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Exchange interaction between J multiplets
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Analytical expressions for the exchange interaction between J multiplets of interacting metallic centers are
derived on the basis of a complete electronic model which includes the intrasite relativistic effects. A common
belief that this interaction can be approximated by an isotropic form ∝J1 · J2 (or ∝J1 · S2 in the case of interaction
with an isotropic spin) is found to be ungrounded. It is also shown that the often used “1/U approximation” for
the description of the kinetic contribution of the exchange interaction is not valid in the case of J multiplets.
The developed theory can be used for microscopic description of exchange interaction in materials containing
lanthanides, actinides, and some transition-metal ions.
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I. INTRODUCTION

Strong magnetic anisotropy induced by spin-orbit coupling
on the metal sites is a key ingredient for a number of
intriguing properties of magnetic materials, such as single-
molecule magnet behavior [1,2], magnetic multipole ordering
[3], and various exotic electronic phases [4,5]. If the spin-orbit
coupling exceeds the crystal-field splitting of the ground term
LS on the metal site, the latter acquires unquenched orbital
momentum L̂ and the low-lying spectrum is well described as
crystal-field split eigenstates of the total angular momentum
Ĵ = L̂ + Ŝ, where Ŝ is the spin of the metallic term. This
situation takes place in lanthanides [6], actinides [3], and some
transition-metal ions in a cubic symmetry environment [7,8].

The exchange interaction between such split-J crystal-field
levels (or groups of levels) is significantly more complicated
than the exchange interaction between pure spin terms (L = 0)
described by the Heisenberg Hamiltonian J Ŝ1 · Ŝ2. For the
weak spin-orbit coupling, the discrepancy of the exchange
Hamiltonian from the isotropic form was first pointed out by
Stevens [9]. Later, the anisotropic exchange interaction was
extensively developed by Moriya [10] based on the Anderson’s
microscopic approach [11,12]. In the case of the strong
spin-orbit coupling, the exchange interaction including the
higher-order terms of Ĵ was also phenomenologically treated
since long time ago [13,14]. The microscopic description was
addressed for the first time by Elliott and Thorpe [15] for
uranium oxides, and by Hartmann-Boutron [16] for transition-
metal compounds on the basis of simplified analysis based
on so-called 1/Ū approximation (Ū is the average electron
promotion energy between the sites). Recently, within the same
approximation, the microscopic derivation of the exchange
Hamiltonian between J multiplets was completed by Santini
et al. [3].

Despite this early evidence of complexity of exchange inter-
action between metal ions with unquenched orbital moments,
it was repeatedly conjectured that the exchange interaction
between fully degenerate J shells, involving (2J1 + 1) and
(2J2 + 1) angular momentum eigenstates on the first and
the second magnetic centers, respectively, is described by
an isotropic exchange Hamiltonian written in terms of Ĵi

momenta:

ĤHeis = J Ĵ1 · Ĵ2. (1)

Contrary to Heisenberg Hamiltonian for isotropic spins,
there is no a priori justification for the Hamiltonian (1).
Nevertheless, this form is often used for the description of
interaction between lanthanides or actinides (or a similar form
∝Ĵ1 · Ŝ2, in the case of their interaction with an isotropic
spin), especially, in the last years [17–30]. One of the reasons
that the simple bilinear form has been often used is that the
large numbers of the phenomenological exchange parameters
cannot be easily determined.

It is not clear, however, how important are “non-
Heisenberg” terms in the actual J -J coupling, nor is the
1/Ū approximation a priori justified for metal ions with
unquenched orbital momenta. Both these questions can only
be answered after a more complete derivation of exchange
interaction between J multiplets on the basis of a reliable
microscopic model. Besides, a microscopic description of
J -J (J -S) exchange interaction is desirable due to a very
large number of phenomenological parameters, in contrast
to weakly anisotropic spin systems containing only a few
of them [31,32]. Given that many microscopic electronic
parameters describing individual magnetic centers and their
interaction can be accurately derived via density functional
theory [33] or ab initio calculations [34], a microscopically
derived Hamiltonian for J multiplets can become a powerful
tool for the investigation of exchange interaction in materials
containing lanthanides, actinides, and transition-metal ions
with unquenched orbital momentum. To this end, the electronic
Hamiltonians only need to be downfolded on the reduced
manifold of low-lying states at the corresponding metal ions.

In this work, we derive analytically the exchange Hamil-
tonians for interacting J multiplets and for interacting J

multiplet and isotropic spin, starting from a microscopic
electronic Hamiltonian including the relativistic interactions
on the metal sites. The obtained exchange parameters are
expressed via electronic matrix elements which can be derived
from electronic-structure calculations. The structure of the
exchange Hamiltonian is discussed and the result is applied
for the analysis of some systems with different geometries.
Comparison with the predictions given by the Hamiltonian (1)
and the simplified treatment on the basis of 1/Ū approximation
shows that both of them are not suitable approaches to describe
the exchange interaction of ions with unquenched orbital
momentum. Finally, the relative contributions to the kinetic
exchange interaction from intermediate states is analyzed.
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II. MICROSCOPIC DESCRIPTION
OF INTERSITE INTERACTION

We derive the expression for the interaction between metal
ions with unquenched orbital moments. The derivation is based
on a complete electronic Hamiltonian, including all intrasite
relativistic effects, and employs adequate approximations. The
multipolar intersite interactions of electromagnetic type, such
as the electric quadrupolar and magnetic dipolar interactions,
have been described elsewhere [3,14,35,36] and are not
considered here. Their effect can be taken into account as
additive contribution to the exchange parameters.

A. Electronic multiplets on sites

The nonrelativistic electronic state of an ion with partially
filled nl shell (n is the main quantum number and l is the
one-electron orbital angular momentum) corresponds to an
LS term characterized by the total orbital L̂ and spin Ŝ
angular momenta [37]. The eigenfunctions {|αLSLMLSMS〉}
are described by orbital and spin quantum numbers L and S,
and the projections of L̂ and Ŝ on a given axis z, ML and
MS , respectively; αLS indicates the other quantum numbers.
The (2L + 1)(2S + 1)-fold degenerate term is further split
by the spin-orbit interaction into J multiplets which are
eigenstates of the total angular momentum Ĵ = L̂ + Ŝ. The
corresponding eigenfunctions {|αJ JM〉} are characterized by
quantum numbers of the total angular momentum J and
its projection M = −J,−J + 1, . . . J (αJ stands for other
quantum numbers).

In general, the spin-orbit interaction mixes multiplets with
the same J belonging to different LS terms (the so-called
J -J mixing [36]). In the case when this mixing can be
neglected, each J multiplet is attributed to one LS term
and the corresponding wave functions become of the form
[αJ = (αLS,L,S)]

|αJ JM〉 =
∑

MLMS

|αLSLMLSMS〉CJM
LMLSML

, (2)

where CJM
LMLSML

is the Clebsch-Gordan coefficient (A2) [38].
This is a good approximation, in particular, for the ground
J multiplet of trivalent ions from the late lanthanides series
Ln3+.

When the metal ions are embedded in complexes or crystals,
their electronic structure is modified due to covalent and
electrostatic interaction of the magnetic nl orbitals with the
environment. In the case of f metals, the magnetic orbitals are
usually strongly localized and the effect of the surrounding
is relatively weak. For example, in the case of lanthanide,
the intraionic bielectronic interaction leading to atomic terms
separation is ca 5–7 eV and the spin-orbit splitting is ca
1 eV for lanthanide ions, thus exceeding several times the
crystal-field splitting, which is usually of the order of 0.1 eV
[39]. In this situation, the low-energy electronic states are well
approximated as crystal-field split atomic J multiplets. Due to
the weak hybridization of the 4f orbitals with the surrounding,
the Wannier functions of the corresponding magnetic orbitals
practically coincide with the atomic 4f orbitals. Similar holds
true for actinide ions although 5f orbitals are more delocalized
than 4f orbitals.

On the other hand, the effect of the hybridization of d

orbitals with the ligand orbitals is usually much stronger
than in lanthanides and actinides resulting in a crystal-field
splitting which often overcomes the atomic LS-term splitting.
Therefore, the orbital angular momentum is generally not
a good quantum number for nondegenerate ground state of
embedded transition-metal ions. Moreover, this orbital angular
momentum is quenched as a rule, 〈L̂〉 = 0, in most compounds.
The exception is the cubic environment, in which the d

orbitals split into doubly degenerate e and triply degenerate
t2 levels. When the t2 orbitals are partially filled, the electronic
state is characterized by the nonzero fictitious orbital angular
momentum L̃ = 1, which couples to the total spin of the
site via spin-orbit coupling and gives molecular multiplets
characterized by fictitious total angular momentum J̃ = L̃ + Ŝ
(see Ref. [8] for details).

B. Intersite interaction

The electronic Hamiltonian Ĥ for electrons localized at two
sites can be divided into the intrasite contributions Ĥ i

0 (i =
1,2), the intersite bielectronic Ĥ ′

bi, and electron transfer Ĥt

parts:

Ĥ =
∑
i=1,2

Ĥ i
0 + Ĥ ′

bi + Ĥt. (3)

The intrasite Hamiltonian for site i, Ĥ i
0, contains all effects

discussed in Sec. II A such as the nonrelativistic atomic terms,
the spin-orbit term and other relativistic corrections, and the
crystal field. The eigenstate of Ĥ i

0 is determined by the number
of electrons Ni in magnetic orbitals and crystal-field level p,
|iNi,p〉. Ĥ ′

bi consists of intersite Coulomb interaction ĤCoul

and direct exchange (multipole) part ĤDE:

Ĥ ′
bi = ĤCoul + ĤDE, (4)

ĤCoul =
∑

mnσσ ′
U ′n̂1mσ n̂2nσ ′ , (5)

ĤDE = −
∑

mnm′n′σσ ′
Vmm′n′nĉ

†
1mσ ĉ1nσ ′ ĉ

†
2m′σ ′ ĉ2n′σ , (6)

where m,n indicate the projection of the orbital angular mo-
mentum li , σ is the projection of the electron spin momentum,
ĉ
†
imσ (ĉimσ ) is the electron creation (annihilation) operator in

spin orbital (m,σ ) of site i (=1,2), n̂imσ = ĉ
†
imσ ĉimσ , U ′ is the

intersite electron repulsion, Vmm′n′n is the intersite exchange
integral,

Vmm′n′n =
∫

dr1dr2ψ
∗
1m(r1)ψ∗

2m′(r2)

× v(|r1 − r2|)ψ2n(r1)ψ1n′ (r2), (7)

ψim is the Wannier function at site i and component m, and
v(|r1 − r2|) is the two-body interaction. Note that Ĥ ′

bi does not
change the number of the electrons on each site. The transfer
Hamiltonian is written as

Ĥt =
∑
i �=j

∑
mm′σ

t
ij

mm′ ĉ
†
imσ ĉjm′σ , (8)
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where t
ij

mm′ is the electron transfer parameter between orbitals
m of site i and m′ of j .

