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Anomalous proximity effect and theoretical design for its realization
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We discuss the stability of zero-energy states appearing in a dirty normal metal attached to a superconducting
thin film with Dresselhaus [110] spin-orbit coupling under an in-plane Zeeman field. The Dresselhaus
superconductor preserves an additional chiral symmetry and traps more than one zero-energy state at its edges.
All the zero-energy states at an edge belong to the same chirality in large Zeeman fields due to the effective
p-wave pairing symmetry. The pure chiral nature of the wave function enables the zero-energy states to penetrate
the dirty normal metal while retaining their high degree of degeneracy. We prove the perfect Andreev reflection
into the dirty normal metal at zero energy.
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I. INTRODUCTION

The proximity effect has been an important issue in the
physics of superconductivity. In a normal metal attached to a
spin-singlet s-wave superconductor, penetrating Cooper pairs
form the gap structure in the quasiparticle density of states
(DOS) at the Fermi level (zero energy) and modify low-
energy properties there. In spin-triplet p-wave superconductor
junctions, however, the penetrating Cooper pairs form a zero-
energy peak in the DOS [1–3]. This induces various anomalous
electromagnetic properties in the normal metal [4–6]. This
effect is called the anomalous proximity effect. For instance, a
perfect Andreev reflection from a px-wave superconductor into
a dirty normal metal causes anomalous low-energy transport
in the x direction such as a zero-bias conductance quantization
in normal-metal/superconductor (NS) junctions [4] and a frac-
tional current-phase relationship in superconductor/normal-
metal/superconductor (SNS) junctions [3].

Recently, these characteristic transport phenomena have
been investigated in the context of Majorana physics [7,8]
based on the topological classification of materials [9]. In fact,
as a consequence of the topologically nontrivial property of the
wave function [10], the spin-triplet px-wave superconductor
hosts more than one Majorana fermion at its edges. The
energy dispersion of the topological edge states is flat as a
function of the wave vector in the transverse direction (say
ky), which represents the high degree of the degeneracy in the
zero-energy states (ZESs). The anomalous proximity effect
stems from the penetration of such ZESs into the dirty normal
metal while retaining their high degree of degeneracy [1,3,5].
Theoretically, it has been unclear what symmetry protects
the high degeneracy of ZESs and why the perfect Andreev
reflection persists at zero energy. It has been difficult to
fabricate spin-triplet superconducting junctions using existing
materials. However, the rapid progress in the Majorana physics
of artificial superconductors [11–21] and in spintronics for
controlling the spin-orbit interaction [22,23] has diffused the
situation.

A set of three potentials is needed to realize topologically
nontrivial superconductors artificially, namely the spin-orbit
coupling, the Zeeman field, and the pair potential. Among

them, the spin-orbit interaction mainly affects the energy
spectra of the edge states. In InSb or GaAs, for example,
the Dresselhaus spin-orbit interactions [24] are large in
films growing along the [110] crystal direction. Theoretical
studies [25,26] have shown that such artificial superconductors
host more than one ZES similar to those of the px-wave
superconductor. We also confirm that a proximitized spin helix
thin film [22,23] also traps the flat ZESs with appropriate
tuning of the Zeeman field. The Dresselhaus superconductors
preserve an additional chiral symmetry independently of the
particle-hole symmetry [9]. Recent theoretical studies [27–29]
have shown that the chiral symmetry is responsible for the
stability of more than one Majorana fermion. On the basis
of the above novel insight, we solve an outstanding problem
regarding the anomalous proximity effect.

In this paper, we first demonstrate the anomalous proximity
effect of the Dresselhaus superconductors in large magnetic
fields. After discussing the unitary equivalence between
the Hamiltonian of Dresselhaus and spin-triplet px-wave
superconductors, we analyze the chiral property of ZESs both
at the edge of the superconductor and at the normal metal
attached to it. The results show that all the ZESs have the
same chirality due to the effective px-wave pairing symmetry.
The pure chiral nature of the wave function is responsible for
the robustness of highly degenerate ZESs in the presence of
potential disorder. We will prove the perfect Andreev reflection
from a px-wave superconductor into a dirty normal metal at
zero energy. This paper provides a microscopic understanding
of the anomalous proximity effect and a design for an artificial
px-wave superconductor.

