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Aging at the spin-glass/ferromagnet transition: Monte Carlo simulations using
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We study the nonequilibrium aging behavior of the ±J Edwards-Anderson model in three dimensions for
samples of size up to N = 1283 and for up to 108 Monte Carlo sweeps. In particular we are interested in the
change of the aging when crossing from the spin-glass phase to the ferromagnetic phase. The necessary long
simulation times are reached by employing a CUDA-based GPU implementation, which allows for single-spin
flip times as small as 8 ps. We measure typical spin-glass correlation functions in space and time to determine the
growing length scale and extract the constituting exponents. We observe a clear signature of the disorder-driven
equilibrium transition in the nonequilibrium behavior.
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I. INTRODUCTION

Spin glasses [1–5] are certain magnetic alloys [6], that
possess at low temperatures interesting equilibrium and
nonequilibrium behavior which is to a large extent still not well
understood. The low-temperature ordered spin-glass phase is
characterized by a rough free-energy landscape and by slow
glassy dynamics [7,8]. Disorder and frustration in the spin-
spin interactions were identified as the underlying principles
governing the behavior of spin glasses. Thus models mixing
positive, i.e., ferromagnetic and negative (antiferromagnetic)
couplings such as the mean-field Sherrington-Kirkpatrick
model [9] and the Ising-like short-ranged Edwards-Anderson
model [10] were created to understand the spin-glass behavior.
A prevailing topic is still whether the replica-symmetry-
breaking theory [2] arising from the solution [11,12] of the
former model can accurately describe the spin-glass phase
of the latter model in three dimensions. The most prominent
competitor is the droplet theory [13,14], which centers around
the eponymous droplets, low-level excitations from the pre-
sumably only two existing pure states. Numerous publications
have dealt with simulations in equilibrium [15–20] as well as
out of equilibrium [7,21–30].

The standard spin-glass models assume an on average
equal fraction of positive and negative couplings. Neverthe-
less, when decreasing the fraction of negative bonds in the
Edwards-Anderson model, it exhibits a phase transition at
low temperatures from the aforementioned spin-glass phase to
the well known ferromagnetic phase of the Ising model. This
transition has been studied in the typical equilibrium approach
to phase transitions [31], also via ground-state calculations
[32]. Nevertheless, concerning the nonequilibrium “aging”
behavior, so far only systems deep in the spin-glass phase
have been studied extensively, to the knowledge of the authors.
Therefore, the purpose of this study is to determine whether
the spin-glass to ferromagnet transition is also visible within
the nonequilibrium behavior. Specifically we will be looking
at growing correlations in space and time and try to explain
them in terms of the dynamical correlation length. The
determination and characterization of this growing length
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scale in the spin-glass phase has been a focus of many
previous publications [8,21–23,27,29,33–35], as there are a
few stumbling blocks before dependably measuring it. It was
quickly found that it appears to follow a power law [21,22]
in line with the mean-field theory, though there is discussion
[28,29] whether it crosses over into the logarithmic growth
expected from droplet theory.

Because reaching sufficiently long simulation times is
computationally challenging, even inspiring the adoption of
specialized hardware [36], we implemented the model in
CUDA [37] to leverage the comparatively high processing
power of GPUs. Quite a few pioneering works have already
tested the feasibility and performance outlook of this platform
for the Ising [38–40] and the Edwards-Anderson model [41,42]
but have shown no fruitful application. Our implementation
has been carefully optimized for tackling the problem at hand
efficiently and with limited resources. This allowed us to study
large system sizes of N = 1283 up to long time scales of 108

sweeps.
The remainder of this work is organized as follows. In

Sec. II we describe the used Edwards-Anderson model and
its observables. Section III follows with details on the GPU
implementation of the model. The results of the simulation
and their analysis are presented in Sec. IV. We close with our
conclusions in Sec. V.