As discussed by Anderson [11,12], the direct exchange
parameter (7) and the transfer parameters are finite due to
the delocalization of the magnetic orbital ψim on the ligand
between metal sites (or the other magnetic site). The electron
transfer parameter between metal sites is at least several
times smaller than the intrasite electron repulsion. Thus, the
electronic Hamiltonian Ĥ (3) can be divided into zeroth-order
Hamiltonian

Ĥ0 =
2∑

i=1

Ĥ i
0 + ĤCoul (9)

and small terms ĤDE and Ĥt. For localized magnetic electrons,
the latter can be treated in the first and the second order of
perturbation theory, respectively [11,12]. This is done here via
a unitary transformation

Ĥeff = e−Ŝ Ĥ eŜ , (10)

removing Ĥt from the initial Hamiltonian. Neglecting the
terms higher than second order after the transfer parameters,
we obtain the effective Hamiltonian acting on the ground J

multiplets on sites

Ĥeff = Ĥ0 + H̄ . (11)

In the unperturbed Hamiltonian (9), there are no terms
which vary the numbers of the electrons. Then, the electronic
states can be written as follows:

|N1,N2,r〉 =
∑
p,q

|1N1,p〉|2N2,q〉CN1N2
pq,r , (12)

where r indicates the eigenstate of the system and CN1N2
pq,r is

a coefficient. In the derivation of the effective Hamiltonian,
we consider the truncated vector space B of the electron
configurations which include up to one electron transfer with
respect to the numbers of the electrons in the ground electron
configurations. Hereafter, Ni is used as the number of electrons
on site i in the ground electron configurations. For simplicity,
the numbers of electrons in the ground configurations will not
be written explicitly, and the configurations s with N1 − 1 and
N2 + 1 (N1 + 1 and N2 − 1) electrons on sites 1 and 2 are
expressed by the type of the virtual electron transfer 1 → 2
(2 → 1). Therefore, B is defined as follows:

B = {|r〉,|1 → 2,s〉,|2 → 1,s ′〉}. (13)

The eigenenergies of the states |r〉, |i → j,s〉 are denoted as
E0

r and E
i→j
s , respectively.

The exponent of the unitary operator eŜ is given as

Ŝ =
∑
i �=j

∑
r

∑
s

(
P̂

i→j
s ĤtP̂

0
r

E0
r − E

i→j
s

− P̂ 0
r ĤtP̂

i→j
s

E0
r − E

i→j
s

)
, (14)

where P̂ 0
r and P̂

i→j
s are the projection operators

P̂ 0
r = |r〉〈r|, (15)

P̂ i→j
s = |i → j,s〉〈i → j,s|. (16)

The exponent Ŝ is chosen to fulfill the condition

[Ŝ,Ĥ0 + ĤDE] = Ĥt (17)

within the space B. The effective Hamiltonian (10) within
B0 = {|r〉} is obtained as

Ĥeff = Ĥ0 + ĤDE − 1
2 [Ŝ,Ĥt], (18)

up to second order after Ĥt. The second and the third terms in
Eq. (18) correspond to H̄ defined above:

H̄ = ĤDE + ĤKE, (19)

ĤKE = 1

2

∑
i �=j

∑
r

∑
s

ĤtP̂
i→j
s ĤtP̂

0
r

E0
r − E

i→j
s

+ H.c. (20)

Note that the terms P̂
i→j
s ĤtP̂

0
r Ĥt and ĤtP̂

0
r ĤtP̂

i→j
s do not

enter here because they map the states outside the domain B0.
Neglecting the effects of the crystal-field splitting in the

denominator of ĤKE, which is a reasonable approximation
for our systems, the eigenstates r,s reduce to the sets of the
J -multiplet states:

r → (α1J1M1,α2J2M2), (21)

s → (αJ JM,α′
J J ′M ′), (22)

where Ji is the total angular momentum with the ground
electron configuration, and J,J ′ are the total angular momenta
for intermediate states arising from the transfer of one electron
between the sites. The kinetic exchange Hamiltonian becomes

ĤKE = 1

2

∑
i �=j

∑
αiJi ,αj Jj

∑
αJ J,α′

J J ′

ĤtP̂
i→j

αJ J,α′
J J ′ĤtP̂

0
αiJi ,αj Jj

E0
αiJi ,αj Jj

− E
i→j

αJ J,α′
J J ′

+ H.c.,

(23)

where the projection operators are

P̂ 0
αiJi ,αj Jj

= P̂
Ni

iαiJi
P̂

Nj

jαj Jj
, (24)

P̂
i→j

αJ J,α′
J J ′ = P̂

Ni−1
iαJ J P̂

Nj +1
jα′

J J ′ , (25)

and P̂ N
iαJ J is the projection operator on site i:

P̂ N
iαJ J =

J∑
M=−J

|iNαJ JM〉〈iNαJ JM|. (26)

In the space of the ground J multiplets on sites
BJ = {|J1M1,J2M2〉 : −Ji � Mi � Ji}, the kinetic exchange
Hamiltonian reduces to

ĤKE =
∑
i �=j

∑
αJ J,α′

J J ′

ĤtP̂
i→j

αJ J,α′
J J ′Ĥt

E0
Ji ,Jj

− E
i→j

αJ J,α′
J J ′

. (27)

Here, αi of the ground J multiplet is not written for the sake
of simplicity and P̂ 0

αiJi ,αj Jj
is omitted because it is the unit

operator within BJ .
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Substituting Eq. (8) into (27), we obtain

ĤKE =
∑
i �=j

∑
αJ J

∑
α′

J J ′

∑
mnσ

∑
m′n′σ ′

−t
ij

mm′ t
j i

n′n

×
(
ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′

)(
ĉjm′σ P̂

Nj +1
jα′

J J ′ ĉ
†
jn′σ ′

)
Uij + �E

Ni−1
iαJ J + �E

Nj +1
jα′

J J ′

, (28)

where Uij is the smallest promotion energy for the electron
transfer from site i to site j , and �EN

iαJ J is the excitation
energy from the ground intermediate state with N electrons.
In the derivation of Eq. (28), we have not used the approximate
form (2) for the J multiplets in both the ground and the virtual
states. The quantum number J for the virtual states fulfills
the condition |Ji − li − 1/2| � J � Ji + li + 1/2. Although
the crystal-field splitting is neglected, the multiplet structures
of sites are completely retained in Eq. (28). Hence, important
effects such as the Goodenough’s mechanism [40] are included
in the kinetic exchange Hamiltonian.

III. EXCHANGE HAMILTONIAN IN J REPRESENTATION

The Hamiltonian H̄ (19) is transformed into tensor form
with the use of irreducible (double-) tensor technique [41],
method of equivalent operator [8], and the form of J -multiplet
state (2):

H̄ =
∑
kqk′q ′

Jkqk′q ′
O

q

k (Ĵ1)Oq ′
k′ (Ĵ2)

O0
k (J1)O0

k′(J2)
. (29)

Here, O
q

k (Ĵ1) and O
q ′
k′ (Ĵ2) are Stevens operators [42] (see also

Appendix A 3) whose ranks k and k′ have to obey the relation
k + k′ = even due to the invariance of the Hamiltonian with
respect to time inversion [8] (see Appendix C), q and q ′ are
components, and O0

k (J1) and O0
k′(J2) are the scalars obtained

by replacing Ĵ2
i and Ĵiz in O0

k (Ĵi) with eigenvalues Ji(Ji + 1)
and Ji , respectively (i = 1,2). The exchange coupling constant
Jkqk′q ′ is a sum of the direct exchange J DE

kqk′q ′ and the kinetic
J KE

kqk′q ′ contributions [43]

Jkqk′q ′ = J DE
kqk′q ′ + J KE

kqk′q ′ . (30)

The advantages of using the exchange Hamiltonian in the
tensorial form is that with Eq. (29) it is easier (i) to obtain
physical insight on the exchange interaction and (ii) to combine
it with other terms such as crystal field and Zeeman interaction
included in Ĥ0. The latter can be treated at ab initio level
[32,34].

A. Direct exchange interaction

The outline of the derivation for the direct exchange part in
H̄ is given here, whereas details of the calculations are given
in Appendix B 1. The direct product of the double tensors
ĉ
†
imσ ĉimσ ′ appearing in ĤDE [Eq. (6)] is reduced as follows:

ĉ
†
imσ ĉinσ ′ = (−1)li+n+ 1

2 +σ ′ ∑
aαbβ

{ĉ†i ⊗ c̄i}aα
bβ

×Caα
limli−nC

bβ
1
2 σ 1

2 −σ ′ , (31)

where c̄inσ ′ = (−1)li+n+ 1
2 +σ ′

ĉi−n−σ ′ [Eq. (A16)] is a double
tensor (see Appendix A 2), the curly brackets {ĉ†i ⊗ c̄i}aα

bβ

indicate the irreducible operator of ranks (a,b) and components
(α,β) constructed from the product of two tensors, where
the superscripts and subscripts are the orbital and spin parts,
respectively. The irreducible tensor operator is replaced by
the total angular momentum operator Ĵi using the method of
equivalent operator for double tensor (A26):

{
ĉ
†
i ⊗ c̄i

}aα

bβ
=

∑
kq

C
kq

aαbβDi
abk

O
q

k (Ĵi)

O0
k (Ji)

. (32)

Here,Di
abk is a tensor with three indices a,b,k [Eq. (B2)]. Note

that when the method of equivalent operator (A26) is used, the
form of |JM〉 [Eq. (2)] is assumed.

