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Pressure studies of the quantum critical alloy Ce0.93Yb0.07CoIn5
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Here we present our experimental and theoretical study of the effects of pressure on the transport properties
of the heavy-fermion alloy Ce1−xYbxCoIn5 with actual concentration x ≈ 0.07. We specifically choose this
value of ytterbium concentration because the magnetic-field-induced quantum critical point, which separates
the antiferromagnetic and paramagnetic states at zero temperature, approaches zero, as has been established in
previous studies. Our measurements show that pressure further suppresses quantum fluctuations in this alloy, just
as it does in the parent compound CeCoIn5. In contrast, the square-root temperature-dependent part of resistivity
remains insensitive to pressure, indicating that the heavy quasiparticles are not involved in the inelastic scattering
processes leading to such a temperature-dependent resistivity. We demonstrate that the growth of the coherence
temperature with pressure, as well as the decrease of the residual resistivity, can be accurately described by
employing the coherent potential approximation for a disordered Kondo lattice.
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I. INTRODUCTION

Since their discovery almost thirteen years ago [1,2], the
family of 115 materials has provided an impactful experimen-
tal and theoretical playground for studying fundamental quan-
tum phenomena, such as magnetism and superconductivity, in
strongly interacting electronic systems [3]. In particular, the
physical and structural properties of these materials have not
only helped to further develop the concepts of quantum phase
transitions and non-Fermi liquids, but have also motivated
theoretical studies of exotic mechanisms for unconventional
superconductivity. Moreover, it has been shown recently
that f -orbital compounds may host topologically nontrivial
electronic states [4–9]. Whether the 115-based alloys can host
topologically nontrivial superconductivity remains an open
question, which provides an additional motivation for both
experimental and theoretical communities to study the normal
and superconducting properties of these systems in greater
detail.

Heavy-fermion alloys Ce1−xYbxCoIn5—members of the
115 family of compounds—possess a number of intriguing
and often counterintuitive physical properties: (i) upon an
increase in the concentration of ytterbium atoms, the critical
temperature of the superconducting transition (Tc) decreases
only slightly compared to other rare-earth substitutions [10,11]
and superconductivity persists up to the nominal concentration
xnom ≈ 0.75; (ii) the value of the out-of-plane magnetic field
(H ) corresponding to the antiferromagnetic (AFM) quantum
critical point (QCP) approaches zero as xnom → 0.2 [12]:
(iii) there is a crossover in the temperature (T ) dependence
of resistivity (ρa) measured along the a axis: the resistivity
has a

√
T dependence, except at the lower doping levels

(xnom � 0.2) where it exhibits an additional linear-in-T con-
tribution [13], i.e.,

ρa(x,T ) = ρa0(x) + A(x)T + B(x)
√

T (1)

*These authors have contributed equally to this work.

with ρa0(x) ∝ xnom(1 − xnom) (in accord with Nordheim
law) [14,15], B(x) → 0 as xnom → 0 and A(x) → 0 as xnom

is gradually increased from zero to xnom ≈ 0.2; (iv) there is
a drastic Fermi-surface reconstruction for xnom ≈ 0.55, yet Tc

remains weakly affected [16]. More recently, penetration depth
measurements [17] have shown the disappearance of the nodes
in the superconducting order parameter for xnom � 0.2.

The emergent physical picture, which describes the physics
of these alloys is based on the notion of coexisting electronic
networks coupled to conduction electrons: one is the network
of cerium ions in a local moment regime, while the other
consists of ytterbium ions in a strongly intermediate-valence
regime [18,19]. This picture is supported by recent extended x-
ray absorption fine structure spectroscopic measurements [20],
as well as photoemission, x-ray absorption, and thermo-
dynamic measurements [21,22]. Moreover, our most recent
transport studies [13] are generally in agreement with this
emerging physical picture. In particular, for xnom ≈ 0.6 we
observe the crossover from coherent Kondo lattice of Ce to
coherent behavior of Yb sublattice, which is in agreement with
recent measurements of the De Haas-van Alphen effect [16],
while superconductivity still persists up to xnom ≈ 0.75 of yt-
terbium concentration. Nevertheless, it remains unclear which
of the conduction states—strongly or weakly hybridized—of
the stoichiometric compound contribute to each network.

In order to get further insight into the physics of the
Ce1−xYbxCoIn5 alloys, we study the transport properties under
applied magnetic field and pressure for the alloy with actual
concentration xact ≈ 0.07. One of our goals is to clarify the
origin of the square-root temperature dependence of resistivity
and to probe the contribution of the heavy quasiparticles to
the values of A(x) and B(x) [see Eq. (1)]. To address this
issue, we study the changes in the residual resistivity and the
coefficients A and B with pressure. Our results show that while
both the residual resistivity and the coefficient A decrease
with pressure, B shows very weak pressure dependence. This
indicates that the AFM quantum fluctuations are suppressed
with pressure and that the light quasiparticles involved in the
scattering mechanism that gives the

√
T dependence originate

from the electrons from the small Fermi surface that hybridize
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with Yb ions. We find that the Kondo lattice coherence and the
superconducting critical temperature increase with pressure
in accord with general expectations [13,23]. We also study
theoretically the properties of a disordered Kondo lattice in
which the disorder ions are magnetic. Within the picture of
the single conduction band, we show that the presence of the
magnetic ions has little effect on the dependence of the residual
resistivity and the Kondo lattice coherence temperature on
pressure. Our theoretical results are in good agreement with
our experimental findings.

