into the vertex
correction of the type indicated in Fig. 1. Hereafter, regarding
the results in clean limit, we will follow the interpretation in
previous works [3,21].

When trying to incorporate vertex corrections induced by
the impurity-scattering effects due to the aerogel structures,
however, the SC corrections reflected in F

(s)
2 are found to play

important roles. In a previous study, impurity-induced vertex
corrections to the SC effect on the quartic terms have been
examined [20] based on the static approximation in the work
[21], in order to verify the suggestion from experiments that
the SC correction is significantly suppressed in an aerogel
with no global anisotropy [7]. It has been found that the
impurity-induced vertex correction qualitatively reduces the
SC correction, although it is not substantial quantitatively.
However, important impurity-induced terms of the SC con-
tribution to βj , created from the self-energy correction due
to the paramagnon in the clean limit, have been overlooked
in Ref. [20]. These terms, sketched in Fig. 3, become more
important at higher values of the frequency carried by the
paramagnon propagator, while these terms have not been

(a) (b) (c)

FIG. 3. SC contributions to the GL quartic terms playing impor-
tant roles in a globally isotropic disordered system. Here, the dashed
curve denotes Eq. (2).

examined in the approach based on the static approximation
[21]. At least within the conventional paramagnon approach
[3], these terms are dominant contributions to the impurity-
induced SC correction of O(1/(τoT )) and result in a significant
reduction of the SC correction and, hence, in the absence of
the A phase in globally isotropic aerogels [5,7].

Detailed expressions on the terms depicted in Fig. 3 will
be given here. For instance, the contribution to δχμ,ν(q,ω) of
Fig. 3(a) is

2 × Fig. 3(a) = − T

4πN (0)τo

δμ,ν

∑
ε

[∫
p
|d(p)|2Gp+q(ε + ω)

× [Gp(ε)]2G−p(−ε)

]2

. (26)

After performing the ξp integral, the expression in the square
bracket of Eq. (26) becomes

πN (0)

2

|ε| + |ε + ω|
ε2

〈 |d(p)|2
(v · q)2 + (|ε| + |ε + ω|)2

〉
p̂

. (27)

Using the BSA’s procedure for the p̂ average, the contribution
of Eq. (26) to 〈δχμ,ν(q,ω)〉q̂ becomes

−3π4

80

T N (0)

4πτov
2
Fq

2
δμ,ν

∑
ε>0

1

ε4

(
δi,j δk,l + 1

6
(δi,kδj,l + δi,lδj,k)

)

×A∗
ρ,iAρ,jA

∗
λ,kAλ,l . (28)

As a result of the use of the BSA’s procedure, the ω

dependence has been lost, implying that the corresponding
contribution to the free energy inevitably depends on the
high-energy cutoff Ec of the spin-fluctuation dynamics. It
should be noted that this dependence does not seem to be an
artifact of the BSA procedure: The expression (27) suggests
that the |ω|−1 dependence at large |ω| appears only in the
low |q| contribution, which due to the |ω|/q dependence of
the normal paramagnon propagator, is not dominant in the q
integral for obtaining the free energy. In this manner, we judge
that the SC correction from Fig. 3(a) is inevitably dominated
by the high |ω| contributions and is practically dependent

on the high-energy cutoff Ec (<EF

√
1 − I ). In the same

way, the contributions of Figs. 3(b) and 3(c) to 〈δχμ,ν(q,ω)〉q̂
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become

4 × Fig. 3(b) = − T N (0)π2

10πτov
2
Fq

2
δμ,ν

∑
ε>0

1

ε4
(δi,j δk,l + δi,kδj,l + δi,lδk,j )A∗

ρ,iAρ,jA
∗
λ,kAλ,l,

4 × Fig. 3(c) = 3T N (0)π2δμ,ν

160πτov
2
Fq

2
(1 − δω,0)

∑
ε>0

(
1

(ε + |ω|)4
− 1

ε4

)
(δi,j δk,l + δi,kδj,l + δi,lδk,j )A∗

ρ,iAρ,jA
∗
λ,kAλ,l, (29)

respectively. It is clear that both of Eq. (29) are also dominated by the high frequency contributions.
Finally, the corresponding contributions of Fig. 3 to the βj parameters, β

(sc)
j,vc(0), will be given here

β
(sc)
2,vc(0) = 30

(πI )2

2πτoT
β0

∑
m

D1(|m|)
[(

2

15
+ π2

80

)
ψ (3)(y) + π2

40
(ψ (3)(y) − ψ (3)(y + |m|)

]
,

β
(sc)
3,vc(0) = β

(sc)
4,vc(0) = 30

(πI )2

2πτoT
β0

∑
m

D1(|m|)
[(

2

15
+ π2

480

)
ψ (3)(y) + π2

240
(ψ (3)(y) − ψ (3)(y + |m|)

]
, (30)

and β
(sc)
1,vc(0) = β

(sc)
5,vc(0) = 0, where

D1(|m|) = T

8π2EF

∫ ∞

0
dq

(
1 − I + I

3
q2 + π2T

4|q|EF
|m|

)−1

. (31)

These corrections to βj are positive so that stability of the A phase is diminished. Then, for reasonable τ−1
o values used in our

numerical calculations and the I values appropriate for the bulk liquid, we find that, at least within the present mean field analysis,
the BW state (B phase) is the only superfluid phase in the globally isotropic case and that the A phase is not realized anywhere
at least below 30 bar.