Substituting Eqs. (31) and (32) into ĤDE (6), we obtain the
tensor form of the direct exchange Hamiltonian. The exchange
parameter J DE is obtained as

J DE
kqk′q ′ = −

∑
aa′b

Vaa′b
kqk′q ′D1

abkD2
a′bk′ , (33)

where

Vaa′b
kqk′q ′ =

∑
mn

∑
m′n′

∑
αα′β

(−1)l1+l2+n+n′−βVmm′n′n

×Caα
l1ml1−nC

kq

aαbβCa′α′
l2m′l2−n′C

k′q ′
a′α′b−β. (34)

B. Kinetic exchange interaction

The derivation of the kinetic exchange parameter J KE is
similar to that of J DE. As in the previous case, only the
outline of the derivation is given here and the details can
be found in Appendix B 2. In comparison with the direct
exchange, the derivation of J KE is cumbersome because of
the projection operator P̂ N

iαJ J appearing in Eq. (28). The latter
is reducible within the product group SO(3) ⊗ SU(2) where
the creation ĉ† and annihilation c̄ [Eq. (A16)] operators are
irreducible. Therefore, we first transform P̂ N

iαJ J into the sum
of the irreducible double tensors P̂ N

iαJ aαa′α′ [Eq. (B11)], and

then the product such as ĉ
†
imσ P̂

Ni−1
iαJ aαa′α′ ĉinσ ′ is reduced. The

irreducible tensor operator {ĉ†i ⊗ {P̂ Ni−1
iαJ aa ⊗ c̄i}bd}cγeε is replaced

by the total angular momentum Ĵi using the method of the
equivalent operator (A26), and finally we obtain the kinetic
exchange parameter

J KE
kqk′q ′ =

∑
f xx ′

∑
αJ J

∑
α′

J J ′

{t × t}f xx ′
kqk′q ′F1

αJ Jf xkG2
α′

J J ′f x ′k′

U12 + �E
N1−1
1αJ J + �E

N2+1
2α′

J J ′

+
∑
f xx ′

∑
αJ J

∑
α′

J J ′

{t × t}f xx ′
kqk′q ′G1

αJ Jf xkF2
α′

J J ′f x ′k′

U21 + �E
N1+1
1αJ J + �E

N2−1
2α′

J J ′
,

(35)

where

{t × t}f xx ′
kqk′q ′ = (−1)l1−l2−f +q ′ ∑

mn

∑
m′n′

∑
ξξ ′φ

t12
mm′ t

21
n′n

×C
xξ

l1nkqC
xξ

f φl1m
C

x ′ξ ′
l2−n′k′q ′C

x ′ξ ′
f −φl2−m′ . (36)
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The range of variation of indices of the tensors described
above, as well as in the subscripts of F and G, is specified in
Appendix B 2. As in the case of the derivation of J DE, Eq. (2)
is used. Because of this assumption, the quantum numbers
of the intermediate multiplets contributing to J KE obey
the relations |Li − li | � L � Li + li , |Si − 1/2| � S � Si +
1/2, and |Ji − li − 1/2| � J � Ji + li + 1/2, where L,S,J

without subscript i refer to the intermediate states [44].

C. Structure of the exchange Hamiltonian

The domains of variation of k and q characterize the
structure of the Hamiltonian (29). The upper bound for the
rank k and k′ in Eq. (29) is only determined by the electronic
state of sites 1 and 2, respectively [45]:

kmax = min[2li + 1,2Ji]. (37)

Thus, the maximum rank for f -electron system f N is 7 for
N = 2–4 and 7–13, kmax = 5 for N = 1,5 and kmax = 0 for
N = 6 [46].

On the other hand, the range of q is determined by
the nonzero parameters describing the intersite interactions
Vmm′n′n and t12

mm′ t
21
n′n. If �max is the maximal difference of

the indices corresponding to one site in the above parameters
(m − n for site 1 and m′ − n′ for site 2), then the upper bound
for q (q ′) is

qmax = min[�max + 1,kmax]. (38)

Note that terms with −qmax will also be present in the
Hamiltonian (29) due to the time-reversal symmetry, implying
the following range: −qmax � q � qmax.

The effective Hamiltonian (29) is further divided into the
exchange Ĥex and the zero-field splitting parts. The latter is
defined as comprising terms with either k = 0 or k′ = 0.

D. Decomposition of H̄

Knowledge of the domain of rank k [Eq. (37)] in the general
exchange Hamiltonian (29) allows us to calculate Jkqk′q ′ by
using the orthogonality of the Stevens operators:

Jkqk′q ′ = (−1)q+q ′
(

�kk′

�J1J2

C
J1J1
J1J1k0C

J2J2
J2J2k′0

)2

Tr[Q̂k−qk′−q ′H̄ ],

(39)

where �j = √
2j + 1 and �jj ′ = �j�j ′ , the trace (Tr) is

taken over the ground J multiplets, and

Q̂kqk′q ′ = O
q

k (Ĵ1)Oq ′
k′ (Ĵ2)

O0
k (J1)O0

k′(J2)
. (40)

The form (39) for the exchange parameters offer some
advantages for practical calculations. H̄ enters Eq. (39) in the
form of the numerical matrices in the basis of the products of
multiplet wave functions on sites |J1M1,J2M2〉. The exchange
parameters obtained by Eqs. (33) and (35) and those calculated
by the projection (39) have been compared with each other for
some test examples.

IV. EXCHANGE INTERACTION BETWEEN J MULTIPLET
AND ISOTROPIC SPIN

When the orbital angular momentum is zero in the ground-
state term of one of the sites, the low-energy states of this
site are characterized by the corresponding spin Ŝ. This
situation is encountered in mixed lanthanide transition-metal
and lanthanide radical complexes [1,32,47]. The exchange
Hamiltonian between a J multiplet and an isotropic spin is
obtained in a similar way as Eq. (29):

H̄ =
∑
kq

Jkq00
O

q

k (Ĵ1)Î2

O0
k (J1)

+
∑
kqq ′

Jkq1q ′
O

q

k (Ĵ1)Ŝ2q ′

O0
k (J1)S2

. (41)

The expressions for exchange coupling constants are similar
to Eqs. (33) and (35) and are listed in Appendix D. Because
of the lack of orbital degrees of freedom on site 2 (l2 = 0),
the rank k′ of the spin operator does not exceed 1. Due to the
time-reversal symmetry, k is even and odd for the first and the
second terms in Eq. (41), respectively. As in the previous case,
the former (k′ = 0) is zero-field splitting term and the latter
(k′ = 1) is the exchange interaction.

V. EXAMPLES

We further consider some typical examples of J -J and J -S
exchange interactions. Since the kinetic exchange interaction
is usually much stronger than the direct exchange interaction
[11,12], we only take into account the former. In order
to include the multiplet structure of intermediate states in
Eq. (35), first we calculate ab initio the excitation energies
of the virtual electron-transfer states. The calculated exchange
levels are compared with those arising from the bilinear form
(1) and corresponding to the 1/Ū approximation.

A. Excitation energies of Dy2+ and Dy4+ ions

The excitation energies �EαJ J appearing in the denomi-
nator of the kinetic exchange Hamiltonian (28) are calculated
ab initio. Since the effect of the crystal-field splitting in the
intermediate states is negligible (Sec. II A), we used the energy
levels of the free Ln2+ and Ln4+ ions. In this work, we only
calculated the energies for Ln = Dy that we will use in the
following sections. Apart from the crystal-field splitting, there
is totally symmetric electrostatic potential which only depends
on the number of electrons and shifts uniformly the J -multiplet
energies. This effect is absorbed in the minimum promotion
energy Uij in Eq. (35). The energies are calculated using the
complete active space self-consistent field (CASSCF) and the
restricted active space SCF state interaction (RASSI) methods
with ANO-RCC QZP basis set [49]. With the CASSCF
method, the LS-term energies are obtained, while with the
RASSI method, the spin-orbit (J -multiplet) energy levels are
calculated. For the CASSCF calculations, all 4f orbitals are
included into the active space. The terms included in the RASSI
mixing are 6P , 6F , 6H for Dy2+ and 7F , 5S, 5P , three 5D, two
5F , three 5G, two 5H , two 5I , 5K , 5L for Dy4+. The excitation
energies are tabulated in Table I.

There are several LS terms which appear more than once,
i.e., 5D, 5F , 5G, 5H , 5I terms of Dy4+ ion. These terms
obtained by the CASSCF calculations are assigned to the
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TABLE I. Excitation energies of Dy2+ and Dy4+ (meV). The number in the parentheses indicates quantum number αLS in the main text,
where the enumeration follows Ref. [48].

Dy2+ Dy4+ Dy4+

LS term J �EαJ J LS term J �EαJ J LS term J �EαJ J

5I 8 0.000 7F 6 0.000 5H (2) 4 8738.547
7 458.212 5 309.504 5I (1) 8 10579.798
6 859.148 4 508.583 7 10778.918
5 1202.808 5D(1) 4 13934.562 6 10917.180
4 1489.190 5D(2) 4 7624.320 5 11003.924

5D 4 5667.150 5D(3) 4 3298.723 4 11049.978
5F 5 2369.357 5F (1) 5 5838.268 5I (2) 8 5827.337

4 2655.740 4 5936.668 7 6035.414
5G 6 3412.346 5F (2) 5 11206.930 6 6173.415

5 3756.005 4 11118.121 5 6242.469
4 4042.388 5G(1) 6 6925.862 4 6261.863

5 7221.721 5K 9 6516.513
4 7423.960 8 6766.583

5G(2) 6 4540.837 7 6935.080
5 4539.168 6 7051.111
4 4613.355 5 7130.959

5G(3) 6 13458.495 5L 10 4277.003
5 13323.410 9 4402.240
4 13191.767 8 4537.021

5H (2) 7 8096.483 7 4674.613
6 8392.826 6 4809.212
5 8603.858

symmetrized LS states within the shell model |lNαLSLSJM〉,
comparing the patterns of the ab initio and the model spin-orbit
splittings of each LS term. The symmetrized LS states are
constructed by using the coefficient of fractional parentage
[48]. In the basis of symmetrized states, the matrix element
of the spin-orbit Hamiltonian Ĥso = ζ

∑N
i=1 l̂i · ŝi(ζ > 0) is

given by

〈l4l+2−NαLSLSJMJ |Ĥso|l4l+2−Nα′
LSL

′S ′J ′M ′
J 〉

= −δLL′δSS ′δJJ ′δMJ M ′
J
ζ

�lJ

√
l(l + 1)√
2

×
⎧⎨
⎩

L S J

L S J

1 1 0

⎫⎬
⎭〈lNαLSLS

∣∣∣∣{ĉ† ⊗ c̄}1
1

∣∣∣∣lNα′
LSLS〉

(42)

for N � 2l + 1. Here, the curly brackets with 3 × 3 elements
are the 9j symbol (A5). Therefore, the spin-orbit splitting is
proportional to the reduced matrix element of operator {ĉ† ⊗
c̄}1m

1−m [50].

B. Kinetic exchange through monoatomic bridge

As a simple example, consider an exchange-coupled Dy3+

dimer with axial bridging geometry [Fig. 1(a)]. The largest
transfer parameter (t) is expected between f5z3−3r2z (m = 0)
orbitals because of their sigma bonding to the pz orbital of the
bridging ligand atom [Fig. 1(b)]. Then, according to the rule
(38), qmax = 1, while Eq. (36) gives q = −q ′. The resulting

form of the exchange Hamiltonian Ĥex, after expanding the
Stevens operators in Eq. (29), is

Ĥex = K̂ (1) + Ĵ1 · Ĵ2K̂
(2) + K̂ (2)Ĵ1 · Ĵ2, (43)

K̂ (1) =
7∑

k,k′=0

K(1)
kk′ Ĵ

k
1zĴ

k′
2z, (44)

K̂ (2) =
7∑

k,k′=1

K(2)
kk′ Ĵ

k−1
1z Ĵ k′−1

2z , (45)

where k + k′ = even. We can see that, even in this simplest
case, Ĥex does not reduce to the isotropic form (1) because
Ising (∝K̂ (1)) and mixed Ising-Heisenberg (∝K̂ (2)) terms, both
involving high powers of momentum projection operators of
two sites. The parameters K(1)

kk′,K(2)
kk′ are tabulated in Table II.