Another important aspect of the present work concerns the
evolution of the physical quantities affected by the presence
of the field-induced quantum critical point. In our recent
work [12,13], we have shown that the temperature dependence
of the magnetic field Hmax at which magnetoresistivity has a
maximum is a signature of system’s proximity to field-induced
QCP. Consequently, here we study the dependence of Hmax

on pressure. We find a remarkable similarity between the
dependence of the residual resistivity and (dHmax/dT )−1

on pressure. Yet, this result is not surprising because it is
well understood that the tendency towards antiferromagnetic
ordering originates from the partial screening of the f

moments by conduction electrons. Hence, a strong pressure
dependence of the relevant physical quantities such as A and
Hmax is expected.

This paper is organized as follows. In the next section
we provide the details of our experimental measurements.
The results of our measurements are presented in Sec. III.
Section IV is devoted to theoretical modeling of a disordered
Kondo lattice under pressure. Specifically, we find that both
the residual resistivity and the coefficient in front of the
leading temperature-dependent term decrease under pressure,
in agreement with our experimental results. In Sec. V we
provide the discussion of our results and conclusions.

II. EXPERIMENTAL DETAILS

Single crystals of Ce1−xYbxCoIn5 were grown using an
indium self-flux method. These crystals have a nominal Yb
doping xnom = 0.2 and an actual doping xact = 0.07. The
crystal structure and unit cell volume were determined from
x-ray powder diffraction measurements, while the actual com-
position was determined according to the method developed
by Jang et al. [24]. Since all previous publications on this
system give the nominal Yb concentration instead of the actual
concentration, in this paper we use the nominal concentrations
whenever referring to the results of earlier publications in order
to be consistent with their reports, while we use the actual Yb
concentration when we refer to the present work. We note
that the study by Jang et al. [24] has shown that xact ≈ 1

3xnom,
providing that the nominal Yb doping is less than about 40%.

The single crystals studied have a typical size of 2.1 ×
1.0 × 0.16 mm3, with the c axis along the shortest dimension
of the crystals. They were etched in concentrated HCl for
several hours to remove the indium left on the surface during
the growth process and were then rinsed thoroughly in ethanol.
Four leads were attached to the single crystals, with the
current I ‖ a axis, using a silver-based conductive epoxy.
We performed resistivity (ρa) along the a axis and transverse
(H ⊥ ab) magnetoresistivity (MR) measurements as a func-

FIG. 1. (Color online) (a) Resistivity ρa of Ce0.93Yb0.07CoIn5 as
a function of temperature T for different pressures P (0, 2.7, 5.1, 7.4,
and 8.7 kbar). The arrow at the maximum of the resistivity data marks
the coherence temperature Tcoh. (b) Evolution of Tcoh as a function
of pressure P . Inset: Superconducting critical temperature Tc as a
function of pressure P . The solid lines are guides to the eye.

tion of temperature between 2–300 K, applied magnetic field
up to 14 T, and applied hydrostatic pressure (P ) up to 8.7 kbar.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1(a) shows ρa data as a function of temperature of a
Ce0.93Yb0.07CoIn5 single crystal measured under pressure. The
qualitative behavior of resistivity is the same for all pressures
used in this study: the resistivity initially decreases as the
sample is cooled from room temperature, then it passes through
a minimum in the temperature range 150–200 K, followed by
an increase as the temperature is further lowered. This increase
is consistent with a logarithmic temperature dependence, in
accordance to the single-ion Kondo effect. With the onset of
coherence effects at the Kondo lattice coherence temperature
(Tcoh) (defined as the peak in the resistivity data), the resistivity
decreases with further decreasing the temperature below Tcoh,
while at even lower T , superconductivity sets in at Tc.

The onset of coherence is governed by the process in which
the f electrons of Ce can resonantly tunnel into the conduction
band, i.e., f 1 � f 0 + e. Because the cell volume � changes
due to these resonant processes, i.e., �(f 1) − �(f 0) > 0, the
electronic properties are strongly susceptible to the application
of external pressure. Thus, we expect that pressure increases
the local hybridization of Ce0.93Yb0.07CoIn5 and, hence,
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increases the coherence temperature (see Sec. IV for the related
discussion). Figure 1(b) shows that, indeed, the disordered
Kondo lattice Tcoh increases with increasing pressure, just
as it does for pure CeCoIn5 and the other members of the
Ce1−xRxCoIn5 (R = rare-earth) series [22].

The inset to Fig. 1(b) shows the pressure dependence of
Tc. For small values of pressures, clearly Tc ∝ Tcoh as they
linearly grow with pressure [see Fig. 1(b) and its inset].
This is expected since at low temperatures the coherence
temperature of superconducting heavy-fermion metals plays
the role of a renormalized bandwidth and, therefore, provides
the ultraviolet cutoff for the superconducting instability.