II. CONDUCTANCE QUANTIZATION

First, we numerically demonstrate the anomalous proximity
effect of the Dresselhaus superconductor. Let us consider an
NS junction on a two-dimensional tight-binding model with
the lattice constant a0 as shown in Fig. 1. A lattice site
is indicated by a vector r = j x + m y, where x ( y) is the
vector in the x (y) direction with |x| = | y| = a0. The present
junction consists of three segments: an ideal lead wire (−∞ �
j � 0), a normal disordered segment (1 � j � L/a0),
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FIG. 1. (Color online) Schematic image of the NS junction of
a Dresselhaus superconductor. The superconductor proximitizes the
InSb thin film, which is grown along the [110] crystal direction.

and a superconducting segment (L/a0 + 1 � j � ∞). The
Hamiltonian reads

Ĥ0 = − t
∑

σ=↑,↓

∑
j

M/a0∑
m=1

{c†r+x,σ cr,σ + c†r,σ cr+x,σ }

− t
∑

σ=↑,↓

∑
j

M/a0−1∑
m=1

{c†r+ y,σ cr,σ + c†r,σ cr+ y,σ }

+
∑
r,σ

[4t − μ]c†r,σ cr,σ +
∑

j>L/a0,m

�0(c†r,↑c
†
r,↓ + H.c.)

−
∑

r,σ,σ ′
Vex(σ1)σ,σ ′c†r,σ cr,σ ′+

∑
1�j�L/a0,m,σ

Vimp(r)c†r,σ cr,σ

− i
λD

2a0

∑
r,σ,σ ′

(σ3)σ,σ ′(c†r+x,σ cr,σ ′ − c†r,σ cr+x,σ ′), (1)

where c
†
r,σ (cr,σ ) is the creation (annihilation) operator of an

electron at the site r with spin σ = (↑ or ↓), t = �
2/(2ma2

0)
denotes the hopping integral between the nearest-neighbor
sites, m is the effective mass of an electron, μ is the chemical
potential, and λD represents the strength of the Dresselhaus
[110] spin-orbit interaction. By tuning the magnetic field B

in the x direction, it is possible to introduce the external
Zeeman potential Vex . The parameters t , μ, λD , and Vex are
common to the superconductor and the normal metal. In the y

direction, the number of lattice sites is M/a0 and the hard-wall
boundary condition is applied. The Pauli matrices in spin space
are represented by σ̂j for j = 1–3 and the unit matrix in
spin space is σ̂0. We consider the impurity potential given
randomly in the −W/2 � Vimp(r) � W/2 range in the normal
segment (1 � j � L/a0) and the s-wave pair potential �0 in
the superconducting segment (L/a0 + 1 � j � ∞).

We calculate the differential conductance GNS of the NS
junctions based on the formula [30]

GNS(eV ) = e2

h

∑
ζ,η

[
δζ,η − ∣∣ree

ζ,η

∣∣2 + ∣∣rhe
ζ,η

∣∣2]
eV =E

, (2)

where ree
ζ,η and rhe

ζ,η denote the normal and Andreev reflection
coefficients at energy E, respectively. The indices ζ and η

label the outgoing and incoming channels, respectively. These
reflection coefficients are obtained by using the lattice Green’s
function method [31–33]. With this method, it is possible
to calculate the transport coefficients exactly even in the
presence of random impurity potentials. In Fig. 2, we show the
differential conductance of the Dresselhaus superconductors as
a function of the bias voltage for several lengths of disordered

G
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FIG. 2. (Color online) The differential conductance is plotted as
a function of the bias voltage for several lengths of disordered segment
L in units of a0. In (a), the Zeeman potential Vex = 1.2t is chosen
that is larger than a critical value of Vc = 0.92t . The number of
propagating channels Nc is 5. In (b), we choose Vex = 0.5t < Vc

leading to Nc = 6.