When the eigenvalue of Ĵiz is large, the higher-order terms
are significantly enhanced and contribute to the exchange
interaction rather than the bilinear term. As a result, the
exchange spectra calculated with the full Hamiltonian (43)
and with its Heisenberg-type part (1) show large discrepancy
between them [Fig. 1(c)]. The discrepancy is also seen in their
eigenstates. The difference between the exchange states of (43)
with those of ĤHeis (1) is compared by expanding the former
by the latter. The solution of ĤHeis for two-site system is given
as

|J12M12〉 =
∑

M1,M2

|J1M1,J2M2〉CJ12M12
J1M1J2M2

, (46)
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FIG. 1. (Color online) (a) Linearly bridged Dy dimer with one
ligand atom (L). (b) Kinetic exchange interaction between 4f(5z2−3r2)z

orbitals. (c) Calculated exchange spectrum with full Ĥex [Eq. (43)]
and with its different contributions (U ≡ U12 = U21 = 5 eV). The
excitation energies of the intermediate states entering Eq. (35) have
been calculated ab initio (Sec. V A).

where J12 and M12 are the total angular momentum for the
dimer and its projection. The low-energy exchange states of
Ĥex [Eq. (43)] are written in the basis of {|J12M12〉} as follows:

|�1,A1g〉 ≈ 0.574|0,0〉 + 0.773|2,0〉 + 0.190|4,0〉
− 0.160|6,0〉,

|�2,A1u〉 ≈ 0.846|1,0〉 + 0.505|3,0〉 − 0.161|7,0〉,
|�3,4,E1u〉 ≈ 0.352|1,±1〉 + 0.768|3,±1〉 + 0.522|5,±1〉

+ 0.107|7,±1〉,
|�5,6,E1g〉 ≈ 0.636|2,±1〉 + 0.712|4,±1〉 + 0.294|6,±1〉.

Here, the irreducible representation � of D∞h is used, and the
states |�i,�〉 belong to the eigenvalues E1,2 = −0.278 523,
E3,4,5,6 = −0.243 015, respectively, in the units of t2/U12.
The low-energy exchange states are not necessarily mainly
contributed by the ground state of the antiferromagnetic ĤHeis,
|J12M12〉 = |0,0〉. Therefore, we conclude that the Heisenberg
form of the interaction is not adequate to describe the exchange
interaction between J multiplets.

C. Kinetic exchange through biatomic bridge

Consider the exchange interaction in the Dy3+ dimer
bridged by the Nn−

2 (n = 2,3) anion [Fig. 2(a)] [51]. In the case

TABLE II. Tabulation of the parameters K(1)
kk′ and K(2)

kk′ .

K(1)
00 4.4458 × 10−3 K(2)

11 2.2245 × 10−3

K(1)
02 −3.7903 × 10−3 K(2)

13 −3.2216 × 10−4

K(1)
04 1.7181 × 10−4 K(2)

15 1.5888 × 10−5

K(1)
06 −1.7242 × 10−6 K(2)

17 −1.8049 × 10−7

K(1)
11 1.0908 × 10−2 K(2)

22 4.8355 × 10−5

K(1)
13 −1.1514 × 10−3 K(2)

24 −4.6269 × 10−6

K(1)
15 3.5361 × 10−5 K(2)

26 7.4785 × 10−8

K(1)
17 −2.9084 × 10−7 K(2)

33 4.3815 × 10−5

K(1)
22 2.9710 × 10−3 K(2)

35 −2.1423 × 10−6

K(1)
24 −1.3026 × 10−4 K(2)

37 2.3716 × 10−8

K(1)
26 1.2614 × 10−6 K(2)

44 4.4502 × 10−7

K(1)
33 1.1745 × 10−4 K(2)

46 −7.2365 × 10−9

K(1)
35 −3.3571 × 10−6 K(2)

55 1.0531 × 10−7

K(1)
37 2.6060 × 10−8 K(2)

57 −1.1732 × 10−9

K(1)
44 5.4544 × 10−6 K(2)

66 1.1839 × 10−10

K(1)
46 −4.9672 × 10−8 K(2)

77 1.3155 × 10−11

K(1)
55 7.4109 × 10−8

K(1)
57 −3.9138 × 10−10

K(1)
66 4.1115 × 10−10

of n = 2, 4f electrons of Dy3+ ions would transfer between
the metal sites via the highest occupied molecular orbital
(HOMO) of N2−

2 [Figs. 2(b) and 2(c)]. The HOMO overlaps
with the f(5z2−r2)x (|m| = 1) and the fx3−3xy2 (|m| = 3) metal
orbitals, the former interaction being dominant. Hence, we
only consider the electron transfer between the orbitals with
|m| = 1 [Fig. 2(b)]. For them, �max = 2 and we obtain
according to Eq. (38) qmax = 3. Then, Ĥex will include powers
of Ĵi± (= Ĵix ± iĴiy) for each center up to third order.

Figure 2(e) shows the calculated exchange spectrum for
full Ĥex, and its first-rank contribution, and for one single
promotion energy Ū (1/Ū approximation) [3,15]. Although
the first-rank contribution is bilinear in Ĵiγ , it is not isotropic
and the corresponding spectrum does not resemble the pattern
of levels of Heisenberg-type Hamiltonian (1). Also, the spec-
trum is quite different when the 1/Ū approximation is applied.
This approximation neglects the splitting of the LS terms
which exceeds several times the minimal electron promotion
energy. As a result, the relative contributions to the exchange
interaction from various intermediate states are significantly
modified. In order to see the variation of the contributions from
the intermediate states to the kinetic exchange interaction, we
divide the kinetic exchange Hamiltonian as follows:

Ĥex =
∑
αJ J

∑
α′

J J ′
ĥex(αJ J,α′

J J ′). (47)

Here, ĥex(αJ J,α′
J J ′) indicates the term which only includes

the contribution from the set of the intermediate states
(αJ J,α′

J J ′). The contribution from each such process can be
measured by the width w of the eigenvalues of ĥex(αJ J,α′

J J ′).
The widths w for the full exchange Hamiltonian Ĥex and

174438-7



NAOYA IWAHARA AND LIVIU F. CHIBOTARU PHYSICAL REVIEW B 91, 174438 (2015)

)d()c()b()a(

(e) (f)

full 1st rank 1 U
0.4

0.2

0.0

0.2

0.4

0.6

En
er
gy

t2
U

full 1st rank 1 U

0.4

0.2

0.0

0.2

0.4

En
er
gy

t2
U

FIG. 2. (Color online) (a) Dy dimer bridged via Nn−
2 anion (D2h core symmetry). Large (purple) and small (red) balls are Dy and N,

respectively. (b), (c) Kinetic exchange interaction between 4f(5z2−r2)x orbitals and 4fx3−3xy2 orbitals, respectively, via the HOMO of N2−
2 .

(d) Kinetic exchange interaction between the 4fxyz orbital of Dy and the LUMO of N2−
2 . (e) Calculated exchange spectrum with full Ĥex and

its first-rank contribution (U ≡ U12 = U21 = 5 eV), and in the 1/Ū approximation for kinetic exchange pattern (b). (f) Calculated exchange
spectrum with full Ĥex and its first-rank contribution (U21 = 3 eV), and in the 1/Ū approximation for kinetic exchange pattern (d). The
calculations in (e) and (f) involved exchange parameters (35) with excitation energies of the intermediate states on Dy evaluated ab initio. Ū

in the calculation within 1/Ū approximation was chosen to reproduce the width of the spectrum for full Ĥex.

those within 1/Ū approximation are shown in Figs. 3(a)
and 3(b), respectively. In comparison with the contributions
to the full Hamiltonian, those from the high-energy states
(�E ≈ 5–10 eV) are exaggerated in Ĥ

1/Ū
ex .

In the case of N3−
2 bridge, the main exchange coupling

arises between the fxyz orbital of Dy and the unpaired electron
occupying the lowest unoccupied molecular orbital (LUMO)
of N2−

2 [Fig. 2(d)]. The LUMO level in N3−
2 has significantly

higher energy compared to the orbital energy of 4f electrons
in Dy3+. On this reason and also due to a larger space
distribution of the LUMO compared to the 4f orbitals, the
minimal electron promotion energy from N3−

2 to Dy3+ (U21)
is expected to be much smaller than in the opposite direction
(U12). Hence, we neglect the latter process. Given that the
Dy orbitals involved in the electron transfer have |m| = 2,
according to Eq. (38) qmax = 5, the same for the maximal
power of Ĵ1± in the exchange Hamiltonian.

Figure 2(f) shows the exchange levels obtained for full
Ĥex, its first-rank part, and for the 1/Ū approximation. In
the present case, the first-rank part of Ĥex coincides with
Eq. (1), while the corresponding spectrum strongly differs
from the full Ĥex, indicating the importance of higher-order

terms. As in the previous example, the 1/Ū approximation
modifies the relative contributions to the exchange interaction
from intermediate states [Figs. 3(c) and 3(d)] and induces, in
particular, the interchange of the threefold-degenerate ground
and the nondegenerate first-excited states [marked with arrow
in Fig. 2(f)] [52,53]. Because of the difference in the nature
of the exchange states, the magnetic properties predicted by
the exchange states of the full Hamiltonian and the 1/Ū

approximation differ from each other.
There is another reason that the 1/Ū approximation is

not recommended: the Hund’s rule coupling is completely
neglected within this approximation, leading to the removal of
the Goodenough’s ferromagnetic exchange contribution [40]
although the latter plays important role in many systems.

VI. CONCLUSION

The main results of this work can be summarized as
follows:

(1) We derived the Hamiltonian of exchange interaction
between J multiplets (J -J ) and between J multiplet and
isotropic spin (J -S) on the basis of a complete electronic
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FIG. 3. (Color online) The contributions from the intermediate states w corresponding to the excitation energy �E (=�EN
αJ J + �EN ′

α′
J
J ′ )

for (a) the full exchange interaction Ĥex and (b) the exchange within the 1/Ū approximation Ĥ 1/Ū
ex for Dy3+ dimer bridged by N2−

2 and for (c)
the full exchange interaction and (d) the exchange within the 1/Ū approximation for the Dy-radical system (n = 3). The units of w are t2/U21

for (a), (c) and t2/Ū for (b), (d).

Hamiltonian, including the intrasite relativistic effects. The
exchange parameters are expressed via microscopic quantities
which can be extracted from first-principles calculations.
Despite their microscopic character, the obtained expressions
(33) and (35) are general (i) for arbitrary choice of quantization
axes on two magnetic sites (which are not expected to coincide)
and (ii) for various magnetic ions, which can be lanthanides,
actinides, transition-metal ions under special conditions, or
any of their combinations. The only requirement is that
the low-lying states on the sites are well approximated by
crystal-field split eigenstates of a total angular momentum.

(2) The structure of the J -J and J -S exchange Hamiltoni-
ans is clarified on the basis of derived exchange Hamiltonian.
More specific, the maximal rank and the projections of the
irreducible tensors appearing in the exchange Hamiltonian are
elucidated.