II. MODEL

The Edwards-Anderson model [10] describes a D-
dimensional cubic system of side length L containing N = LD

Ising spins Si = ±1. Its Hamiltonian is given by

H (S) = −
∑
〈i,j〉

JijSiSj , (1)

where the sum runs over nearest neighbors 〈i,j 〉 and the
bonds Jij = ±1 are drawn from a bimodal distribution P (J ) =
pδ(J − 1) + (1 − p)δ(J + 1). We use periodic boundary con-
ditions in all directions. The parameter p ∈ [0,1] controls
the fraction of positive and negative bonds. For p = 1 the
ferromagnet Ising model is reproduced with a paramagnetic
phase at high temperatures and the well-known ferromagnetic
phase at small temperatures T for D > 1. On the other hand,
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p = 0.5 represents the usual spin-glass model with a low
temperature spin-glass phase for D > 2. We will only be
concerned with the case D = 3 in the following, which has
the transition temperatures TFM ≈ 4.5115 (p = 1) [43] and
TSG = 1.102(3) (p = 0.5) [20], respectively. For intermediate
values of p there exists the phase transition from ferromagnet
to spin glass at p ≈ 0.77 (T → 0) [32].

Simulations start with random initial configurations emu-
lating a quench from infinite temperature. We then examine
the system at different waiting times tw (measured in sweeps)
after the beginning of the simulation. The spin-glass order
parameter is the overlap

q = 1

N

∑
i

qi, (2)

with qi = S
(a)
i S

(b)
i the elementwise overlap of two replicas

S(a) and S(b) with the same bond configuration J , but different
initial configurations and thermal histories. In equilibrium,
corresponding to tw → ∞, the probability distribution P (q) is
expected to assume a two peak structure below the transition
temperature. In the droplet theory [13,14] this takes the form
of two δ peaks at ±qEA, while the mean-field theory [2] has a
wider distribution with a plateau of nonzero probability around
q = 0.

To measure the growing length scale we make use of the
spatial four-point correlation

C4(r,tw) = 1

N

∑
i

qi(tw)qi+r (tw) (3)

between two points and two replicas. With i + r we denote a
spin which has a spatial distance r from spin i.

There exist different approaches to extract a growing
coherence (or dynamic correlation) length ξ from the four
point-correlation function. The first approach is based on the
assumption that C4 follows the functional form [23]

C4(r,tw) ∝ r−αg

(
r

ξ (tw)

)
. (4)

The function g is approximately a stretched exponential
g(x) ∼ exp(−xβ). Extracting ξ works by fitting (4) to the
data of C4, for various times tw. The two unknown exponents
(α ≈ 0.5 and β ≈ 1.5 in the spin-glass phase) complicate
the extraction of ξ , which spawned many methods for
accomplishing this task [21–23,27].

As an alternative, notably Ref. [33] introduced the use of
integral estimators for this problem. One uses the integral

Ik(tw) =
∫ L/2

0
rkC4(r,tw)dr (5)

to calculate an estimate for the coherence length

ξk(tw) = Ik+1(tw)

Ik(tw)
∼ ξ (tw). (6)

The choice of k determines which regions of the function C4

contribute most to the estimate. Reference [29] recommends
k = 1 to get the best trade-off between systematic errors for
small values of k and larger influence of statistical error for
higher values.

Another observable of interest we use to study the aging
behavior around the ferromagnet-spin glass transition is the
autocorrelation

C(t,tw) = 1

N

∑
i

Si(tw)Si(tw + t) (7)

between two points in time separated by a time difference t in
reference to the waiting time tw. It is assumed to split into two
parts. The first is a quasiequilibrated part for small t 
 tw, that
takes the form [21,22,24,26,28] of a power law

Ceq(t) ∝ t−x, (8)

with another characteristic exponent x. For longer times
t � tw the aging part Cage(t,tw) = f (ξ (tw + t)/ξ (tw)) can
trivially be expected [7,8] to depend only on the ratio of
the coherence lengths at the two different times. An additive
decomposition C(t,tw) = Ceq(t) + Cage(t,tw) is favored by
theoretical arguments [8,26,28,44]. But we will present here
for the spin-glass phase only the results according to a
multiplicative decomposition C(t,tw) = Ceq(t) · Cage(t,tw), as
this seems to work better with our analysis of the data, even
though it is only expected to hold in the critical region [8,26].
For the ferromagnet a plateau limtw→∞ C(t,tw) = Ceq(t) +
M2 is expected at long waiting times with the equilibrium
magnetization M [45,46].