It is well known [25–28] that large and small Fermi surfaces
coexist in the stoichiometric CeCoIn5. The quasiparticles from
the large Fermi surface are composed of the f states as
well as conducting d states due to the hybridization between
Ce f and d orbitals, and hence have heavy effective mass.
Consequently, the transport and thermodynamic properties
of these quasiparticle states strongly depend on pressure
since hybridization involves quantum mechanical tunneling
between f 0 and f 1 valence states, changing the unit cell
volume. In contrast, the quasiparticle states on the small
Fermi surface have zero spectral weight contribution from
the Ce f states and, therefore, have light effective mass and
must show weak pressure dependence. An open question
is, do the electrons from the small Fermi surface hybridize
with ytterbium ions, or do only the electrons from the large
Fermi surface hybridize with both cerium and ytterbium
ions? As just discussed, the former (latter) scenario would
give a pressure-independent (pressure-dependent) coefficient
for the temperature dependence of the scattering processes.
Therefore, to address this question, we study the changes in
the temperature-dependent part of resistivity under pressure.

As we have already discussed in the Introduction, we have
previously shown that there are two distinct contributions to
the scattering of the quasiparticles in Ce1−xYbxCoIn5 alloys: a√

T contribution and a linear-in-T contribution. This latter one
is due to quantum critical fluctuations and it is observed only
at small Yb doping (xnom � 0.2, xact � 0.07) [see Eq. (1)].
In what follows we trace out the changes in the coefficients
A and B with pressure for the Ce0.93Yb0.07CoIn5 alloy, for
which both of these contributions are present at least over a
certain temperature range and under ambient pressure. The
goal is to determine the effect of pressure on quantum critical
fluctuations and on the scattering mechanism that gives the√

T dependence in resistivity. Figure 2(a) shows that the data
are fitted very well with Eq. (1) (the solid lines are the fits
to the data) for 3 � T � 15 K and for all pressures studied.
From these fits we obtain the pressure dependence of the
fitting parameters ρa0, A, and B, which allow us to probe the
relative contribution of heavy- and light-quasiparticle states to
scattering.

Figure 2(b) shows the pressure dependence of the parame-
ters A and B extracted from the fitting of ρa(T ) of Fig. 2(a),
which, as discussed above, are the weights of the linear-in-
T and square-root-in-T scattering dependences, respectively.
Notice that A decreases while B remains relatively constant
with increasing pressure. The suppression of A with pressure
indicates that the AFM quantum fluctuations are suppressed
with increasing pressure. Also, the insensitivity of B to

FIG. 2. (Color online) (a) Fits of the resistivity ρa data with
ρa(P,T ) = ρa0(P ) + A(P )T + B(P )

√
T for different pressures

for Ce0.93Yb0.07CoIn5 in the temperature range 3 K � T � 15 K.
(b) Pressure P dependence of the linear T contribution A and

√
T

contribution B, obtained from fits of the resistivity data shown in
panel (a). (c) Pressure P dependence of the residual resistivity ρa0,
obtained from the fits.

pressure suggests that the inelastic scattering events leading
to the

√
T dependence in this temperature range involve light

effective mass quasiparticles from the small Fermi surface.
Hence, these ρa(T ) data for 3 � T � 15 K show that there
are two distinct contributions to scattering originating from
the two Fermi surfaces: AFM quantum fluctuations of the
heavy quasiparticles (with a linear-in-T scattering behavior)
and quasiparticles from the small Fermi surface (with a

√
T

scattering behavior).
Moreover, the value of the coefficient B(P =0,x) increases

with ytterbium dilution [12] and it remains essentially un-
changed under the application of pressure at temperatures well
above Tc. These observations strongly suggest that the value
of B(P =0,x) is governed by the quasiparticle excitations
from the Fermi pockets near the M points of the quasi-
two-dimensional Brillouin zone. Recall that according to the
recent thermopower measurements and subsequent theoretical
studies [28,29] of the parent compound CeCoIn5, the Fermi
pockets near the M points remain ungapped giving rise to the
nonzero thermal conductivity in the superconducting state. If
we now consider the results of the recent penetration depth
measurements that show the disappearance of the nodes in
the superconducting order parameter for xnom ≈ 0.2 [17], we
conclude that with Yb doping: (i) both Fermi surfaces must
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be gapped below Tc due to the proximity pairing effect, and
(ii) the absence of the nodes in the superconducting order
parameter for xnom � 0.2 suggest that the order parameter
may have exotic symmetry, either d + is or d + id [30]. The
d component must be present since the order parameter of
the parent compound CeCoIn5 has dx2−y2 symmetry [31,32],
while the conventional s-wave superconductivity can be ruled
out due to monotonous concentration dependence of Tc . There-
fore, intriguingly, Ce1−xYbxCoIn5 may provide an important
playground for the realization of the long thought topological
superconductivity [33]. However, to verify the realization of
specific scenarios for the symmetry of the superconducting
order parameter in Ce1−xYbxCoIn5, one would need a detailed
understanding of the electronic properties in both normal and
superconducting states [30].