(3) The obtained form of the (kinetic) exchange Hamil-
tonian was analyzed for different geometries of the bridge.
The relation between the geometry and the structure of the
Hamiltonian was established.

(4) On the basis of considered examples, we found that the
exchange spectrum in systems with J -J and J -S interactions
cannot be adequately described neither by exchange Hamilto-
nian of isotropic form (1) nor within the 1/Ū approximation.

(5) The contributions to the kinetic exchange Hamiltonian
from the intermediate J multiplets are analyzed. It is found

that the 1/Ū approximation exaggerates the terms from the
excited states. Moreover, within the 1/Ū approximation, the
term splitting which is larger than the average U is neglected,
leading to the wrong order of exchange levels.
In combination with ab initio and DFT extraction of mi-
croscopic electronic parameters, the microscopic exchange
Hamiltonians derived in this work can become a pow-
erful tool for the investigation of strongly anisotropic
materials containing metal ions with unquenched orbital
momentum.
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APPENDIX A: THEORETICAL TOOLS

The transformation of the exchange Hamiltonian into the
tensor form is done using the theory of angular momentum
[38,41,54]. For the convenience of the readers, the tools
necessary in the derivation are collected here.
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1. Coupling of angular momenta

For the phase of the spherical harmonics Ym
j (θ,φ), we use

the convention in Refs. [38,54]. With this phase convention,
the complex conjugation of Ym

j is related to Y−m
j as[

Ym
j (θ,φ)

]∗ = (−1)mY−m
j (θ,φ). (A1)

Here, the subscript j indicates the rank, the superscript m is
the component, θ and φ are the spherical angular coordinates.

Consider two systems whose states are the eigenstates
of the angular momentum |jimi〉 (i = 1,2). The coupled
state characterized by the total angular momentum can be
constructed using the Clebsch-Gordan coefficients C

jm

j1m1j2m2
:

|jm〉 =
∑

m1,m2

|j1m1,j2m2〉Cjm

j1m1j2m2
. (A2)

The Clebsch-Gordan coefficients have following symmetry
properties [Eqs. 8.4.3. (10), (11) in Ref. [38]]:

C
j3m3
j1m1j2m2

= (−1)j1+j2−j3C
j3m3
j2m2j1m1

= (−1)j1−m1
�j3

�j2

C
j2−m2
j1m1j3−m3

= (−1)j1−m1
�j3

�j2

C
j2m2
j3m3j1−m1

= (−1)j2+m2
�j3

�j1

C
j1−m1
j3−m3j2m2

= (−1)j2+m2
�j3

�j1

C
j1m1
j2−m2j3m3

= (−1)j1+j2−j3C
j3−m3
j1−m1j2−m2

, (A3)

where �j = √
2j + 1.

Using the Clebsch-Gordan coefficients, the 6j and 9j

symbols are defined as [38]

δjj ′δmm′(−1)j1+j2+j3+j�j12j23

{
j1 j2 j12

j3 j j23

}

=
∑
mimij

C
jm

j12m12j3m3
C

j12m12
j1m1j2m2

×C
j ′m′
j1m1j23m23

C
j23m23
j2m2j3m3

(A4)

and

δjj ′δmm′�j12j34j13j24

⎧⎨
⎩

j1 j2 j12

j3 j4 j34

j13 j24 j

⎫⎬
⎭

=
∑
mimij

C
jm

j12m12j34m34
C

j12m12
j1m1j2m2

C
j34m34
j3m3j4m4

×C
j ′m′
j13m13j24m24

C
j13m13
j1m1j3m3

C
j24m24
j2m2j4m4

, (A5)

respectively. Here,
∑

mi,mij
stands for the summation over all

mi and mij (i,j = 1,2,3,4). The 6j symbol (A4) is symmetric
with respect to the permutation of columns and the interchange
of the upper and lower components of two columns [Eq. 9.4.2.
(2) in Ref. [38]].

From Eqs. (A4) and (A5), we immediately obtain some
formulas involving 6j or 9j symbol. Multiplying both sides

of Eq. (A4) by C
j ′m′
j1m1j23m23

and summing over j ′m′, we obtain
[Eq. 8.7.3 (12) in Ref. [38]]

(−1)j1+j2+j3+j�j12j23C
jm

j1m1j23m23

{
j1 j2 j12

j3 j j23

}

=
∑

m2m3m12

C
jm

j12m12j3m3
C

j12m12
j1m1j2m2

C
j23m23
j2m2j3m3

. (A6)

Similarly, multiplying both sides of Eq. (A4) by
C

jm

j12m12j3m3
C

j ′m′
j1m1j23m23

and summing over jm,j ′m′, we obtain
[Eq. 8.7.3. (12) in Ref. [38]]∑
jm

(−1)j1+j2+j3+j�j12j23C
jm

j12m12j3m3
C

jm

j1m1j23m23

{
j1 j2 j12

j3 j j23

}

=
∑
m2

C
j12m12
j1m1j2m2

C
j23m23
j2m2j3m3

. (A7)

Multiplying both sides of Eq. (A5) by C
j ′m′
j13m13j24m24

and
summing over j ′m′, we obtain similar formula involving five
Clebsch-Gordan coefficients:

�j12j34j13j24C
jm

j13m13j24m24

⎧⎨
⎩

j1 j2 j12

j3 j4 j34

j13 j24 j

⎫⎬
⎭

=
∑
mimij

C
jm

j12m12j34m34
C

j12m12
j1m1j2m2

C
j34m34
j3m3j4m4

C
j13m13
j1m1j3m3

C
j24m24
j2m2j4m4

.

(A8)

Multiplying both sides of Eq. (A5) by C
jm

j12m12j34m34
C

j ′m′
j13m13j24m24

and summing over jm,j ′m′, we obtain a formula involving
five Clebsch-Gordan coefficients [Eq. 8.7.4. (26) in Ref. [38]]:

�j12j34j13j24

∑
jm

C
jm

j12m12j34m34
C

jm

j13m13j24m24

⎧⎨
⎩

j1 j2 j12

j3 j4 j34

j13 j24 j

⎫⎬
⎭

=
∑
mi

C
j12m12
j1m1j2m2

C
j34m34
j3m3j4m4

C
j13m13
j1m1j3m3

C
j24m24
j2m2j4m4

. (A9)

2. Irreducible tensor operator

The irreducible tensor operator is defined as the operator
T̂kq which transforms as spherical harmonics Y

q

k [Eq. (A1)]
under SO(3) rotations:

R̂T̂kqR̂
† =

k∑
q ′=−k

T̂kq ′Dk
q ′q(R), (A10)

where Dk
q ′q(R) = 〈Y q ′

k |R̂|Y q

k 〉 is the Wigner D function [38],

R ∈ SO(3), and R̂ is the rotational operator for R. Since
Eq. (A10) holds for any infinitesimal rotations, T̂kq satisfies

[Ĵμ,T̂kq] =
√

k(k + 1)Ckq+μ

kq1μ T̂kq+μ. (A11)

The matrix element of T̂kq with respect to the eigenstates of
the angular momentum {|JM〉} is proportional to the Clebsch-
Gordan coefficient (A2). The Wigner-Eckart theorem reads as
[Eq. 13.1.1. (2) in Ref. [38]]

〈JM ′|T̂kq |JM〉 = (−1)2k〈J‖T̂k‖J 〉
�J

CJM ′
JMkq . (A12)
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One of the irreducible tensor operators is the spherical tensor
operator Y

q

k (Ĵ) which is constructed replacing the coordinates
in the spherical harmonics Y

q

k (r/r) by the total angular
momentum operator (r/r → Ĵ) and averaging it over all
possible permutations of Ĵ operators [8]. For example, ĴμĴν is
replaced by (ĴμĴν + Ĵν Ĵμ)/2.

When the system consists of two subsystems, double
tensor [38,41] is used. In this work, the subsystems are the
orbital and the spin parts of the system. The orbital and
spin subsystems transform as irreducible tensor within SO(3)
and SU(2) operations, respectively. Thus, for the rotation of
the system R = R1R2 ∈ SO(3) ⊗ SU(2), where R1 ∈ SO(3)
and R2 ∈ SU(2), the double tensor T̂

k1q1
k2q2

of ranks k1 and k2

transforms as

R̂T̂
k1q1
k2q2

R̂† =
k1∑

q ′
1=−k1

k2∑
q ′

2=−k2

T̂
k1q

′
1

k2q
′
2
D

k1

q ′
1q1

(R1)Dk2

q ′
2q2

(R2),

(A13)

and T̂
k1q1
k2q2

fulfills[
L̂μ,T̂

k1q1
k2q2

] =
√

k1(k1 + 1)Ck1q1+μ

k1q11μ T̂
k1q1+μ

k2q2
, (A14)

[
Ŝμ,T̂

k1q1
k2q2

] =
√

k2(k2 + 1)Ck2q2+μ

k2q21μ T̂
k1q1
k2q2+μ. (A15)

One of the double-tensor operators is the electron creation
operator in atomic spin orbital (m,σ ), ĉ

†
imσ . This is clear since

ĉ
†
imσ creates the one-electron state which transforms as the

product of the spherical harmonics |lm, 1
2σ 〉. On the other hand,

the annihilation operator ĉimσ does not fulfill Eqs. (A14) and
(A15), whereas c̄i−m−σ defined following does [41]:

ĉimσ = (−1)li+m+ 1
2 +σ c̄i−m−σ . (A16)

Thus, c̄i−m−σ instead of the annihilation operator is a double
tensor.