IV. ANISOTROPIC STRONG-COUPLING CONTRIBUTIONS

As mentioned in the preceding section, the SC correction to the quadratic term of the GL free energy is negligible even in the
presence of impurity-scattering effects as far as the medium is globally isotropic. In contrast, in the case with a global anisotropy,
the SC correction to the quadratic term is no longer negligible and, as seen below, plays important roles in determining the
pressure dependence of the superfluid transition. The corresponding SC effects on the quartic GL terms will be discussed in the
last half of this section.

Hereafter, we focus on the lowest-order contributions in the anisotropy parameter δu to the SC corrections to the GL free
energy terms. Then, the parameter δu is carried by a single impurity line appearing as a vertex correction or by a quasiparticle
damping of a Green’s function in a diagram expressing δχμ,ν(q,ω).

First, let us discuss the anisotropic contribution to δχμ,ν(q,ω) due to the quasiparticle damping. This contribution to δχμ,ν

is easily obtained from the corresponding expression in clean limit simply by adding ηp to |ε|, |ε − ω|. However, we will not
incorporate such a self-energy diagram that can be regarded as being absorbed into a weak-coupling process. Its example is
raised in Fig. 4. The contribution to δχμ,ν accompanied by the anisotropy parameter δu in the self-energy correction becomes

δχ (1)
μ,ν(q,ω)|se = π2 N (0)

vF|q|
δu

τo

〈p̂i p̂j p̂
2
z δp⊥q,0〉p̂

[
T

2

∑
ε>0

1

(ε + |ω|)3
δμ,νA

∗
ρ,iAρ,j − T

∑
ε>0

(
δω,0

1

ε3
+ (1 − δω,0)

[
1

|ω|ε(ε + |ω|)

+ 1

2

(
1 + τo|ω|

1 + τo|ω|
)(

1

ε
+ 1

ε + |ω|
)

1

ε(ε + |ω|)
])

(δμ,νA
∗
ρ,iAρ,j − A∗

μ,iAν,j − A∗
ν,iAμ,j )

]
(32)

up to O(δu), where ε̃ = sgn(ε)(|ε| + 1/(2τo)), and the angle average 〈p̂i p̂j p̂
2
z δp⊥q,0〉p̂ is given by [(1 − q̂2

z )δT
i,j + 2δT

i,zδ
T
z,j ]/8.

Performing the q̂ average and substituting it into Eq. (18), the corresponding contributions to the quadratic terms of the GL free
energy density are

F (2)
s |se

N (0)V
= α(sc)

z |se A∗
μ,zAμ,z + α(sc)|se A∗

μ,jAμ,j (33)

with α(sc)|se = α(sc)
z |se/2 = �

(ss)
2 + �

(sv)
2 , where

�
(ss)
2 = π2I

2

15

δu

4πT τo

⎧⎨
⎩1

4
D2(0)ψ (2)(y) +

∑
m�1

D2(|m|)
[

3

2
ψ (2)(y + m) + 2

(m + 1/(2πτoT ))2
(ψ(y + m) − ψ(y))

−
(

1

m
+ 1

m + 1/(2πτoT )

)
(ψ (1)(y + m) − ψ (1)(y))

]⎫⎬
⎭ ,

�
(sv)
2 = 8π2I

2

15

δu

4πT τo

1

4

∑
m>0

D1(|m|)(7ψ (1)(y) − 3ψ (1)(y + m)), (34)
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FIG. 4. Example of self-energy terms regarded in the present
study as being absorbed into the weak coupling terms.

and

D2(|m|) = 1

4π2

∫ 1

0
dq2

(
1 − I + I

3
q2 + π2T

4|q|EF
|m|

)−1

.

(35)

Here, the �
(sv)
2 -term results from the contributions to δχ (1)

μ,ν of
the second term of Eq. (20), which are not shown in Eq. (32).
In general, these self-energy contributions to the quadratic
term have the same sign as the corresponding weak-coupling
term and, for instance, widen the region of the polar phase at
lower pressures in 3He in a stretched aerogel. However, these
contributions are overcome at higher pressures by the vertex
correction contributions given below which have the opposite
sign to that of the weak-coupling term.

Next, let us turn to the anisotropic contributions to
δχμ,ν(q,ω) accompanied by impurity-induced vertex correc-
tions. Related diagrams are shown in Fig. 5. Like in the
self-energy contributions, the diagrams to be regarded as
being absorbed into weak-coupling ones will be neglected.

(a) (b) (c)

(d) (e)

FIG. 5. Diagrams contributing to δχμ,ν with an impurity-induced
vertex correction. Here, the impurity (dashed) line carries the
parameter δu.