Figure 2(c) shows the pressure dependence of the residual
resistivity ρ0 extracted from the fitting of the data of Fig. 2(a).
As discussed in the Introduction, the residual resistivity in this
system depends on the impurity concentration in accordance
with Nordheim’s law. In systems with proximity to a quantum
critical point, there will also be a contribution to residual
resistivity from the quantum critical fluctuations. Since tuning
with pressure does not introduce any impurity scattering in
the system, the decrease in residual resistivity with increasing
pressure indicates that the scattering due to AFM quantum
spin fluctuations is suppressed by pressure, hence the system
is driven away from the QCP. Indeed, quantum fluctuations
in this family of heavy-fermion superconductors are known to
be suppressed by pressure because the AFM order in the Ce
lattice is suppressed [34–36].

Figure 3(a) shows ρa data vs
√

T around the supercon-
ducting transition temperature (1.8 � T � 5 K). This figure
shows that from just above Tc to about 4 K, the ρa(T ) data
follow very well a

√
T dependence [solid lines are linear fits to

the data with ρa(P,T ) = ρa0(P ) + B∗(P )
√

T ]. The pressure
dependence of the coefficient B∗ is shown in the inset to Fig. 3.
Notice that B∗ is significantly suppressed with increasing
pressure. This pressure dependence of B∗ suggests that the
scattering just above Tc is largely governed by fluctuating
Cooper pairs originating from the heavy Fermi surface. This
observation is in agreement with the fluctuation correction to
resistivity due to preformed Cooper pairs composed of heavy
quasiparticles. Indeed, for a three-dimensional (3D) Fermi
surface and in the case of a strong coupling superconductor
with relatively small coherence length [37], one expects a√

T fluctuation contribution to resistivity [38]. Therefore,
these ρa(T ) data show that the strong SC fluctuations of
the heavy quasiparticles give the

√
T dependence just above

Tc and that the linear-in-T contribution of Eq. (1) that is
due to the system’s proximity to the field-induced QCP, is
masked by these strong SC fluctuations. The superconducting
fluctuations, nevertheless, decrease as the system moves away
from Tc to higher temperatures. Indeed, as discussed above,
the resistivity data reveal that other scattering mechanisms
dominate at temperatures above about 4 K [see Fig. 2 and its
discussion].

Alternatively, the
√

T dependence of the resistivity just
above Tc is also consistent with the composite pairing theory
in a 3D system [39], which predicts an incoherent transport

FIG. 3. (Color online) (a) Resistivity ρa of Ce0.93Yb0.07CoIn5 as a
function of

√
T , in the temperature range 1.8 K � T � 5 K. The solid

lines are linear fits of the data with ρa(P,T ) = ρa0(P ) + B∗(P )
√

T

for 1.8 � T � 4 K. Inset: Pressure P dependence of the coefficient
B∗. (b) ρa vs

√
T for Ce0.92Yb0.08CoIn5 measured in zero magnetic

field and at 4 T. The 4 T data has been offset upwards by 5 μ� cm
for visual clarity.

of composite Cooper pairs above the superconducting critical
temperature with the resistivity growing as

√
T . It is important

to emphasize that the size of the composite pairs is only a
few lattice spacing, i.e., the electrons in a composite pair
are tightly bound. From this point of view, the transport of
composite pairs is not governed by fluctuation corrections
to conductivity, which are usually discussed in the context
of conventional superconductors. Nevertheless, the decrease
in B∗ with increasing pressure is also consistent with this
theory because the composite pairs incorporate the heavy
quasiparticles.

Figure 3(b) shows ρa data vs
√

T around the supercon-
ducting transition temperature (1.8 � T � 5 K), measured
at ambient pressure in zero magnetic field and 4 T. The
temperature at which the data deviate from the

√
T dependence

decreases with applied field, showing that, as expected, the
Cooper pair fluctuations are suppressed by magnetic field.

Next, we present the results of transverse (H ⊥ ab) mag-
netoresistivity (MR) measurements, defined as �ρa/ρa(0) ≡
[ρa(H ) − ρa(H =0)]/ρa(H =0), on Ce0.93Yb0.07CoIn5 in ap-
plied magnetic fields up to 14 T, for temperatures ranging from
2–60 K, and applied pressures up to 8.7 kbar. The main panel of
Fig. 4 and its inset show such MR curves measured at ambient
pressure and 5.1 kbar, respectively. The 9 K MR data in both
panels show nonmonotonic H dependence: the MR increases
with increases field, displays a maximum at a field Hmax, and
decreases with further increasing H , with an H 2 dependence
at high fields (see inset to Fig. 4) that is typical of a single-ion
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FIG. 4. (Color online) Magnetic field H dependence (plotted
as function of H 2) of magnetoresistivity (MR) �ρa/ρa(H = 0) ≡
[ρa(H ) − ρa(H = 0)]/ρa(H = 0) of Ce0.93Yb0.07CoIn5 measured at
two different temperatures and ambient pressure. The dashed line in
the main figures marks Hmax, corresponding to the coherence giving
way to single-ion Kondo behavior. Inset: MR data vs H 2 measured
under 5.1 kbar. The red line shows the quadratic regime of MR.

Kondo system. This positive MR behavior at low H values is
due to the formation of the coherent Kondo lattice state. Hmax

represents the value where the coherent state gives way to the
single-ion state due to the fact that magnetic field breaks the
coherence of the Kondo lattice [40–45].