3. Method of equivalent operator

Consider an irreducible tensor T̂kq of rank k and its
argument q acting on the spin degrees of freedom. Replacing
J in Eq. (A12) with S, we obtain an expression of the matrix
element of T̂kq . On the other hand, the matrix element of the
spherical tensor operator Y

q

k (Ŝ) is written as

〈SM ′|Y q

k (Ŝ)|SM〉 = (−1)2k〈S‖Yk(Ŝ)‖S〉
�S

CSM ′
SMkq, (A17)

where Ŝ is an abstract spin operator. Comparing Eqs. (A12)
and (A17), one finds the relation between tensor operators T̂kq

and Y
q

k (Ŝ):

〈SM ′|T̂kq |SM〉 = 〈S‖T̂k‖S〉
〈S‖Yk(Ŝ)‖S〉 〈SM ′|Y q

k (Ŝ)|SM〉. (A18)

This equation holds for any matrix element, and hence, in the
space of {|SM〉},

T̂kq = 〈S‖T̂k‖S〉
〈S‖Yk(Ŝ)‖S〉Y

q

k (Ŝ). (A19)

The reduced matrix element in the denominator is simplified
using Eq. (A17) with M = M ′ = S and q = 0:

〈S‖Yk(Ŝ)‖S〉 = (−1)−2k�S

CSS
SSk0

Y 0
k (S). (A20)

Consequently, T̂kq is expressed as

T̂kq = (−1)2k〈S‖T̂k‖S〉
�S

CSS
SSk0

Y
q

k (Ŝ)

Y 0
k (S)

. (A21)

Equation (A21) holds for

0 � k � 2S. (A22)

Y
q

k (S) in the denominator of Eq. (A21) is the scalar obtained
by substituting Ŝ2 = S(S + 1) and Ŝz = S in the spherical
harmonic tensor Y

q

k (Ŝ).
Now, we consider the case of double tensors T̂

kq

k′q ′ of rank
(k,k′). Assuming Eq. (2), it is transformed into the tensor form
within the space of the ground J multiplet {|JM〉}. The matrix
element of T̂

kq

k′q ′ is

〈JM ′|T̂ kq

k′q ′ |JM〉 =
∑

M ′
LM ′

S

∑
MLMS

CJM ′
LM ′

LSM ′
S
CJM

LMLSMS

×〈LM ′
LSM ′

S |T̂ kq

k′q ′ |LMLSMS〉. (A23)

The Wigner-Eckart theorem (A12) is applied to the orbital and
the spin parts of the double tensor separately:

〈JM ′|T̂ kq

k′q ′ |JM〉

= (−1)2k+2k′ 〈LS‖T̂ k
k′ ‖LS〉

�LS

∑
M ′

LM ′
S

∑
MLMS

CJM ′
LM ′

LSM ′
S
CJM

LMLSMS

×C
LM ′

L

LMLkqC
SM ′

S

SMSk′q ′ . (A24)

Using Eq. (A9), the sum of the products of the Clebsch-Gordan
coefficients reduces to the sum involving 9j symbol:

〈JM ′|T̂ kq

k′q ′ |JM〉 = (−1)2k+2k′ 〈LS‖T̂ k
k′ ‖LS〉

∑
nm

�Jn

×CJM ′
JMnmCnm

kqk′q ′

⎧⎨
⎩

L S J

L S J

k k′ n

⎫⎬
⎭, (A25)

where n is the rank, m is its argument. The rest procedure is
the same as the derivation of Eq. (A21). CJM ′

JMnm is replaced by
the matrix element of the irreducible tensor operator Ym

n (Ĵ),
and T̂

kq

k′q ′ within {|JM〉} is expressed as

T̂
kq

k′q ′ = (−1)2k+2k′ 〈LS‖T̂ k
k′ ‖LS〉

∑
nm

�Jn

×CJJ
JJn0C

nm
kqk′q ′

⎧⎨
⎩

L S J

L S J

k k′ n

⎫⎬
⎭Ym

n (Ĵ)

Y 0
n (J )

. (A26)

k, k′, and n in Eq. (A26) obey

0 � k � 2L, 0 � k′ � 2S,

max[|k − k′|,0] � n � min[k + k′,2J ]. (A27)
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In the derivation of Eq. (A26) we used Eq. (2), while it is
not mandatory. However, without using Eq. (2), the result will
have a more complicated form.

In the previous works, the so-called Stevens operator
O

q

k (Ĵ) = AkqY
q

k (Ĵ) has been used instead of Y
q

k where Akq

is a coefficient which depends on both k and q [42]. However,
the original Stevens operator does neither obey Eq. (A11)
nor the Wigner-Eckart theorem (A12). In order to use the
Wigner-Eckart theorem, one can introduce such coefficient Ak

that only depends on k and is independent from q [55,56].
Furthermore, we write the Stevens operator in the form
of O

q

k (Ĵ)/O0
k (J ) which is equal to Y

q

k (Ĵ)/Y 0
k (J ). Since the

constant Ak is canceled in this form, it is possible to apply the
Wigner-Eckart theorem (A12):

〈JM ′| O
q

k (Ĵ)

O0
k (J )

|JM〉 = CJM ′
JMkq

CJJ
JJk0

. (A28)

In this paper, we use the latter [see, for example, Eq. (A26)].

APPENDIX B: DERIVATION OF THE EXCHANGE
HAMILTONIAN IN J REPRESENTATION

1. Direct exchange Hamiltonian

Detailed calculation of J DE is shown here. Applying the
method of equivalent operator (A26), {ĉ†i ⊗ c̄i}aα

bβ in Eq. (31)
becomes

{ĉ†i ⊗ c̄i}aα
bβ =

∑
kq

�kJi
C

JiJi

JiJik0C
kq

aαbβ

⎧⎨
⎩

Li Si Ji

Li Si Ji

a b k

⎫⎬
⎭

× (−1)2a+2b〈LiSi‖{ĉ†i ⊗ c̄i}ab‖LiSi〉O
q

k (Ĵi)

O0
k (Ji)

.

(B1)

Introducing Di
abk defined by

Di
abk = �kJi

C
JiJi

JiJik0

⎧⎨
⎩

Li Si Ji

Li Si Ji

a b k

⎫⎬
⎭

× (−1)2a+2b〈LiSi‖{ĉ†i ⊗ c̄i}ab‖LiSi〉, (B2)

Eq. (B1) reduces to Eq. (32).
Replace {ĉ†i ⊗ c̄i}aα

bβ in Eq. (31) with Eq. (32):

ĉ
†
imσ ĉinσ ′ = (−1)li+n+ 1

2 +σ ′ ∑
aαbβ

∑
kq

C
kq

aαbβDi
abk

×Caα
limli−nC

bβ
1
2 σ 1

2 −σ ′
O

q

k (Ĵi)

O0
k (Ji)

. (B3)

Substituting Eq. (B3) in the direct exchange Hamiltonian (6),

ĤDE =−
∑
kq

∑
k′q ′

∑
aαbβ

∑
a′α′b′β ′

∑
mnm′n′

Vmm′n′n(−1)l1+n(−1)l2+n′

×
∑
σσ ′

(−1)
1
2 +σ ′

(−1)
1
2 +σC

bβ
1
2 σ 1

2 −σ ′C
b′β ′
1
2 σ ′ 1

2 −σ
C

kq

aαbβCaα
l1ml1−n

×C
k′q ′
a′α′b′β ′C

a′α′
l2m′l2−n′D1

abkD2
a′b′k′

O
q

k (Ĵ1)Oq ′
k′ (Ĵ2)

O0
k (J1)O0

k′(J2)
. (B4)

Since (−1)
1
2 +σ = (−1)−

1
2 −σ , (−1)σ

′−σ = (−1)−β , and
∑

σσ ′

C
bβ
1
2 σ 1

2 −σ ′C
b′−β ′
1
2 σ 1

2 −σ ′ = δbb′δβ,−β ′ , using Eq. (34),

ĤDE = −
∑
kqk′q ′

∑
aa′b

Vaa′b
kqk′q ′D1

abkD2
a′bk′

O
q

k (Ĵ1)Oq ′
k′ (Ĵ2)

O0
k (J1)O0

k′(J2)
. (B5)

The coefficient of the operators is Eq. (33).
The ranks for the orbital (a) and the spin (b) parts of {ĉ†i ⊗

c̄i}aα
bβ are bounded by 2li and 2 × 1/2, respectively. Moreover,

from the 9j symbol in Eq. (B1), a � 2Li and b � 2Si where
Li and Si are the LS term for the ground J -multiplet states,
respectively. Thus, the ranges of ranks a,b are given as

0 � a � 2 min[li ,Li], 0 � b � 2 min[1/2,Si]. (B6)

The maximum of b is 1 because Si � 1/2 for the magnetic
ions. For given (a,b), k is at most a + b. Simultaneously k is
less than or equal to 2Ji [Eq. (B1)]. Therefore, the range of k

is

0 � k � min[2li + 1,2Li + 1,2Ji]. (B7)

2. Kinetic exchange Hamiltonian

In the kinetic exchange Hamiltonian ĤKE, the operators
appear as the form of ĉ

†
imσ P̂

Ni−1
iαJ J ĉim′σ ′ and ĉimσ P̂

Ni+1
iαJ J ĉ

†
im′σ ′ .

One should note that the projection operator P̂ N
iαJ J is totally

symmetric within SO(3) group, whereas reducible within the
SO(3) ⊗ SU(2) group. Thus, P̂ N

iαJ J is reduced within SO(3) ⊗
SU(2) group in order to simultaneously treat it with the other
double tensors. With the use of Eq. (2), the projection operator
P̂ N

iαJ J = ∑
M |iNαJ JM〉〈iNαJ JM| is

P̂ N
iαJ J =

∑
M

∑
ML,MS

∑
M ′

L,M ′
S

CJM
LMLSMS

CJM
LM ′

LSM ′
S

× |iNαLSLMLSMS〉〈iNαLSLM ′
LSM ′

S |. (B8)

Introducing the irreducible double tensor P̂ N
iαJ aαa′α′ defined by

P̂ N
iαJ aαa′α′ =

∑
mLmS

∑
m′

Lm′
S

(−1)L+m′
L+S+m′

S Caα
LmLL−m′

L

×Ca′α′
SmSS−m′

S
|αLSLmLSmS〉〈αLSLm′

LSm′
S |, (B9)

the projection operator P̂ N
iαJ J is written as

P̂ N
iαJ J =

∑
M

∑
mLmS

∑
m′

Lm′
S

(−1)L+m′
L+S+m′

S CJM
LmLSmS

×CJM
Lm′

LSm′
S

∑
aα,a′α′

Caα
LmLL−m′

L
Ca′α′

SmSS−m′
S
P̂ N

iαJ aαa′α′ .

(B10)

Using the symmetry properties of the Clebsch-Gordan coeffi-
cients (A3) and the 6j symbol (A4),

P̂ N
iαJ J =

∑
aα

(−1)J−L−S+α�JJ

{
S S a

L L J

}
P̂ N

iαJ aαa−α.

(B11)

The range of the rank a in Eq. (B11) is

0 � a � 2 min[S,L], (B12)
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and −a � α � a. Substituting Eq. (B11) into ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′ = (−1)li+n+ 1

2 +σ ′
ĉ
†
imσ P̂

Ni−1
iαJ J c̄i−n−σ ′ ,

ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′ =

∑
aα

(−1)J−L−S+α�JJ

{
S S a

L L J

}
(−1)li+n+ 1

2 +σ ′
ĉ
†
imσ P̂

Ni−1
iαJ aαa−αc̄i−n−σ ′ . (B13)

The operator in Eq. (B13), ĉ
†
imσ P̂

Ni−1
iαJ aαa−αc̄i−n−σ ′ , is reduced as follows:

ĉ
†
imσ P̂

Ni−1
iαJ aαa−αc̄i−n−σ ′ =

∑
bβdδ

C
bβ

aαli−nC
dδ

a−α 1
2 −σ ′ ĉ

†
imσ

{
P̂

Ni−1
iαJ aa ⊗ c̄i

}bβ

dδ

=
∑

bβcγ dδeε

C
bβ

aαli−nC
dδ

a−α 1
2 −σ ′C

cγ

limbβCeε
1
2 σdδ

{
ĉ
†
i ⊗ {

P̂
Ni−1
iαJ aa ⊗ c̄i

}b

d

}cγ

eε
. (B14)

Using Eqs. (A3) and (A7),

ĉ
†
imσ P̂

Ni−1
iαJ aαa−αc̄i−n−σ ′ =

∑
bβcγ deε

C
bβ

aαli−nC
cγ

limbβ

∑
f φ

(−1)
1
2 +2a+α+d+f �de

{
1
2

1
2 f

a e d

}
Cf φ

eεaαC
f φ
1
2 σ 1

2 −σ ′
{
ĉ
†
i ⊗ {

P̂
Ni−1
iαJ aa ⊗ c̄i

}b

d

}cγ

eε
.