The contribution of each diagram to δχμ,ν(q,ω)/N (0) is given by

4 × Fig. 5(a) = π4

4

T

v2
Fq

2

∑
ε

θ (ε(ω − ε))

(
1

ε2
+ 1

(ε − ω)2

)〈〈
δp⊥q,0δp′⊥q,0

δu

2πτoN (0)
(p̂z − p̂′

z)
2Tr(σμσν
p · 
†

p)

〉
p̂

〉
p̂′
,

2 × Fig. 5(b) = −π4

4

T

v2
Fq

2

∑
ε

1

ε2

〈〈
δp⊥q,0δp′⊥q,0

δu

2πτoN (0)
(p̂z − p̂′

z)
2Tr(σμσν
p′ · 
†

p)

〉
p̂

〉
p̂′
,

2 × Fig. 5(c) = π4

2

T

v2
Fq

2

∑
ε

θ (ε(ω − ε))
1

|ε(ω − ε)|
〈〈

δp⊥q,0δp′⊥q,0
δu

2πτoN (0)
(p̂z − p̂′

z)
2Tr

(
σν
pσ

T
μ
†

p

)〉
p̂

〉
p̂′
,

2 × Fig. 5(d) = π4

8

T

v2
Fq

2
δω,0

∑
ε

1

ε2

〈〈
δp⊥q,0δp′⊥q,0

δu

2πτoN (0)
(p̂z − p̂′

z)
2[Tr

(
σν
pσ

T
μ


†
p′ + σν
p′σ T

μ
†
p

)〉
p̂

〉
p̂′
,

2 × Fig. 5(e) = π3

4

T

vF|q|
∑

ε

1

|ε(ω − ε)|
(

1

|ε| + 1

|ω − ε|
)〈〈

δp⊥q,0
δu

2πτoN (0)
(p̂z − p̂′

z)
2Tr

(
σν
p′σ T

μ
†
p

)〉
p̂

〉
p̂′
. (36)

The last figure plays a similar role to the self-energy
contributions of Eq. (34). On the other hand, the remaining
four kinds of diagrams have a crossing between the normal

paramagnon and the impurity lines, like those of Fig. 3, and
hence, are of higher order in T/EF. Due to this additional
E−1

F dependence, they are enhanced with increasing the
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pressure P . In particular, the diagrams of Figs. 5(a) and 5(b)
sensitive to the high-energy cutoff Ec become dominant at high
pressures.

The crucial feature of these crossing diagrams is that they
have the sign competitive with that of the weak-coupling
term. This fact leads to a pressure-induced sign reversal
on the anisotropy and an appearance of a critical point on
Tc(P ) curve (see Sec. IV). At higher pressures, these SC
contributions become more dominant than the competitive
weak-coupling ones, and consequently, the superfluid feels
the opposite anisotropy to the genuine one determined from
the aerogel structure. Thus, for instance, a situation occurs in
which the polar phase and AXY one with l̂ vector perpendicular
to the anisotropy axis become unstable in a unaxially stretched
aerogel [11]. Note that the diagrams (a) and (b) in Fig. 5
are similar to those in Fig. 3, which were the main terms in
the SC correction including the isotropic impurity scattering
explained in Sec. II. That is, the SC contributions, which are
negligible in the isotropic case, become rather important in the
anisotropic cases.

The contributions of the diagrams in Fig. 5 to the free energy
density are expressed as

F (2)
s |vc

N (0)V
= α(sc)

z |vc A∗
ρ,zAρ,z + α(sc)|vc A∗

ρ,jAρ,j (37)

FIG. 6. Diagrams expressing the SC contributions of O(δu) to
the GL quartic terms. Here, regarding (a) and (b), picking up just
O(δu) terms from the self-energy insertion there is implied, while the
remaining ones express the terms with an impurity-induced vertex
correction accompanied by the parameter δu.

with α(sc)|vc= − π3δuI
2
�⊥/(3T τo), and α(sc)

z |vc=−π3δuI
2
[�1 − �⊥ + �2]/(3T τo), where

�1 = 3

2

⎧⎨
⎩

(
1

10
+ 8

9π2

)
D1(0)ψ (1)(y) +

∑
m�1

D1(m)

[(
4

3
+ 8

9π2

)
ψ (1)(y) − ψ (1)(y + m)

+ 1

m

(
1

3
+ 16

9π2

)
(ψ(y + m) − ψ(y))

]⎫⎬
⎭ ,

�2 = − 1

2π2

⎧⎨
⎩1

6
D2(0)ψ (2)(y) +

∑
m�1

D2(m)

[
1

2
ψ (2)(y + m) + 1

3m
(ψ (1)(y) − ψ (1)(y + m)) (38)

+ 1

3m2
(ψ(y + m) − ψ(y))

]⎫⎬
⎭ ,

�⊥ = 3

4

⎧⎨
⎩− 1

60
D1(0)ψ (1)(y) +

∑
m�1

D1(m)

[
ψ (1)(y) − ψ (1)(y + m) + 1

3m
(ψ(y + m) − ψ(y))

]⎫⎬
⎭ .