In a conventional Kondo lattice system, as T increases,
Hmax moves toward lower field values, signifying that a
lower field value is sufficient to break coherence at these
higher temperatures due to thermal fluctuations, with a
complete suppression of the positive contribution to MR,
hence Hmax = 0, at T ≈ Tcoh (red solid squares in Fig. 4).
On the other hand, as we have recently revealed [12], Hmax(T )
in the Ce1−xYbxCoIn5 alloys with concentrations xact � 0.07
shows deviation from the conventional Kondo behavior and
exhibits a peak, below which Hmax decreases with decreasing
temperature. This is shown in Fig. 5, which is a plot of the
temperature dependence of Hmax for four different hydrostatic
pressures. We have attributed the decrease in Hmax(T ) with
decreasing T to quantum spin fluctuations that dominate the

FIG. 5. (Color online) Temperature T dependence of the maxi-
mum in magnetoresistivity Hmax for different pressures P . The solid
lines below 10 K are linear fits to the data.

MR behavior below about 20 K [12]. Notice that Hmax(T )
shows linear behavior below 10 K (see Fig. 5). A linear
extrapolation of this low-T behavior to zero temperature gives
HQCP [12]. Notice that HQCP ≈ 0.2 T in Ce0.93Yb0.07CoIn5 at
ambient pressure, as previously reported [12], showing that
this Yb doping is close to the quantum critical value xc for the
Ce1−xYbxCoIn5 alloys.

Three notable features are revealed by Fig. 5: (i) the
application of pressure does not change qualitatively the
Hmax(T ) dependence, (ii) there is no noticeable change in
the value of HQCP with pressure for P � 8.7 kbar, most likely
because of the already small value of HQCP (HQCP = 0.2 T)
at ambient pressure, and (iii) both the value of Hmax and the
position in T of the Hmax(T ) peak shifts to higher temperatures
with increasing pressure; as a result, the slope dHmax/dT for
T < 10 K increases with pressure.

According to Doniach’s phase diagram [46], the Kondo
temperature TK and the magnetic exchange interaction tem-
perature TRKKY of Ce Kondo lattice increase with increasing
pressure. Hence, the increase in Hmax with pressure is a result
of increased Tcoh, and the shift in the peak of Hmax(T ) to
higher T with pressure is a result of the increase of both TRKKY

and Tcoh with pressure. The increase in the slope dHmax/dT

with increasing pressure means that a larger applied field is
required to break the Kondo singlet. We note that both quantum
spin fluctuations and applied magnetic field contribute to the
breaking of Kondo coherence at temperatures T < 10 K.
Therefore, a larger dHmax/dT at higher pressures can be
understood in terms of weaker quantum spin fluctuations since
a larger field is required to break the Kondo singlet compared
with the field required for smaller dHmax/dT where spin
fluctuations are stronger.

We show in Fig. 6 the inverse of this slope as a function
of pressure, normalized to its zero pressure value. We also
show in the same figure (right vertical axis) the residual
resistivity as a function of pressure, also normalized to its zero
pressure value. Notice that these two quantities scale very well,
indicating that the same physics dominates their behavior with
pressure, i.e., the suppression of quantum critical fluctuations
with increasing pressure.

FIG. 6. (Color online) Pressure P dependence of residual resis-
tivity ρa0 (obtained through the fitting of the resistivity data as
discussed in the text), normalized to its value at zero pressure
(right vertical axis) and P dependence of inverse slope of Hmax(T )
normalized to its value at zero pressure (left vertical axis).
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IV. THEORY

In this section, we will formulate a general approach to
Kondo alloys diluted with magnetic dopants that will help
us to interpret our experimental results. In what follows, we
first introduce the model in order to study the effects of
pressure in disordered Kondo lattice. Then, we will employ
the coherent potential within the mean-field theory for the
disordered Kondo lattice to compute the pressure dependence
of the Kondo lattice coherence temperature and residual
conductivity.

A. Model

We consider the following model Hamiltonian, which we
write as a sum of three terms

Ĥ = Ĥ0 + ĤKh + ĤV . (2)

The first term describes the kinetic energy of the conduction
and f electrons in the unperturbed (i.e., spatially homoge-
neous) Kondo lattice:

Ĥ0 =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kσ

εf f̂
†
kσ f̂kσ , (3)

where εk = −(tc/2)(cos kx + cos ky) − μc is the single-
particle energy taken relative to the chemical potential μc (here
we will ignore the transport along the z axis). The second term
in Eq. (2) accounts for the Kondo holes, i.e., it prohibits the f

electrons from occupying an impurity site, and it also describes
the impurity f electrons denoted by p̂:

ĤKh =
∑
iσ

(1 − ξi)(ε0f + εf )f̂ †
iσ f̂iσ +

∑
σ

ε̃f p̂†
σ p̂σ

+ Uf

2

∑
iσ

ξi f̂
†
i↑f̂i↑f̂

†
i↓f̂i↓ + Upp̂

†
↑p̂↑p̂

†
↓p̂↓ , (4)

where summation goes over all lattice cites, and

ξi =
{

0, i = 0
1, i �= 0 , (5)

with i = 0 denoting the position of an impurity site. The first
term in Eq. (4) accounts for an f -electron state on an impurity
site. Physically, this process cannot happen. Therefore, at the
end of the calculation, the energy of the f electron on the
impurity site will be taken to infinity, ε0f → ∞, to ensure
〈f̂ †

i=0σ f̂i=0σ 〉 = 0. Lastly, the third term in Eq. (2) accounts
for the hybridization between the conduction electrons and
both cerium f electrons and ytterbium f holes:

ĤV =
∑
iσ

ξi(Vf ĉ
†
iσ f̂iσ + H.c.) +

∑
kσ

(Vpĉ
†
kσ p̂σ + H.c.). (6)

Clearly, the theoretical analysis of this model is hindered
by the presence of the Hubbard interaction terms with both
Uf and Up being the largest energy scales in the problem.
To make progress, we will adopt the slave-boson mean-field
theory (SBMF) approach. Thus, we will set Uf and Up to
infinity:

Uf → ∞ , Up → ∞. (7)

The double occupancy on the f sites is excluded by introduc-
ing the slave-boson projection operators:

f̂iσ → b̂
†
i f̂iσ , f̂

†
iσ → f̂

†
iσ b̂i ,

(8)
p̂σ → â†p̂σ , p̂†

σ → p̂†
σ â,

supplemented by the following constraint conditions:∑
σ

f̂
†
iσ f̂iσ + b̂

†
i b̂i = 1,

∑
σ

p̂†
σ p̂σ + â†â = 1. (9)

Thus, the phase space is reduced to the set of either singly
occupied states |b0f 1〉 or empty states |b1f 0〉 for the f

electrons and, similarly, |a0p1〉 or |a1p0〉 for f holes. Clearly,
the hybridization part of the Hamiltonian in Eq. (6) always
acts only between these two states. Thus, for the kinetic energy
terms, we find

f̂
†
iσ f̂iσ |b0f 1〉 → f̂

†
iσ b̂i b̂

†
i f̂iσ |b0f 1〉 = f̂

†
iσ f̂iσ |b0f 1〉. (10)

In the mean-field approximation, the projection (slave-boson)
operators are replaced with their expectation values:

b̂i → 〈b̂i〉 = b , â → 〈â〉 = a. (11)

The corresponding mean-field Hamiltonian is

Ĥmf =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kσ

εf f̂
†
kσ f̂kσ

+
∑
iσ

(1 − ξi)(ε0f − εf )f̂ †
iσ f̂iσ +

∑
σ

ε̃f p̂†
σ p̂σ

+
∑
iσ

ξi(Vf b∗ĉ†iσ f̂iσ + H.c.) +

+
∑
kσ

(Vpa∗ĉ†kσ p̂σ + H.c.)

+
∑

i

ξiλb

(∑
σ

f̂
†
iσ f̂iσ + |b|2 − 1

)

+ λa

(∑
σ

p̂†
σ p̂σ + |a|2 − 1

)
, (12)

where λa,b are Lagrange multipliers, which will be com-
puted self-consistently. Let us introduce the following
parameters:

Ef = λb + εf , E0f = ε0f − Ef , εf = ε̃f + λa. (13)

In addition, we introduce z = 1 − x with x being the concen-
tration of Yb ions:

z = 1

Ns

∑
i

ξi . (14)

In this expression Ns is the total number of sites. After
rearranging the terms in Eq. (12) and using Eq. (13) we obtain:

Ĥmf = Ĥ
(b)
mf + Ĥ

(a)
mf ,

Ĥ
(b)
mf =

∑
kσ

εkĉ
†
kσ ĉkσ +

∑
kσ

Ef f̂
†
kσ f̂kσ + E0f f̂

†
0σ f̂0σ

+
∑
iσ

ξi(Vf b∗ĉ†iσ f̂iσ + bf̂
†
iσ ĉiσ ) + zNsλb(|b|2 − 1),
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Ĥ
(a)
mf =

∑
σ

εf p̂†
σ p̂σ + Vp

∑
kσ

(a∗ĉ†kσ p̂σ + ap̂†
σ ĉkσ )

+ λa(|a|2 − 1). (15)

Because ytterbium ions are in the mixed valence state, the
hybridization amplitude Vp � Vf . Moreover, we assume
that the condensation temperature TYb for the bosons a is
significantly smaller than the Ce Kondo lattice coherence
temperature Tcoh. This assumption is justified by the similarity
in the physical properties of the Yb ion in YbxY1−xInCu4

and in Ce1−xYbxCoIn5: the ytterbium valence state is close to
Yb3+ for xnom � 0.1 and becomes Yb2.5+ for xnom ∼ 0.1. At
the same time, in YbxY1−xInCu4, for small x, the single site
Kondo temperature is approximately 2 K [47]. Thus, in our
choice of the bare model parameters, we must keep in mind
that the condensation temperature for the a bosons is lower
than the one for the b bosons, TYb < Tcoh.

B. Coherent potential approximation

To analyze the transport properties of the disordered
Kondo lattice, we employ the coherent potential approximation
(CPA) [23,48–51]. The idea of the CPA is to introduce

an effective medium potential, which allows for an equiva-
lent description of the disordered system. In particular, the
effective potential is considered to be purely dynamical. This
approximation is valid when the scattering events on different
impurity sites are independent.