segments L, where we choose parameters of μ = 1.0t , λD =
0.2ta0, W = 2.0t , M = 10a0, and �0 = 0.1t . The results are
normalized to GQ = 2e2/h. In Fig. 2(a), we choose Vex =
1.2t , which leads to the propagating channel number Nc = 5.
The differential conductance decreases with increasing L for
finite bias voltages. However, the zero-bias conductance is
quantized at GQNc irrespective of L. The results suggest that
there are Nc perfect transmission channels in a disordered nor-
mal segment [4]. The conductance quantization at zero bias is
an aspect of the anomalous proximity effect. We have also con-
firmed the fractional current-phase relationship in SNS junc-
tions [3,34]. Such anomalous behaviors can be seen when the
Zeeman field exceeds a critical value Vex > Vc =

√
μ2

0 + �2
0

with μ0 = μ − 2t [1 − cos {π/(M/a0 + 1)}]. With the present
parameter choice, we obtain Vc = 0.92t . On the other hand for
Vex < Vc, the conductance quantization is absent as shown in
Fig. 2(b), where we choose Vex = 0.5t < Vc. The zero-bias
conductance quantization at GQNc is a robust phenomenon in
the topologically nontrivial phase described by Vex > Vc and
λD �= 0 and is independent of such parameters as M , W , and
μ. In the experiment [18], for instance, the condition Vex > Vc

may be satisfied under a magnetic field of less than 1 T in InSb
nanowires owing to its large g factor and small Fermi energy.
Inversion symmetry in the z direction is broken in the junction
shown in Fig. 1. In such case, Rashba spin-orbit interaction
λR(kyσ̂1 − kxσ̂2) is not negligible. Unfortunately, the Rashba
term easily destroys the conductance quantization at zero bias
because it breaks chiral symmetry discussed below. To delete
the Rashba term, we need to recover inversion symmetry by
attaching an appropriate insulator or the same superconductor
on top of the InSb thin film.

III. MORE THAN ONE MAJORANA FERMION

Second, we analyze the chiral property of the ZESs. In what
follows, we consider a Dresselhaus superconductor in contin-
uous space for simplicity. The Hamiltonian is represented by

Ȟ0 =
[

ĥ i�0σ̂2

−i�0σ̂2 −ĥ∗

]
, (3)

ĥ = ξr σ̂0 − Vexσ̂1 + iλD∂xσ̂3 + Vimp(r)σ̂0, (4)
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with ξr = −�
2

2m
∇2 − μ. In the superconductor, we consider the

uniform pair potential �0 and ignore the impurity potential
Vimp = 0. In the normal metal, on the other hand, we introduce
the impurity potential and do not consider the pair potential.
We assume a sufficiently large Zeeman potential so that αD ≡
λDkF /Vex � 1 is satisfied with kF = √

2mμ/�.
By applying the unitary transformations as shown in

Appendix B, H0 is transformed into Ȟ1 = ȞP + V̌� within
the first order of αD , where

ȞP =
[
Ĥ↑ 0
0 Ĥ↓

]
, V̌� =

[
0 i�0σ̂2

−i�0σ̂2 0

]
, (5)

Ĥσ =
[
ξr + ssVex + Vimp −ss

λD�0
Vex

∂x

ss
λD�0
Vex

∂x −ξr − ssVex − Vimp

]
, (6)

and ss = 1 (−1) for σ = ↑ (↓). A Hamiltonian Ĥσ with
Vimp = 0 is equivalent to that of a spin-triplet px-wave
superconductor and V̌� mixes the two spin sectors. In the
topologically nontrivial phase Vex > Vc, all the spin-↑ states
pinch off from the Fermi level and only the spin-↓ states
remain at the Fermi level. Therefore the spin-mixing term
V̌� does not affect the remaining spin-↓ states at all. In
this way, we can shrink the 4 × 4 Hamiltonian Ȟ1 of the
Dresselhaus superconductor to the 2 × 2 Hamiltonian Ĥ↓ of
the px-wave superconductor. We assumed the two conditions
λDkF � Vex and Vex > Vc independently. To realize the px-
wave superconductor, they can be unified into one condition
λDkF � Vc, which is accessible in the experiment [18]. The
Hamiltonian Ĥ↓ preserves a chiral symmetry

τ̂1 Ĥ↓ τ̂1 = −Ĥ↓, τ̂1 =
[

0 1
1 0

]
, (7)

where τ̂j for j = 1–3 are the Pauli matrices in Nambu space.
Here we summarize two important features of the eigenstates
of Ĥ↓ proved in Ref. [10]. (See also Appendix A for details.)