Now, the anisotropic SC corrections to the βj parameters
will be explained. According to the explanation in Sec. III, we
have contributions to βj from both F

(s)
2 and F

(s)
4 even in this

anisotropic case. The latter, which is more divergent in the limit
I → 1 than the terms accompanied by D1 in the former, has
been examined by substituting Eqs. (21) and (32) into Eq. (22)
and is found to be one or two orders of magnitude smaller than
the contributions from F

(s)
2 for the values I � 0.9 appropriate

for liquid 3He below 30 (bar). Based on this fact consistent

with the results seen in Ref. [20], we focus hereafter on the
diagrams contributing to F

(s)
2 which are described in Fig. 6.

As in the case of examining Fig. 5, we have dropped
diagrams to be absorbed into the weak-coupling terms in
describing Fig. 6. We will not explain derivation of all SC
diagrams in Fig. 6, and rather we focus on diagrams with
dominant contributions to the βj parameters and simply
describe their expressions. Like in the impurity-scattering
contributions to βj in the isotropic case and in the anisotropy
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effects on the GL quadratic term, the dominant anisotropic SC contributions to βj seem to arise from the diagrams (h), (i), and (j),
which are based on a self-energy terms in clean limit and show a crossing between an impurity line carrying δu and a paramagnon
propagator. As in Eqs. (27) and (29), these diagrams are also enhanced as a result of their dependencies on the high-energy cutoff.
The contributions to 〈δχμ,ν(q,ω)〉q̂ of these diagrams are expressed as

4 × Fig. 6(h)

= −T δμ,ν

∑
ε

∫
p

∫
p′

δu

2πτoN (0)

(
p̂2

z + (p̂′
z)

2
)
(|d(p)|2)2

〈
Gp′+q(ε + ω)Gp′(ε)Gp+q(ε + ω)G3

p(ε)G2
−p(−ε)

〉
q̂

= −12π2δμ,ν

δuN (0)T

2πτo

∑
ε

θ (ε(ω − ε))
1

(2ε)4

〈〈〈(
p̂2

z + (p̂′
z)

2
) p̂i p̂j p̂kp̂lω

2

[(vp · q)2 + ω2][(vp′ · q)2 + ω2]

〉
p̂

〉
p̂′

〉
q̂

A∗
μ,iA

∗
ν,kAμ,jAν,l

= − π4

240
δμ,ν

T N (0)δu

2πτov
2
Fq

2

∑
ε>0

(
1

ε4
− 1

(ε + |ω|)4

)
[(A∗

μ,iAμ,i)
2 + A∗

μ,iA
∗
ν,iAμ,jAν,j + A∗

μ,iAν,iA
∗
ν,jAμ,j

+ (A∗
μ,iAμ,iA

∗
ν,zAν,z + A∗

μ,iA
∗
ν,iAμ,zAν,z + A∗

μ,iAν,iA
∗
ν,zAμ,z + c.c.)],

2 × Fig. 6(i)

= −T δμ,ν

∑
ε

∫
p

∫
p′

δu

4πτoN (0)

(
p̂2

z + (p̂′
z)

2) [
(|d(p)|2)

〈
Gp+q(ε + ω)G2

p(ε)G−p(−ε)
]

× [
(|d(p′)|2)Gp′+q(ε + ω)G2

p′(ε)G−p′ (−ε)
]〉

q̂

= − π4

1120

T N (0)δu

2πτov
2
Fq

2

∑
ε>0

1

ε4

[
−1

6
(A∗

μ,iAμ,i)
2 − 1

6
A∗

μ,iA
∗
ν,iAμ,jAν,j + A∗

μ,iAν,iA
∗
ν,jAμ,j

+
(

5

6
A∗

μ,iAμ,iA
∗
ν,zAν,z + 5

6
A∗

μ,iA
∗
ν,iAμ,zAν,z + 2A∗

μ,iAν,iA
∗
ν,zAμ,z + c.c.

)]
,

4 × Fig. 6(j)

= T δμ,ν

∑
ε

∫
p

∫
p′

δu

πτoN (0)
p̂zp̂

′
zd

∗
μ(p′)dμ(p)(|d(p)|2)

〈
Gp′+q(ε + ω)Gp′(ε)G−p′ (−ε)Gp+q(ε + ω)G2

p(ε)G2
−p(−ε)

〉
q̂

= − π4

840
δμ,ν

T N (0)δu

2πτov
2
Fq

2

∑
ε>0

1

ε4

[
(A∗

μ,iAμ,i)
2 + A∗

μ,iA
∗
ν,iAμ,jAν,j + A∗

μ,iAν,iA
∗
ν,jAμ,j

+ 11

2
(A∗

μ,iAμ,iA
∗
ν,zAν,z + A∗

μ,iA
∗
ν,iAμ,zAν,z + A∗

μ,iAν,iA
∗
ν,zAμ,z + c.c.)