(B15)

Here, the ranges of the ranks b,c,d,e,f are

|a − li | � b � a + li , |a − 1/2| � d � a + 1/2, |b − li | � c � b + li ,

|d − 1/2| � e � d + 1/2, max[|a − e|,0] � f � min[a + e,2 × 1/2], (B16)

and their arguments satisfy −b � β � b, −d � δ � d, −c � γ � c, −e � ε � e, −f � φ � f , respectively. Note that f is at
the largest 1. Substituting Eq. (B15) into (B13),

ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′ = (−1)li+n+ 1

2 +σ ′
(−1)J−L−S�JJ

∑
aαbβcγ deεf φ

(−1)
1
2 +d+f �de

×
{
S S a

L L J

}{
1
2

1
2 f

a e d

}
C

bβ

aαli−nC
cγ

limbβCf φ
eεaαC

f φ
1
2 σ 1

2 −σ ′
{
ĉ
†
i ⊗ {

P̂
Ni−1
iαJ aa ⊗ c̄i

}b

d

}cγ

eε
. (B17)

Similarly, the operator for the other site in ĤKE [Eq. (28)] becomes

ĉjm′σ P̂
Nj +1
jα′

J J ′ ĉ
†
jn′σ ′ = (−1)lj +m′+ 1

2 +σ (−1)J
′−L′−S ′

�J ′J ′
∑

aαbβcγ deεf φ

(−1)−
1
2 +d�de

×
{
S ′ S ′ a

L′ L′ J ′

}{
1
2

1
2 f

a e d

}
C

bβ

aαlj n′C
cγ

lj −m′bβCf φ
eεaαC

f −φ
1
2 σ 1

2 −σ

{
c̄j ⊗ {

P̂
Nj +1
jα′

J aa
⊗ ĉ

†
j

}b

d

}cγ

eε
. (B18)

The operator in Eq. (B17) is written in terms of the total angular momentum using the method of equivalent operator. Applying
Eq. (A26) to the irreducible tensor {ĉ†i ⊗ {P̂ Ni−1

iαJ aa ⊗ c̄i}bd}cγeε in Eq. (B17),

ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′ = (−1)li+n+ 1

2 +σ ′
(−1)J−L−S

∑
aαbβcγ deεf φ

(−1)
1
2 +d+f �JJde

{
S S a

L L J

}{
1
2

1
2 f

a e d

}
C

bβ

aαli−nC
cγ

limbβCf φ
eεaαC

f φ
1
2 σ 1

2 −σ ′

×
∑
kq

�JikC
JiJi

JiJik0C
kq
cγ eε

⎧⎨
⎩

Li Si Ji

Li Si Ji

c e k

⎫⎬
⎭(−1)2c+2e〈LiSi‖

{
ĉ
†
i ⊗ {

P̂
Ni−1
iαJ aa ⊗ c̄i

}b

d

}c

e
‖LiSi〉O

q

k (Ĵi)

O0
k (Ji)

. (B19)

From Eq. (A27), c, e, and k satisfy additional conditions:

0 � c � 2Li, 0 � e � 2Si, max[|c − e|,0] � k � min[c + e,2Ji]. (B20)

The Clebsch-Gordan coefficients are replaced by the sum involving 9j symbol (A9):

ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′ = (−1)li+

1
2 +σ ′ ∑

f φ

∑
kq

∑
xξ

(−1)2f C
xξ

linkqC
xξ

f φlim
C

f φ
1
2 σ 1

2 −σ ′F i
αJ Jf xk

O
q

k (Ĵi)

O0
k (Ji)

. (B21)

Similarly,

ĉjm′σ P̂
Nj +1
jα′

J J ′ ĉ
†
jn′σ ′ = (−1)lj +

1
2 +σ+m′+n′ ∑

f φ

∑
kq

∑
xξ

(−1)−1+f C
xξ

lj −n′kqC
xξ

f φlj −m′C
f −φ
1
2 σ 1

2 −σ ′G
j

α′
J J ′f xk

O
q

k (Ĵj )

O0
k (Jj )

. (B22)
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Here, F i
αJ Jf xk in Eq. (B21) is defined by

F i
αJ Jf xk =

∑
abcde

(−1)J−L−S+ 1
2 +b+c+d−k�JJkkJibcdef C

JiJi

JiJik0

{
S S a

L L J

}{
1
2

1
2 f

a e d

}⎧⎨
⎩

a b li
e c k

f li x

⎫⎬
⎭

⎧⎨
⎩

Li Si Ji

Li Si Ji

c e k

⎫⎬
⎭

× (−1)2c+2e〈LiSi‖
{
ĉ
†
i ⊗ {

P̂
Ni−1
iαJ aa ⊗ c̄i

}b

d

}c

e
‖LiSi〉, (B23)

and Gi
αJ Jf xk is obtained by replacing the reduced matrix element in Eq. (B23) by 〈LiSi‖{c̄i ⊗ {P̂ Ni+1

iαJ aa ⊗ ĉ
†
i }bd}ce‖LiSi〉. The ranges

of x and its component ξ are

|f − li | � x � f + li (B24)

and −x � ξ � x, respectively.
Substituting Eqs. (B21) and (B22) into ĤKE [Eq. (28)], and first summing over σ and σ ′, the operator part of the numerator

becomes ∑
σσ ′

(
ĉ
†
imσ P̂

Ni−1
iαJ J ĉinσ ′

)(
ĉjm′σ P̂

Nj +1
jα′

J J ′ ĉ
†
jn′σ ′

) = −
∑
f φ

∑
kq

∑
xξ

∑
k′q ′

∑
x ′ξ ′

(−1)li−lj −f +q ′F i
αJ Jf xkG

j

α′
J J ′f x ′k′

×C
xξ

linkqC
xξ

f φlim
C

x ′ξ ′
lj −n′k′q ′C

x ′ξ ′
f −φlj −m′

O
q

k (Ĵi)O
q ′
k′ (Ĵj )

O0
k (Ji)O0

k′(Jj )
. (B25)

The kinetic exchange Hamiltonian (28) is

ĤKE =
∑
i �=j

∑
kq

∑
k′q ′

∑
f xx ′

∑
αJ J

∑
α′

J J ′

∑
mn

∑
m′n′

∑
ξξ ′φ(−1)li−lj −f +q ′

t
ij

mm′ t
j i

n′nC
xξ

linkqC
xξ

f φlim
C

x ′ξ ′
lj −n′k′q ′C

x ′ξ ′
f −φlj −m′

Uij + �E
Ni−1
iαJ J + �E

Nj +1
jα′

J J ′

×F i
αJ Jf xkG

j

α′
J J ′f x ′k′

O
q

k (Ĵi)O
q ′
k′ (Ĵj )

O0
k (Ji)O0

k′(Jj )
. (B26)

The numerator is replaced by {t × t}f xx ′
kqk′q ′ [Eq. (36)], and we obtain Eq. (35).

The range of k in Eqs. (B21) and (B22) is k � min[c +
e,2Ji,x + li] from Eqs. (B12), (B16), and (B23). Since 0 �
f � 1, c + e � 2a + 2li + 1, and x � li + 1, the range of k

becomes

0 � k � min[2li + 1,2Ji]. (B27)

The range of q is restricted by the transfer parameter as
well as the maximal k (kmax). Considering the conservation law
for the arguments of Clebsch-Gordan coefficients in Eq. (36),
q = φ + m + n, and |φ| � 1,

|q| � min[kmax,2mmax + 1], (B28)

where mmax(�0) is the maximum projection of the magnetic
orbital that contributes to the electron transfer.

APPENDIX C: PROPERTY OF Jkqk′q′

By using the Hermiticity of H̄ [Eq. (29)] and

[
O

q

k (Ĵ)
]† = (−1)−qO

−q

k (Ĵ), (C1)

we obtain

(−1)−q−q ′
(Jkqk′q ′ )∗ = Jk−qk′−q ′ . (C2)

On the other hand, using the time-reversal symmetry of H̄ and

θO
q

k (Ĵ)θ−1 = [
O

q

k (−Ĵ)
]∗ = (−1)k−qO

−q

k (Ĵ), (C3)

where θ is time-reversal operator [8], we obtain

(−1)k+k′−q−q ′
(Jkqk′q ′ )∗ = Jk−qk′−q ′ . (C4)

Comparing Eqs. (C2) and (C4),

(−1)k+k′ = 1. (C5)

Therefore, both of k and k′ are even or odd.

APPENDIX D: EXCHANGE HAMILTONIANS FOR J
MULTIPLET INTERACTING WITH ISOTROPIC SPIN

The exchange Hamiltonian between J multiplet and
isotropic spin is obtained replacing orbital angular momentum
of the spin site (i = 2) with zero. When the spin state consists
of some nondegenerate molecular orbitals, the orbital indices
r are introduced.

1. Direct exchange Hamiltonian

Since l2 = 0 and L2 = 0, J2 = S2, a′ = 0, b = k′, and the
9j symbol inD2

a′bk′ [Eq. (B2)] reduces to 1/�S2S2k′ . Therefore,
D2

a′bk′ becomes

D̃2
rr ′k′ = C

S2S2
S2S2k′0

(−1)2k′ 〈S2‖{ĉ†2r ⊗ c̄2r ′ }k′ ‖S2〉
�S2

.

(D1)
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Here, a′ and b are omitted for simplicity, and the molecular
orbital index r is introduced. On the other hand, Varr ′

kqk′q ′ is

Varr ′
kqk′q ′ =

∑
mn

∑
α

(−1)l1+n−q ′
Vmrr ′nC

aα
l1ml1−nC

kq

aαk′−q ′ , (D2)

where m′ = n′ = 0, α′ = 0, and q ′ = −β are used. The direct
exchange parameter between J multiplet and isotropic spin is
given by

J DE
kqk′q ′ = −

∑
a

∑
r

Varr ′
kqk′q ′D1

ak′kD̃2
rr ′k′ . (D3)

From Eq. (B7), the rank for the spin site k′ is 0 or 1.