(i) The eigenstates of Ĥ↓ at zero energy are simultaneously
the eigenstates of τ̂1. Namely, the eigenvectors at zero energy
ϕν0,λ(r) satisfy

Ĥ↓ ϕν0,λ(r) = 0, τ̂1 ϕν0,λ(r) = λ ϕν0,λ(r), (8)

where λ = ±1 represents the eigenvalue of τ̂1 and ν0 is the
index of the ZESs. We have omitted the spin index from the
subscripts of ϕν0,λ because spin is always ↓.

(ii) In contrast to the zero-energy states, the nonzero-energy
states are not the eigenstates of τ̂1. They are described by the
linear combination of two states: one has λ = 1 and the other
has λ = −1. Below we prove the robustness of the highly
degenerate ZESs in a dirty normal segment and the perfect
Andreev reflection by taking these features into account.

In an isolating Dresselhaus superconductor (i.e., −L � x �
L and 0 � y � M), we can describe the wave function of the
zero-energy state for each transport channel. From the second
equation in Eq. (8), it is given by

ϕn,λ(r) =χn,λ(x) Yn(y)

[
1
λ

]
, (9)

where Yn(y) = √
2/M sin(nπy/M) is the wave function in

the y direction with the hard-wall boundary condition and

n indicates the transport channel. In the x direction, we
also apply the hard-wall boundary condition at its edges,
χn,λ(−L) = χn,λ(L) = 0. By substituting Eq. (9) into the first
equation in Eq. (8), we obtain[

∂2
x − 2

λ

ξD

∂x + k2
n

]
χn,λ(x) = 0, (10)

where ξD = ξ0/αD , ξ0 = �vF /�0, kn =√
2m(μ + Vex − εn)/�, and εn = (�nπ/M)2/(2m) is the

kinetic energy in the y direction. The superconductor must be
long enough to satisfy L/ξD � 1. We find the following two
solutions for each propagating channel:

ϕL
n,−(r) = CL√

2

[
1

−1

]
sin[qn(x + L)]e−x/ξD Yn(y), (11)

ϕR
n,+(r) = CR√

2

[
1
1

]
sin[qn(x − L)]ex/ξD Yn(y), (12)

with q2
n = k2

n − ξ−2
D , where CL and CR are the normalization

coefficients. We choose the gauge so that the wave functions in
Eqs. (11) and (12) are real values. All the ZESs at the left (right)
edge have λ = −1 (λ = 1), which is shown schematically in
Fig. 3.

In the Bogoliubov transformation, the field operator of an
electron with spin-↓ is generally described as[

�(r)
�†(r)

]
=

∑
ν

[ϕν(r)γν + �̂ϕν(r)γ †
ν ], (13)

�̂ =τ̂1K, �̂Ĥ↓�̂−1 = −Ĥ↓, (14)

where γ †
ν (γν) is the creation (annihilation) operator of the

Bogoliubov quasiparticle belonging to Eν and �̂ is the charge
conjugation operator withK indicating a complex conjugation.
Equation (14) represents the particle-hole symmetry of the
Hamiltonian. From Eq. (13), we can extract the electron field
operator of the ZES at the nth propagating channel as

�n(r) = iγ L
n (r) + γ R

n (r), (15)

γ L
n (r) = − iϕL

n,−(r)[γn− − γ
†
n−], (16)

γ R
n (r) = ϕR

n,+(r)[γn+ + γ
†
n+]. (17)