]
. (39)

By gathering Eq. (39) and the contributions of other diagrams in Fig. 6, up to the lowest order in δu, the anisotropic terms in the
total SC corrections to βj , defined by δβ

(sc)
j (δu) = β

(sc)
j (δu) − β

(sc)
j,se(0) − β

(sc)
j,vc(0), become

δβ
(sc)
2 (δu) = δuπ

4I
2

4πτoT
β0

[
π−2

(
12

7
�a − 4

7
�b − 8

3
�c

)
+ 3�h − 8

3
�l + 4�k + 9

14

(
�i + �m − 2

3
�q

)
− 3

7
�o

+ 6

7

(
�j + 2�n − 1

6
(�r + �s)

)
+ 64

3π2
�c + 4

7π2
(3�b + 5�p)

]
,

δβ
(sc)
3 (δu) = δβ

(sc)
2 (δu) + δuπ

4I
2

4πτoT
β0

[
8

3π2
�c − 3

4
(�i + �m) + 1

2
�q − 64

3π2
�c

]
,

δβ
(sc)
4 (δu) = δβ

(sc)
3 (δu) + 3

δuπ
4I

2

4πτoT
β0�o,

δβ
(sc)
2z (δu) = δuπ

4I
2

4πτoT
β0

{
π−2

[
24

7
�a − 8

7
�b − 8

3
�c + 16�d − 4

3

(
�e + 1

2
�f + 3

2
�g

)]
+ 3�h − 8

3
�l + 4�k + 9

7
(�i + �m)

− 6

7
�q + 33

7
(�j + 2�n) − 11

14
(�r + �s) + 15

7
�o + 24

7π2
�b + 64

3π2
�c + 12

7π2
�p + 16

3π2
(2�e + �f + 3�g)

}
,

δβ
(sc)
3z (δu) = δβ

(sc)
2z (δu) + δβ

(sc)
3 (δu) − δβ

(sc)
2 (δu),

δβ
(sc)
4z (δu) = δβ

(sc)
3z (δu) + δβ

(sc)
4 (δu) − δβ

(sc)
3 (δu), (40)
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FIG. 7. Resulting P -T phase diagram in the stretched case (δu < 0) obtained by use of I = 0.5 + 0.005P bar. The fixed value Ec/kB =
160 mK is used in (a) (upper left) and (b) (upper right), while we have used Ec = 0.147EF

√
1 − I in (c) (lower figure). The anisotropy value

δu is −0.15 in (a) and −0.7 in (b) and (c).

and δβ
(sc)
1 (δu) = δβ

(sc)
5 (δu) = δβ

(sc)
1z (δu) = δβ

(sc)
5z (δu) = 0. Here,

δβ
(sc)
jz is the SC correction to β

(wc)
jz introduced in Sec. II, and the

contribution from each diagram in Fig. 6 is expressed in terms
of the index specifying each diagram in the coefficients � and
� of which the detailed expressions are shown in Appendix.

V. RESULTS

In this section, pressure versus temperature (P -T ) phase
diagrams describing possible superfluid phases of liquid 3He
in a globally anisotropic aerogel are examined using the
anisotropic SC corrections obtained in Sec. III. The free energy
is calculated by gathering the expressions, (11), (13), (14),
(23), (30), (33), (37), and (40). The pairing states examined in
the present work as a possible superfluid state in an uniaxially
and globally anisotropic aerogel are the following five pairing

states; polar state, planar one, AZ, which is the ABM state with
l̂ vector parallel to the anisotropy axis ẑ, AXY, which is the
anisotropic ABM one with l̂ ⊥ ẑ, the biaxial ESP one [15,22],
and the B phase, which is the uniaxially anisotropic BW state,
all of which are in the category of the unitary states [1]. The
planar phase never becomes the state with the lowest energy in
any situation we have studied and will not appear hereafter in
describing phase diagrams. Except the biaxial ESP state, the
remaining states have been examined in the previous study [8]
where no anisotropic SC effects have been considered. The
biaxial ESP state will be defined later in the text.

Throughout our analysis, the known experimental data on
the pressure dependencies of EF and Tc0 in the bulk liquid [1]
will be used. On the other hand, we have three microscopic
parameters other than the anisotropy parameter δu in the
present approach based on the paramagnon model of the SC
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FIG. 8. (Color online) Resulting P -T phase diagram in the uniaxially stretched case (δu < 0) obtained by use of the parameter values

I = 0.63 + 0.005P bar and Ec = 0.87EF

√
1 − I . The anisotropy value δu is −0.05 in (a) (left) and −0.7 in (b) (right). In the case (a) where

the anisotropy is so weak that T
(Z)

A-B lies far above T
(2)

bx , the biaxial ESP phase will not appear, and the B phase is the only low temperature
superfluid phase, while the B phase can be replaced by the biaxial ESP state for a larger stretched anisotropy.

corrections and the Born approximation of the impurity scatter-
ing; the averaged mean free path of quasiparticles lmf = vFτo,
the dimensionless interaction parameter I ≡ IN (0), and a
high-energy cutoff Ec for the normal paramagnon propagator.
First, weakly P -dependent I values have been assumed to
study phase diagrams based on known I values appropriate
for obtaining the phase diagram of the bulk liquid (see the
captions of Figs. 7 and 8). We have verified that such I

values do not lead to emergence of the A phase at least
below 30 (bar) in the isotropic case with δu = 0. Further, the
ξ0/lmf = (2πτoTc0)−1 values have been chosen by following
the previous works [8,20]. In the figures in this section,
ξ0/lmf = 0.35 was commonly used. In contrast, we have no
knowledge on appropriate values of Ec, and Ec inevitably
becomes one of free parameters in the present approach.
Below, we show results following from two selected values of
the parameter Ec, which result in remarkably different phase
diagrams from each other. The cutoff Ec is introduced into the
expressions by assuming the integer m to be summed over the
values between zero and Ec/(kBT ).