To formulate the CPA, we introduce the Lagrangian for the
disordered Kondo lattice (which is related to Ĥ

(b)
mf ):

L =
∑
kσ

[ĉ†kσ (∂τ + εk)ĉkσ + f̂
†
kσ (∂τ + Ef )f̂kσ ]

+
∑

σ

f̂
†
0σ (∂τ + Ef )f̂0σ + zNsλb(|b|2 − 1)

+
∑
iσ

ξi(Vf b∗ĉ†iσ f̂iσ + bf̂
†
iσ ĉiσ ), (16)

where, for brevity, we omit the dependence of the fermionic
fields on Matsubara time τ . Note that we have not included
the terms that involve p fermions. The reason is that the p

fermions can be formally integrated out, which will lead to the
appearance of the self-energy correction �a(τ − τ ′) in the first
term of Eq. (16). However, to keep our expressions compact,
we will include this term later when we analyze the transport
properties. Within the frame of the CPA, we introduce an
effective medium Lagrangian for the disordered Kondo lattice
system as follows:

Leff =
∫ β

0
dτ ′ ∑

kσ

ψ̂
†
kσ (τ )

[
δ(τ − τ ′)(∂τ + εk) + Scc(τ − τ ′,z) Scf (τ − τ ′,z)

Sf c(τ − τ ′,z) δ(τ − τ ′)(∂τ + Ef ) + Sff (τ − τ ′,z)

]
ψ̂kσ (τ ′)

+ zNsλb(|b|2 − 1), (17)

where β = 1/kBT , we introduced the two-component spinor
ψ̂

†
kσ = (ĉ†kσ f̂

†
kσ ) for brevity, and Sab(τ,z) are the components

of the coherent potential that we will have to determine
self-consistently. The self-consistency condition for the com-
ponents of Sab(τ,z) is obtained by requiring that the corre-
sponding correlation functions for the effective Lagrangian,
Eq. (17), are equal to the disorder-averaged correlators for the
disordered Kondo lattice, Eq. (16) [48]. In the Kondo hole
limit (E0f → ∞), it follows:

Ŝ(iωn,z) =
(

0 bVf

b∗Vf Sff (iωn,z)

)
, (18)

where iωn = πT (2n + 1) is a fermionic Matsubara frequency
and

Sff (ω,x)Fff (ω) = z − 1,
(19)

Fff (ω) =
∑

k

ω − εk

(ω − εk)(ω − Ef − Sff (ω,z)) − V 2
f |b|2 .

These equations allow us to compute the remaining component
of the coherent potential (18). Sff (iω,z) is a function of
parameters Ef and b, which will have to be computed
self-consistently by minimizing the free energy.

C. Slave-boson mean-field theory for disordered Kondo
lattice under hydrostatic pressure

In order to study the effects of pressure in a disordered
Kondo lattice, we need to express the change in the total
volume of the system with the corresponding changes in
the valence states of Ce and Yb ions. For the Ce ions,
the change in the f -shell occupation is positive due to its
electronic nature, so that the resonance scattering involves
a zero-energy boson, with amplitude b, and an electron:
f n+1(j,m) � f n(j,m) + e−. In contrast, for the Yb ions,
the resonance scattering involves a zero-energy boson, with
amplitude a, and a hole: f n−1(j,m) � f n(j,m) + e+. Thus,
for the total volume of the system within the slave-boson
mean-field theory, we write [23]:

�t = (1 − z)[�0Yb + (1 − a2)δ�Yb]

+ z[�0Ce + (1 − b2)δ�Ce] , (20)

where �0Yb,Ce are the cell volumes for the singlet (nonmag-
netic) states on Yb (f 14) and Ce (f 0) ions, correspondingly.
Moreover, δ�Yb,Ce account for the difference in cell volumes
between two f -ion configurations. Note that δ�Yb < 0 while
δ�Ce > 0.

To obtain the self-consistency equations for the slave-boson
amplitude b and constraint variable λb, we define the grand
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canonical enthalpy for an alloy under pressure P :

K = −kBT log Zeff ,
(21)

Zeff = Tr{e− ∫ β

0 dτLeff (τ )−P�t }.
Minimizing the enthalpy with respect to b and λb, we obtain:

z(b2 − 1) + 2T
∑
iωn

Fff (iωn) = 0 ,

(22)
zb(λb − Pδ�Ce) + 2Vf T

∑
iωn

Ff c(iωn) = 0 ,

where iωn = iπT (2n + 1) are Matsubara frequencies and

Ff c(ω) = bVf

∑
k

1

(ω − εk)[z − Ef − Sff (ω,z)] − V 2
f |b|2 .

(23)

In addition, the third equation is the conservation of the total
number of particles Ntot = nc + znf , with

nc = T
∑
iωn

∑
k

eiωn0+Gcc(k,iωn),

(24)

Gcc(k,ω) = ω−Ef − Sff (ω,z)

(ω−εk)(ω−Ef − Sff (ω,z)) − V 2
f |b|2 − V 2

p a2

ω−εf

,

which allows us to determine the renormalized position of the
chemical potential μc. We note that equations that determine
the value of a and λa can be obtained in the same manner as
the ones above.