The operator γ L
n (r) is purely imaginary while γ R

n (r) is real in
the present gauge choice. They satisfy the Majorana relation
[γ L(R)

n (r)]† = γ L(R)
n (r). Therefore, the number of Majorana

fermions at each edge is equal to the number of propagating

Thin film with Dresselhaus [110] SO coupling 

Left edge Right edge

λ = − 1 λ = 1

Superconductor

FIG. 3. (Color online) Schematic image of ZESs at two edges of
an isolating Dresselhaus superconductor for Vex > Vc. The number
of the ZESs at either edge is equal to Nc. All of the ZESs at the left
(right) edge have λ = −1 (λ = 1).
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channels at the spin-↓ sector N↓. Since there are no spin-↑
channels for Vex > Vc, N↓ is equal to Nc. They are degenerate
at zero energy at the same place. Such highly degenerate states
may be fragile in the presence of a random impurity potential
near the edges. However, at the left edge for example, all of
the ZESs have λ = −1 as shown in Eq. (11). According to
property (ii), such highly degenerate ZESs are robust against
potential disorder because the random potentials preserve the
chiral symmetry and the ZESs with λ = 1 are absent.

IV. PERFECT ANDREEV REFLECTION
AND CHIRAL NATURE

Finally and most importantly, we prove the stability of the
highly degenerate ZESs in a normal metal. To analyze the
conductance of the NS junction, we attach a normal metal to
the left side of the superconductor as shown in Fig. 1. The
Hamiltonian of the normal metal is given by H↓ in Eq. (6)
with �0 = 0. In the absence of impurity potentials, the wave
function in the normal segment at E = 0 is described by

ϕN (r) =
∑

n

([
1

rhe
n

]
eiknx +

[
ree
n

0

]
e−iknx

)
Yn(y), (18)

where ree
n (rhe

n ) is the normal (Andreev) reflection coefficient at
channel n and kn = √

2m(μ − εn)/�. The current conservation
law implies |ree

n |2 + |rhe
n |2 = 1 at E = 0 for each channel.

From the boundary conditions at the NS interface, the
reflection coefficients are calculated to be

ree
n = 0, rhe

n = −1, (19)

for all n. The wave function in Eq. (18) is the eigenstate of τ̂1

belonging to λ = −1 (i.e., ϕN ∝ [1, −1]T), as well as the ZESs
at the left edge of the superconductor. According to property
(ii), they cannot form nonzero-energy states. Therefore, the
ZESs can penetrate into the normal segment while retaining
a high degree of degeneracy. The conclusion is also valid
even in the presence of potential disorder because the impurity
potential Vimp preserves the chiral symmetry and does not
damage the pure chiral feature of the ZESs. This fact is unique
to the px-wave pairing symmetry. In the ballistic limit, perfect
conductance quantization at zero bias is a common property
of unconventional superconductors that have the edge ZESs
with a flat dispersion. For instance, in a spin-singlet d-wave
superconductor with �k ∝ kxky [35], |rhe

ky
| = 1 holds for all

transverse momentum values ky . The Hamiltonian of d-wave
superconductors also preserves the chiral symmetry. However,
the highly degenerate ZESs are fragile under the potential
disorder because the ZESs with two different chiralities coexist
at the same edge [10]. Namely, the sign of rhe

ky
depends on ky .

Therefore the presence of the chiral symmetry is not a sufficient
condition for the anomalous proximity effect but a necessary
one.

In a px-wave junction, all the ZESs in a normal metal have
the same chirality of λ = −1 in the same way as the ZESs
at the left edge of the superconductor. The pure chiral feature
of the ZESs enables us to explain the perfect Andreev reflection
into the dirty normal segment. According to property (i), the
ZESs must be the eigenstate of τ̂1. We emphasize that the wave
function in Eq. (18) can be the eigenstate of τ̂1 with λ = −1

only when Eq. (19) is satisfied. Although the channel index n is
no longer a good quantum number under the potential disorder,
all the wave functions in the normal segment have the same
vector structure reflecting their pure chiral nature. This is a
mathematical requirement arising from the chiral symmetry.
The physical consequence of the vector structure is the perfect
Andreev reflection into the dirty normal metal at E = 0. This
explains the perfect quantization of the zero-bias conductance
at 2e2Nc/h.