In Fig. 7, the resulting two phase diagrams, (a) and (b),
obtained in terms of the fixed Ec/kB = 160 mK are shown.
The phase diagram Fig. 7(a) at a relatively low anisotropy
δu = −0.15 is similar to the previous ones [22] obtained with
no anisotropic SC effects. One of the new features in Fig. 7(a) is
the temperature width of the polar phase region which clearly
diminishes with increasing P reflecting the anisotropic SC
effect in Eq. (37). As will be shown later, the reduction of the
polar phase region at higher P implies the presence at a higher
pressure of a critical point at which the polar (and other pairing
states) meets with the A phase with l vector parallel to the
anisotropy axis ẑ, denoted as Az. Above this critical pressure,
the polar phase would be absent, and the Az phase become the
high temperature pairing state. Figure 7(b) is the corresponding
phase diagram in the case with a larger anisotropy. It is found
that an increase of the stretched anisotropy pushes the polar

phase region up to higher temperatures, so that Tc is increased
by the stretched anisotropy, and pushes the B phase region
down to lower temperatures. In particular, it is a remarkable
feature that the superfluid region at lower pressures is expanded
in temperature by the stretched anisotropy: although the Tc-
curve in the isotropic limit (the dashed curve) in Fig. 7 implies
the presence of a quantum critical positive pressure below
which the normal state at zero temperature is present, the polar
pairing region growing with increasing the anisotropy pushes
the quantum critical pressure down to the negative pressure
side. Together with these features, the weak P dependence of
Tc(P ) at higher P values in Fig. 7(b) seems to be qualitatively
consistent with the data in Ref. [10].

It should be noted that the feature that dTc/dP < 0 at
high pressures is not compatible with the experimental phase
diagrams reported so far [14,23], and that the Tc values for the
large anisotropy obtained especially at low pressures seem to
be too high to be quantitatively compatible with the available
data [23]. These might be artifacts of assuming a too large
anisotropy value because, in the present theoretical results,
we have focused on the lowest-order terms in the anisotropy
parameter δu. Extending our analysis on the anisotropic strong-
coupling corrections in the manner of consistently including
higher-order terms in δu will be left as a future work.

However, to compare results of the present theory with
experimental ones, it will be reasonable to take account of
a pressure dependence of the high-energy cutoff Ec for the
normal spin-fluctuation. We will assume Ec to be scaled like

EF

√
1 − I based on the expression of the denominator of

the paramagnon propagator. Figure 7(c) is one example of
the phase diagrams in the case with a large anisotropy obtained
in terms of the P -dependent Ec. Reflecting the fact that
D2(|m|) is not sensitive to Ec, this change of Ec does not affect
much the low pressure region in the phase diagram. Therefore
the already-mentioned enhancement of the polar phase at lower
P due to the stretched anisotropy is one of definite results in the
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present theory and a tendency consistent with the observation
[10], while it has not been found in the previous work with no
anisotropic SC effects [22]. On the other hand, the Tc(P ) por-
tion with dTc/dP < 0 at high pressures in Fig. 7(b) is changed
to that with a positive slope by the P dependence of Ec, so
that details of P dependence of the polar phase region seem to
be inevitably obscured with no knowledge on a proper Ec(P ).

Different types of phase diagrams in the uniaxially stretched
aerogel (δu < 0), which result from a larger Ec(P ), are shown
in Fig. 8. Due to the use of the larger Ec, the critical point
on Tc(P ) at which the polar, Az, and other pairing phases
meet with one another is uncovered in the pressure range
where experiments are usually performed. The obtained results
suggest that, if the critical point on Tc moves down to the T = 0
limit, the resulting phase diagram would become consistent
with that seen in Ref. [11] as follows. First, the superfluid
phase realized upon cooling from the normal phase is the
Az one with l̂ vector locked along the axis ẑ. In the present
stretched case at pressures higher than the critical point, the
low-temperature superfluid phase is still the B phase at low
enough anisotropy. For larger anisotropy values, however,
another low temperature phase, called the biaxial ESP phase
in Ref. [15], can be realized.

To explain the content on the possible biaxial ESP phase,
the results in Refs. [15,22] will be reviewed here: As far as no
spatial inhomogenuity is present, the order parameter in the
biaxial ESP state is written as

Aμ,j |(bx) = d̂μ(a1x̂ + ia2ŷ + pẑ)j . (41)