2. Kinetic exchange Hamiltonian

Since l2 = 0 and L2 = 0, J2 = S2, a′ = b′ = c′ = 0, x ′ =
f , e′ = k′, and d ′ = 1/2 from the 6j and the 9j symbols
in F [Eq. (B23)]. The values of the 6j and the 9j symbols
are (−1)2S ′

/�S ′ , (−1)1+k′
/�f 1

2
, δf k′/�k′k′ , and 1/S2S2k

′,
respectively. Thus, F2

αJ Jf xk becomes

F̃2
αSrr ′k′ = (−1)2S �S

�S2

C
S2S2
S2S2k′0(−1)2k′

× 〈S2‖
{
ĉ
†
2r ⊗ P̂

N2−1
2αS0 c̄2r ′

}
k′ ‖S2〉. (D4)

Here, the rank for the orbital part in the double-tensor
projection operator is removed, P̂

N2−1
2αS0 is irreducible tensor

form which acts on spin state:

P̂ N
2αSaα =

∑
mSm′

S

(−1)S+m′
S Caα

SmSS−m′
S
|αSSmS〉〈αSSm′

S |. (D5)

G̃2
αSrr ′k′ is obtained by replacing 〈S2‖{ĉ†2r ⊗ P̂

N2−1
2αS0 c̄2r ′ }k′ ‖S2〉

with 〈S2‖{c̄2r ⊗ P̂
N2+1
2αS0 ĉ

†
2r ′ }k′ ‖S2〉. On the other hand,

{t × t}f xx ′
kqk′q ′ [Eq. (36)] reduces to

{t × t}xrr ′
kqk′q ′ = (−1)l1−k′+q ′ ∑

mm′

∑
ξ

t12
mr t

21
r ′m′

×C
xξ

l1m′kqC
xξ

k′−q ′l1m. (D6)

Therefore, the kinetic exchange coupling parameter is obtained
as

J KE
kqk′q ′ =

∑
xrr ′

∑
αJ J

∑
α′

SS ′

{t × t}xrr ′
kqk′q ′F1

αJ Jk′xkG̃2
α′

Srr ′k′

U12 + �E
N1−1
1αJ J + �E

N2+1
2α′

SS ′

+
∑
xrr ′

∑
αJ J

∑
α′

SS ′

{t × t}xrr ′
kqk′q ′G1

αJ Jk′xkF̃2
α′

Srr ′k′

U21 + �E
N1+1
1αJ J + �E

N2−1
2α′

SS ′
.

(D7)

From Eq. (B27), the rank for the spin site k′ is 0 or 1.

APPENDIX E: REDUCED MATRIX ELEMENTS
OF THE CREATION OPERATORS

In order to calculate the exchange interaction param-
eters, the reduced matrix elements in Eqs. (B2) and
(B23) must be evaluated. In the direct exchange interac-
tion (33), there appear (−1)2a+2b〈LiSi‖{c†i ⊗ c̄i}ab‖LiSi〉 and
(−1)2a+2b〈LjSj‖{c̄j ⊗ ĉ

†
j }ab‖LjSj 〉. However, note that the

irreducible tensor operators are the same type as V 11 used
for the calculations of the spin-orbit coupling [50]. On the
other hand, for the calculations of the kinetic exchange in-
teractions (35), (−1)2c+2e〈LiSi‖{c†i ⊗ {P̂ Ni−1

iαJ aa ⊗ c̄i}bd}ce‖LiSi〉
and (−1)2c+2e〈LjSj‖{c̄j ⊗ {P̂ Nj +1

jα′
J aa

⊗ ĉ
†
j }bd}ce‖LjSj 〉 have to be

evaluated. By straightforward calculations, the former is

�LiSi

C
LiM

′
L

LiMLcγ C
SiM

′
S

SiMSeε

∣∣∣∣∣ (−1)2(li+1/2)
〈
l
Ni

i ,LiSi‖ĉ†i ‖lNi−1
i ,αLSLS

〉
�LiSi

∣∣∣∣∣
2 ∑

mn

∑
αβ

∑
NLN ′

L

(−1)li+n+L+NLC
cγ

limbβC
bβ

aαli−nC
aα
LN ′

LL−NL
C

LN ′
L

LiM
′
Llim

C
LNL

LiMLlin

×
∑
σσ ′

∑
α′δ

∑
NSN ′

S

(−1)
1
2 +σ ′+S+NS Ceε

1
2 σdδ

Cdδ

aα′ 1
2 −σ ′C

aα′
SN ′

SS−NS
C

SN ′
S

SiM
′
S

1
2 m

C
SNS

SiMS
1
2 n

, (E1)

and the latter is

�Lj Sj

C
Lj M

′
L

Lj MLcγ C
Sj M

′
S

Sj MSeε

∣∣∣∣∣ (−1)2(lj +1/2)
〈
l
Nj +1
j ,αLSLS‖ĉ†j‖lNj

j ,LjSj

〉
�LS

∣∣∣∣∣
2 ∑

mn

∑
αβ

∑
NLN ′

L

(−1)lj +m+L+NLC
cγ

lj −mbβC
bβ

aαlj n
Caα

LN ′
LL−NL

×C
LN ′

L

Lj M
′
Llj m

C
LNL

Lj MLlj n

∑
σσ ′

∑
α′δ

∑
NSN ′

S

(−1)
1
2 +σ+S+NS Ceε

1
2 −σdδ

Cdδ

aα′ 1
2 σ ′C

aα′
SN ′

SS−NS
C

SN ′
S

Sj M
′
S

1
2 m

C
SNS

Sj MS
1
2 n

. (E2)

Here, the components ML,M ′
L,MS,M

′
S,γ,ε are chosen so that C

LiM
′
L

LiMLcγ C
SiM

′
S

SiMSeε �= 0 is satisfied. For the calculations of the

equations, the reduced matrix elements of the creation operators ĉ
†
imσ are necessary. They are calculated as [41]

(−1)2(l+1/2)〈f NαLSLS‖ĉ†‖f N−1α′
LSL

′S ′〉
�LS

=
√

N〈f NαLSLS{|f N−1(α′
LSL

′S ′)f LS〉, (E3)
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TABLE III. Reduced matrix elements of the creation operator for the ground 6H term of Dy3+.

� (−1)2(l+1/2)〈f 9, 6H |ĉ†|f 8,�〉/�LS � (−1)2(l+1/2)〈f 9, 6H |ĉ†|f 8,�〉/�LS � (−1)2(l+1/2)〈f 10,�|ĉ†|f 9, 6H 〉/�LS

7F

√
7
3

5G(2) − 1
7

√
65
11

5D −2
√

11
35

5D(1) − 1
3

√
10
7

5G(3) 3
7

√
3
2

5F

√
33
35

5D(2) − 2
√

5
21

5H (2) −1 5G −
√

13
7

5D(3) 3
7

√
15
11

5I (1) 1
3

√
91
11

5I

√
14
5

5F (1) − 1√
6

5I (2) 1
3

√
26
11

5F (2) −
√

3
22

5K −
√

15
11

5G(1) −
√

65
154

5L

√
17
11

where 〈f NαLSLS{|f N−1(α′
LSL

′S ′)f LS〉 is the coefficient of fractional parentage, which is tabulated in Ref. [48]. The reduced
matrix elements of ĉ† necessary for the present examples are shown in Table III.

APPENDIX F: EXCHANGE STATES OF N2−
2 BRIDGED Dy3+ DIMER

The difference between the eigenstates of the full exchange Hamiltonian Ĥex, |�i,�〉, and those of the Heisenberg-type
Hamiltonian (1), |J12M12〉, are compared as in the case of the linear system. The low-energy states are, in the basis of {|J12M12〉}
[Eq. (46)],

|�1,b1u〉 ≈ 0.767|1,0〉 + 0.493|3,0〉 + 0.108(|3,−2〉 + |3,2〉) + 0.345|5,0〉 + 0.118|7,0〉,
|�2,ag〉 ≈ 0.552|0,0〉 + 0.661|2,0〉 + 0.400|4,0〉 + 0.250|6.0〉,

|�3,b2g〉 ≈ 0.586(−|2,−1〉 + |2,1〉) − 0.260(−|4,−1〉 + |4,1〉) + 0.256(−|4,−3〉 + |4,3〉) + 0.108(−|8,−1〉 + |8,1〉),
|�4,b3u〉 ≈ −0.545(−|1,−1〉 + |1,1〉) − 0.158(−|3,−1〉 + |3,1〉) − 0.161(−|3,−3〉 + |3,3〉) + 0.293(−|5,−1〉 + |5,1〉)

− 0.218(−|5,−3〉 + |5,3〉) − 0.129(−|7,−1〉 + |7,1〉),
|�5,b1u〉 ≈ −0.285|1,0〉 + 0.680|3,0〉 − 0.448(|3,−2〉 + |3,2〉),
|�6,ag〉 ≈ 0.446|0,0〉 − 0.331|2,0〉 + 0.347(|2,−2〉 + |2,2〉) − 0.460|4,0〉 + 0.255(|4,−2〉 + |4,2〉) + 0.181|6,0〉

− 0.155(|6,−2〉 + |6,2〉).
Here, the irreducible representation � of D2h symmetry is used. The exchange states belong to the eigenvalues E1 = −0.274 979,
E2 = −0.274 977, E3 = −0.262 325, E4 = −0.262 299, E5 = −0.260 815, E6 = −0.260 805, respectively. As in the axial
system, the low-energy states are not well described by ĤHeis. Within the 1/Ū approximation, the low-energy states
become∣∣�1/Ū

1 ,ag

〉 = 0.509|0,0〉 + 0.696|2,0〉 + 0.434|4,0〉 + 0.222|6,0〉,∣∣�1/Ū

2 ,b1u

〉 = 0.740|1,0〉 + 0.559|3,0〉 + 0.330|5,0〉 + 0.115|7,0〉,∣∣�1/Ū

3 ,b3u

〉 = 0.554(−|1,−1〉 + |1,1〉) + 0.205(−|3,−1〉 + |3,1〉) + 0.193(−|3,−3〉 + |3,3〉) − 0.234(−|5,−1〉 + |5,1〉)
+ 0.220(−|5,−3〉 + |5,3〉),∣∣�1/Ū

4 ,b2g

〉 = 0.608(−|2,−1〉 + |2,1〉) − 0.188(−|4,−1〉 + |4,1〉) + 0.279(−|4,−3〉 + |4,3〉),∣∣�1/Ū

5 ,ag

〉 = 0.489|0,0〉 − 0.263|2,0〉 − 0.374(−|2,−2〉 + |2,2〉) − 0.430|4,0〉 − 0.265(−|4,−2〉 + |4,2〉) + 0.141|6,0〉
+ 0.127(−|6,−2〉 + |6,2〉) − 0.103(−|6,−4〉 + |6,4〉),∣∣�1/Ū

6 ,b1u

〉 = 0.351|1,0〉 − 0.618|3,0〉 + 0.471(|3,−2〉 + |3,2〉) + 0.109(|5,−4〉 + |5,4〉).

The exchange states |�1/Ū

i 〉 are also ordered as the increase of the energy. Some levels are interchanged due to the 1/Ū

approximation. |�i〉 and |�1/Ū

i 〉 with the same representation quantitatively differ from each other.
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