V. CONCLUSION

In conclusion, we have discussed the stability of highly
degenerate zero-energy states (ZESs) appearing in disordered
junctions consisting of a superconducting thin film with
Dresselhaus [110] spin-orbit coupling. The Dresselhaus su-
perconductor hosts more than one ZES at its edges. When
we make a normal-metal/superconductor junction of the
Dresselhaus superconductor, such highly degenerate ZESs can
penetrate into the dirty normal segment and form resonant
transmission channels there. An analysis of the wave function
in the normal segment shows that all the ZESs have the same
chirality due to the effective px-wave pairing symmetry. The
perfect Andreev reflection into the dirty normal metal is a
direct consequence of the pure chiral feature of the ZESs. Our
paper provides a microscopic understanding the anomalous
proximity effect of the spin-triplet px-wave superconductor.
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APPENDIX A: ZERO-ENERGY STATES UNDER
A CHIRAL SYMMETRY

Here, we briefly summarize the argument in Ref. [10] which
shows the important properties of zero-energy states under a
chiral symmetry. We consider the BdG Hamiltonian H which
preserves the chiral symmetry

�H�−1 = −H, �2 = 1. (A1)

The relation is equivalent to

[H 2,�] = 0. (A2)

The BdG equation is given by

HϕE(r) = EϕE(r). (A3)

When we consider the eigenequation of H 2,

H 2χE2 (r) = E2χE2 (r), (A4)

Equation (A2) suggests that the eigenstate χE2 (r) is also
the eigenstate of � at the same time. Since �2 = 1, we
find that the eigenvalue of � is +1 or −1. Namely the
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eigenequation

�χE2λ(r) = λχE2λ(r) (A5)

holds for λ = ±1. By multiplying H to Eq. (A5) from the left
side and by using Eq. (A1), we obtain the equation

�HχE2λ(r) = −λHχE2λ(r). (A6)

We find that HχE2λ(r) is the eigenstate of � belonging to −λ.
Thus we can connect χE2+(r) and χE2−(r) as

HχE2λ(r) = cE2λχE2−λ(r), (A7)

where cE2λ is a constant.
A one-to-one correspondence exists between ϕE(r) and

χE2 (r). At first, we consider zero-energy states χ0λ(r) which
satisfy

H 2χ0λ(r) = 0, (A8)

in Eq. (A4). The integration of r after multiplying χ
†
0λ(r) from

the left results in ∫
d r |Hχ0λ(r)|2 = 0. (A9)

This means that the norm of Hχ0λ(r) is zero. Therefore we
conclude that

Hχ0λ(r) = 0. (A10)

As a result, we find the relation

ϕ0λ(r) = χ0λ(r). (A11)

When a zero-energy state is described by ϕ0+(r) = χ0+(r),
the relations in Eqs. (A7) and (A10) suggest that χ0−(r) = 0.
Therefore the zero-energy states are always the eigenstates
of �.

For E �= 0, it is possible to represent ϕE(r) by χE2±(r). By
calculating the norm of HχE2λ(r), we obtain

E2 = |cE2λ|2 . (A12)

Multiplying H to Eq. (A7) from the left alternatively gives a
relation

cE2λcE2−λ = 1. (A13)

Therefore, we find the relation

HχE2λ(r) = EeiλθE2 χE2−λ(r). (A14)

Although we cannot fix the phase factor θE2 , it is possible to
express the states ϕE(r) for E �= 0 as

ϕE(r) = 1√
2

[
e−iθ

E2 /2χE2+(r) + sEeiθ
E2 /2χE2−(r)

]
, (A15)

sE =
{

1 for E > 0,

−1 for E < 0.
(A16)

The nonzero-energy states are constructed by a pair of eigen-
states of �: one belongs to λ = 1 and the other belongs λ =
−1. Therefore, the states with E �= 0 are not the eigenstates
of �.