That is, this state can be regarded as an A phase with its l̂
vector tilted in ẑ-x̂ plane from the anisotropy axis ẑ. Such
a tilt of l̂ vector from ẑ will not occur as far as the AXY

state does not become favorable over the AZ one at lower
temperatures. In fact, although this AZ phase is also realized in
uniaxially compressed aerogels at lower pressures [22] below
the critical pressure, the AXY state is not stabilized there even
at lower temperatures, and no ordering to the biaxial state is
found. This picture strongly suggests that the appearance of the
biaxial ESP state in a stretched aerogel at lower temperatures
in Ref. [11] is a direct consequence of the sign reversal of
the anisotropy primarily occurring in the GL-quadratic term at
higher pressures. As shown elsewhere, the effective GL free
energy on the ordering of a biaxial ESP state from the AZ state
takes the form [22]

f
(bx)
eff =

(
αz − β245,z

β245
α

)
|p|2 −

(
β2

245,z

β245
+ β2

13,z

β13

)
|p|4, (42)

where αz = α(wc)
z + α(sc)

z |se + α(sc)
z |vc, α = α(wc) + α(sc)|se +

α(sc)|vc, βj = β
(wc)
j + β

(sc)
j , βjz = β

(wc)
jz + β

(sc)
jz , and βijk,z =

βiz + βjz + βkz. The biaxial ESP state is realized when |p|2 ∝
||a1|2 − |a2|2| is nonvanishing. It is clear that the quartic term
of Eq. (42) has a negative sign. It means that the transition
between AZ and the biaxial ESP states should be of first order
and that, to make Eq. (42) useful in calculation, the higher
order (|p|m with m � 6) terms have to be incorporated. In
the present work, just the left thin (red) solid curve T

(2)
bx (P )

in each of Fig. 8, at which the sign of the quadratic term of
Eq. (42) becomes negative on cooling, has been determined
without going beyond the ordinary GL approach truncating
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FIG. 9. Anisotropy dependence of different transition tempera-
tures in the case with uniaxially compressed aerogel with δu > 0.
There is quite a narrow temperature width of the AXY phase between
the polar and B phases. In the isotropic limit (δu → 0), the B
phase becomes the only superfluid phase. The used energy cutoff
is Ec/kB = 640 mK.

to the quartic terms. Then, we can only conclude here that
the genuine transition from the AZ state to the biaxial ESP one
would occur at a higher temperature than the T

(2)
bx (P ) line if the

B phase does not have lower energy there. As Fig. 8(a) shows,
the AZ-B transition curve T

(Z)
A−B(P ), which is determined by

comparing free energies of the two phases with each other
lies far above T

(2)
bx (P ) in the case with a low anisotropy,

suggesting that the B phase should be realized at least in the
intermediate temperature range in the case. Of course, in the
limit of vanishing anisotropy, even the AZ phase between the
normal (N) and B phases is lost (see Sec. III and also Fig. 9
below). As in Fig. 8(b), however, the T

(2)
bx (P ) curve approaches

the T
(Z)

A−B(P ) one for a moderately large anisotropy and thus, it
seems that a phase diagram with no B phase may be possibly
realized. That is, to obtain a phase diagram qualitatively
consistent with the observed one in Ref. [11], not only a
large energy transfer of the effective interaction, which is the
paramagnon propagator in the present approach, between the
quasiparticles but also a large enough anisotropy are required.

Finally, the superfluid phase diagrams following from the
present approach in the case corresponding to the uniaxially
compressed aerogel will be commented on. Even in this
case, a critical pressure on the Tc(P ) line appears depending
on the high-energy cutoff Ec. At lower pressures than the
critical point, the system behaves as a 2D-like one. When the
compressed anisotropy is moderately large, the only possible
superfluid phase becomes the AZ state, and the B phase does
not seem to appear on cooling. One might wonder if this
compressed case would correspond to the situation in Ref.
[11] in the stretched aerogel. As already mentioned, however,
the biaxial ESP state is never stabilized in this case below
the critical pressure, and thus, it is difficult to identify this
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compressed (2D-like) case with the situation in Ref. [11]. Since
it does not seem that the situation below the critical pressure
in a compressed aerogel has been detected in experiments so
far, we will not consider this low pressure region further here.

In Fig. 9, one example of the corresponding situation at
higher pressures than the critical point is presented in a manner
focusing on the anisotropy dependencies of possible phases.
At the higher pressure side, the superfluid is 1D-like, and thus,
within the present approach focusing on the unitary superfluid
states, the polar pairing state is stabilized just below Tc(P ) at
any pressure above the critical point. In fact, by expressing the
order parameter Aμ,j in the form azδμ,zδi,z + aδμ,i(1 − δμ,z)
connecting the anisotropic BW state with the polar one and
using the normalization (Aμ,j )∗Aμ,j = 1, the quadratic term
in the GL free energy density takes the form

F
(2)
BP

N (0)V
= αz(Aμ,z)

∗Aμ,z + α(Aμ,j )∗Aμ,j

= αz|az|2 + constant, (43)

which implies that the polar pairing state with the largest |az|
has the lowest energy just below Tc. More generally, in any
1D-like case where an order along the axis is favored, the GL
quadratic term makes the 1D form Aμ,j = dμẑj of the order
parameter favorable near Tc. Further, because β15 is negative
with a large magnitude, the energy is lowered when d̂μ is real
rather than being complex as far as the additional βjz terms
are ignored [see, e.g., Eq. (13)]. That is, the polar pairing
state, which is one of ESPs, should be realized in any 1D-like
case at least for such a weak anisotropy that βjz terms are
negligible even if the possibility of nonunitary states is taken
into account. In Ref. [12], the presence of a non-ESP state
just below Tc has been suggested in a 1D-like situation of a
uniaxially compressed aerogel in a vanishingly small magnetic
field. It implies that the degenerate polar state with an unlocked
dμ has not been stabilized in the aerogel sample of Ref. [12]
due to some origin, which will be discussed in the next section.