As a result, we find that the slave-boson amplitude b grows
linearly with pressure [23], b ∝ Pδ�t , see Fig. 7. Also, our
analysis of the mean-field equations (22) in the limit b → 0
shows that the Kondo lattice coherence temperature Tcoh also
grows with pressure almost linearly (Fig. 7 inset):

Tcoh � Ef (Tcoh) ∝ Pδ�t , (25)

which is in agreement with our experimental observations
[see Fig. 1(b)]. In addition, as expected, we find that (i) both
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FIG. 7. (Color online) Pressure P dependence of the slave-boson
amplitude and coherence temperature Tcoh (inset) for various concen-
trations z of the impurity f sites. The dependence of the coherence
temperature Tcoh on pressure for z = 0.93 is shown.

slave-boson amplitude and coherence temperature decrease
as the concentration of ytterbium atoms increases, and (ii) the
presence of the ytterbium f electrons leads to a small reduction
in the value of b(P ) relative to the case when a = 0.

D. Transport properties

In this section we discuss the pressure dependence of the
residual resistivity of the disordered Kondo lattice described
by the Hamiltonian (12). We compute conductivity using the
following expression [52]:

σαβ(i�) = 1

�
[�αβ(i�) − �αβ(0)], (26)

where α,β = x,y, sα = sin kα , vF is a Fermi velocity of the
heavy quasiparticles, and

�αβ(i�)

= e2v2
F T

∑
iωn

∑
k

sαGcc(k,iωn + i�)sβGcc(k,iωn). (27)

To obtain the dependence of conductivity on the real frequency,
we will perform the analytic continuation from �n = 2πT n >

0 to real frequencies i�n → ω. The residual resistivity can be
computed from ρ0 = σ−1(ω → 0). We present our results in
Fig. 8. In agreement with our experimental results, we find
that the residual resistivity decreases with pressure, which is
consistent with the suppression of the f -electron density of
states [23].

At ambient pressure, the residual resistivity grows linearly
with ytterbium concentration, which is again expected given
our CPA approximation.

The temperature dependence of resistivity can also be
obtained from Eq. (26). Naturally, we find a square-T
dependence: ρ(P,T ; z) = ρ0(P,z) + AFL(P,z)T 2. Because
AFL(P,z) decreases with pressure, as does the coefficient
in front of the linear-in-T term in Eq. (1), we conclude that
the inelastic scattering of heavy quasiparticles determines the
value of A(P,z).
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FIG. 8. (Color online) Pressure P dependence of the residual
resistivity ρ0 for various alloy concentrations z.
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V. CONCLUSIONS

In this paper, we studied the Ce0.93Yb0.07CoIn5 alloy
(xnom = 0.2) using transport and magnetotransport measure-
ments under hydrostatic pressure. Our resistivity data reveal
that the scattering close to Tc follows a

√
T dependence,

consistent with the composite pairing theory in a 3D sys-
tem [39] or with a fluctuation correction, with a coefficient
that decreases with increasing pressure. This latter result
implies that the scattering in this T range is largely governed
by the heavy quasiparticles from the heavy Fermi surface,
hence it may reflect the scattering of composite pairs [39]
as a result of superconducting fluctuations. At higher T , our
data reveal the presence of two scattering mechanisms: one
linear in T with a coefficient A that decreases with increasing
pressure and the other one with a

√
T dependence with a

coefficient B that is pressure independent. Given that the
strong pressure dependence of the A parameter directly relates
to the strongly hybridized conduction and cerium f -electron
states, we believe that the linear temperature dependence of the
resistivity is governed by the scattering of heavy quasiparticles,
while the scattering processes leading to the

√
T term in

resistivity are governed by the scattering of light electrons
from the small Fermi surface. Since the linear T dependence
is a result of quantum spin fluctuations, the decrease of A

with increasing pressure implies that quantum fluctuations
are suppressed with pressure. This conclusion is confirmed
by the fact that residual resistivity also decreases with
pressure.

We also performed magnetoresistivity measurements under
applied hydrostatic pressure in order to study the evolution
of quantum critical spin fluctuations with pressure. First, our

magnetoresistivity data reveal that this Ce0.93Yb0.07CoIn5 alloy
is close to the quantum critical value xc for the Ce1−xYbxCoIn5

alloys. Second, these data confirm our findings from resis-
tivity measurements that quantum critical fluctuations are
suppressed with increasing pressure. Finally, we also analyzed
the temperature and pressure dependence of the magnetic field
Hmax at which magnetoresistivity reaches its maximum value.
At low temperatures, Hmax grows linearly with temperature.
Interestingly, we find that the slope dHmax/dT also grows
with applied pressure, similar to the dependence on pressure
of the coherence temperature. This result suggests that the
magnetoresistivity is largely governed by the heavy electrons
from the large Fermi surface.

Our theoretical analysis of the disordered Kondo lattice
model with magnetic disorder ions shows that despite the
presence of magnetic impurities rather than Kondo holes, the
coherence temperature grows and residual resistivity decreases
with pressure as expected for electronlike Kondo ions [23].
The growth of the coherence temperature leads to the corre-
sponding growth of the superconducting critical temperature,
indicating that superconductivity originates predominantly
from the heavy Fermi surface.
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