APPENDIX B: UNITARY TRANSFORMATION

The BdG Hamiltonian of the Dresselhaus nanowire repre-
sented by

Ȟ0 =
[

ĥ i�0σ̂2

−i�0σ̂2 −ĥ∗

]
, (B1)

ĥ = ξr σ̂0 − Vexσ̂1 + iλD∂xσ̂3, (B2)

is transformed as follows. By using the unitary matrix

Ř =
[
r̂ 0
0 r̂∗

]
, r̂ = 1√

2

[
e−iπ/4 −e−iπ/4

eiπ/4 eiπ/4

]
, (B3)

the BdG Hamiltonian Ȟ0 is first transformed to

Ȟ ′ = ŘȞ0Ř
†

=
[

ĥ′ i�0σ̂2

−i�0σ̂2 −ĥ′

]
, (B4)

ĥ′ = ξr σ̂0 + Vexσ̂3 + iλD∂xσ̂2. (B5)

The Hamiltonian in this basis is represented only by real
numbers. Next we apply a transformation which is similar
to the Foldy-Wouthysen transformation [36] to the BdG
Hamiltonian in Eq. (B4). Using a unitary matrix

Ǔ =
[
û 0
0 û

]
, (B6)

û =exp[iŜ], Ŝ = λD

2�Vex

pxσ̂1, (B7)

with px = −i�∂x , we transform H ′ into

ǓȞ
′
Ǔ † =

[
eiŜ ĥ

′
e−iŜ eiŜ(i�0σ̂2)e−iŜ

−eiŜ(i�0σ̂2)e−iŜ −eiŜ ĥ
′
e−iŜ

]
. (B8)

The diagonal term of Eq. (B4) can be expanded as

eiŜ ĥ′eiŜ = ĥ′ + i[Ŝ,ĥ
′
] + i2

2!
[Ŝ,[Ŝ,ĥ′]] + · · · , (B9)

with using the Baker-Housdorff formula. We assume large
enough Zeeman potential so that αD = λDkF /Vex � 1 is
satisfied where kF = √

2mμ/� denotes Fermi wave number.
From this assumption, we obtain

eiŜ ĥeiŜ = ξ σ̂0 + Vexσ̂3 + O
(
α2

D

)
, (B10)

within the first order of αD . The off-diagonal term correspond-
ing to the pair potential is transformed to

eiŜ(i�0σ̂2)e−iŜ = i�0σ̂2 + i[Ŝ,i�0σ̂2] + · · ·

= i�0σ̂2 − i
λD�0

�Vex

pxσ̂3 + O
(
α2

D

)
, (B11)

where we assume the uniform pair potential (i.e., [px,�0] =
0). As a result, the BdG Hamiltonian can be written as

ǓȞ ′Ǔ † =

⎡
⎢⎢⎢⎣

ξr + Vex 0 −i λD�0
�Vex

px �0

0 ξr − Vex −�0 i λD�0
�Vex

px

i λD�0
�Vex

px −�0 −ξr − Vex 0
�0 −i λD�0

�Vex
px 0 −ξr + V

⎤
⎥⎥⎥⎦

+ O
(
α2

D

)
. (B12)
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By interchanging the second column and the third one, and
by interchanging the second row and the third one, the
Hamiltonian can be deformed as

Ȟ1 =ȞP + V̌�, (B13)

ȞP =
[
Ĥ↑ 0
0 Ĥ↓

]
, (B14)

Ĥσ =
[
ξr + ssVex −ssi

λD�0
�Vex

px

ssi
λD�0
�Vex

px −ξr − ssVex

]
, (B15)

V̌� =
[

0 i�0σ̂2

−i�0σ̂2 0

]
, (B16)

ss =
{

1 for σ =↑ ,

−1 for σ =↓ .
(B17)

These are the starting Hamiltonian in the analytic calculation.

We find that Ȟ1 preserves chiral symmetry

�Ȟ1�
−1 = −Ȟ1, � =

[
σ̂1 0
0 σ̂1

]
. (B18)

Finally, we discuss the symmetry property of H0 in Eq. (B1)
in its original basis. It is easy to show that Ȟ0 satisfies the
relations

�̌0Ȟ0�̌
−1
0 = −Ȟ0, �̌0 =

[
0 −iσ̂1

iσ̂1 0

]
, (B19)

which represents the chiral symmetry. The Hamiltonian Ȟ0

also satisfies

�̌0Ȟ0�̌
−1
0 = −Ȟ0, �̌0 =

[
0 Kσ̂0

Kσ̂0 0

]
, (B20)

where �̌0 represents the charge conjugation with K meaning
the complex conjugation. The first equation in Eq. (B20)
represents the particle-hole symmetry.
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