VI. SUMMARY AND COMMENTS

In the present work, the previous theory [8] on superfluid
phases of 3He induced by a globally anisotropic aerogel has
been refined by incorporating anisotropy effects on the strong-
coupling (SC) contributions to make the calculated results
comparable with recent experimental results [10,11], which
have certainly detected novel superfluid phases in stretched
or 1D-like aerogels. It is found that effects of the global
anisotropy on the SC contributions are unexpectedly profound
and can drastically change our understanding on emergent
superfluid phases. First of all, the anisotropic SC effect tends to
enhance the polar phase region as the pressure is lowered and,
as seen in experiments in nematically ordered aerogels [10,13],

significantly increases the superfluid transition temperature
Tc at lower pressures. Further, it has been found that high-
frequency contributions of the anisotropic SC effect to the free
energy can change the sign of the uniaxial anisotropy at higher
pressures and thus, results in the counterintuitive orientation of
the l̂ vector in the A phase in an anisotropic aerogel (see Sec. I).
Consequently, the observed reduction of the temperature
region of the polar phase at higher pressures in nematically
ordered aerogels [10] and the 2D-like phase diagram in a
1D-like stretched aerogel [11] are qualitatively explained
based on this sign reversal of anisotropy due to the SC effect.

On the other hand, the present study on the superfluid phase
diagram seen in an uniaxially compressed aerogel [12] has not
led to a convincing agreement with the experimental results.
The presence of a finite threshold field for the emergence of the
AXY phase in Ref. [12] suggests the presence of an additional
non-ESP pairing state just below Tc in lower fields, which
is more stable as the anisotropy is larger. The fact that this
unexpected state, stable in the apparently 1D-like situation, is
not the ESP-polar phase with an unlocked d vector suggests
that this state would be a pairing sate, which has not been
considered in the present work based on the ordinary modeling
identifying the aerogel structure with a nonmagnetic scatterer.
As far as the experiments are performed [24] with no liquid
4He mixed, however, we might need to change our theoretical
description on phase diagrams, at least, close to Tc where
anisotropy and/or disorder are the most effective, because,
with no 4He, the layer of solid 3He adsorbed on the local
aerogel surface is active and may play the role of magnetic
scattering centers. According to our preliminary calculations
in the case with an anisotropic magnetic scattering, as far as the
SC effect is not extremely strong, the nondegenerate polar state
Aμ,i ∝ ẑμẑi , which is destabilized by an applied field parallel
to ẑ seems to be the stable phase close to Tc in low fields. Ex-
perimentally, it is hoped that the corresponding measurements
in similar aerogels with liquid 4He mixed would be performed
to verify whether the phase diagrams in Refs. [12] and [11]
are changed by the presence of active solid 3He layers or not.
On the other hand, further theoretical study in the case with
the magnetic scatterings and, as in the isotropic case [25], with
quenched disorder effects included is left as a future work.
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APPENDIX: COEFFICIENTS IN δβ
(sc)
j

The factors appearing in expressions (40) of each diagram
(a)–(s) in Fig. 6 will be presented below.

�a = −D2(0)

24
ψ (4)(y) −

∑
m�1

D2(m)

[
1

m2
ψ (2)(y) + 2

m3
(ψ (1)(y) − ψ (1)(y + m))

]
,

�b = −D2(0)

6
ψ (4)(y) −

∑
m�1

D2(m)

[
1

m
(ψ (3)(y) − ψ (3)(y + m)) + 2

m2
ψ (2)(y + m) + 4

m3
(ψ (1)(y) − ψ (1)(y + m))

]
,

174515-13



RYUSUKE IKEDA PHYSICAL REVIEW B 91, 174515 (2015)

�c = �e = �g = −D2(0)

24
ψ (4)(y) +

∑
m�1

D2(m)

[
1

3m
(ψ (3)(y) − ψ (3)(y + m)) + 1

m2
ψ (2)(y + m)

+ 2

m3
(ψ (1)(y) − ψ (1)(y + m)) + 2

m4
(ψ(y + m) − ψ(y))

]
,
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ψ (4)(y) −

∑
m�1

D2(m)
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1

m2
ψ (2)(y) + 2

m3
(ψ (1)(y) − ψ (1)(y + m)) − 2

m4
(ψ(y) − ψ(y + m))

]
,

�f = −D2(0)

24
ψ (4)(y) +

∑
m�1

D2(m)

[
− 1

m2
ψ (2)(y) + 2

m3
(ψ (1)(y) − ψ (1)(y + m)) + 6

m4
(ψ(y + m) − ψ(y))

]
,

�b = 2D1(0)ψ (3)(y) + 2
∑
m�1

D1(m)

[
ψ (3)(y) − 2

m
(ψ (2)(y) − ψ (2)(y + m)) + 2

m2
(ψ (1)(y) − ψ (1)(y + m))

]
,

�c = �e = 2

3
D1(0)ψ (3)(y) +
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3
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