III. IMPLEMENTATION

We implemented a Metropolis Monte Carlo simulation
[47] of the model for Nvidia GPUs using the CUDA C
programming interface [37], as was first detailed in Ref. [48].
For explanation of the GPU-related terms used in the following
we refer to the CUDA Programming Guide [37] or a textbook
like Ref. [49]. In order to perform the update of a spin Si one
has to calculate the flipping probability

paccept = min

⎡
⎣1, exp

⎛
⎝− 2

T

∑
j∈N(i)

JijSiSj

⎞
⎠

⎤
⎦ (9)

incorporating the coupling of the spin i to the local field
generated by its direct neighbors N (i) on the lattice. Since
GPUs are designed to keep their large number of simple
processors busy with many, preferably independent processes
at once, a sequential implementation of a single-spin-flip
algorithm is ill suited for GPUs. So in order to attain a parallel
algorithm suitable for this architecture we adopted a standard
checkerboard update scheme. In a first step all “white fields” of
the system are updated followed by the other half of the system
in a second step. Both add up to a single sweep of the system
corresponding to one time step. Each half-step is performed
in its own CUDA kernel call to ensure global synchronization.
A problem, especially for fits in the ferromagnetic phase we
will be performing later, is that the checkerboard metropolis
algorithm produces systematic errors in the autocorrelation C

at short times t . This is caused by the deterministic access
pattern combined with guaranteed flips for certain spins, in
particular the ones with zero local magnetic field. Thus these
free spins will change direction every time step resulting in a
damped oscillation of C around the true value. As a remedy
we access the spins in both systems used for calculating C in a
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FIG. 1. (Color online) Memory layout in the GPU. Two indepen-
dent replicas (left), having the same bonds, are simulated in a checker
board manner: during each iteration either all “black” or all “white”
sites are updated. Thus, within the GPU memory, one memory area
(top right) holds all updated sites, e.g., the white sites of replica
one and the black sites of replica two, while another memory range
(lower right) contains all neighboring interaction partners. After one
half-sweep is completed, the role of updated sites and neighboring
sites are swapped.

checkerboard scheme and just randomize all free spins, which
emulates the result of a step in an algorithm, that flips these
spins with probability 1/2. This can be seen as a correction of
first order and removes the effect completely in the spin-glass
phase, while greatly reducing it in the ferromagnetic phase.

A straightforward implementation of this update scheme
however would be inefficient as the GPU memory is optimized
for reading large bulks of neighboring memory cells at once
(“memory coalescing”). To circumvent this one could relocate
the spins to two different memory regions as was done in
Ref. [39]. For a simpler method we instead simulate the two
replicas we need for calculating (3) simultaneously and swap
the “black spins” between the two lattices to get what we
will call the “interlaced checkerboard layout”; see Fig. 1. This
way all spins in one lattice can be updated at the same time,
while all neighbors they are coupled to reside in the other
lattice. Basically the same approach was also used in Ref. [36]
just by virtue of the simplifications it introduces. Specifically
the spins’ indices remain unchanged and we can use the same
bonds for both update steps. Since the bonds Jij are symmetric,
we only need to store the left/up bonds of a spin and they can
be read efficiently via texture memory. The joint neighbors of
the updated spins are loaded into shared memory so they can
be shared between the members of a thread block to calculate
the flip probability (9). We choose dimensions of 32 × 4 × 2
for the thread blocks in the GPU thread hierarchy.

We also employed 64bit-multispin-coding, meaning that
the spins taking values ±1 are coded as single bits and 64
of them are stored together in a 64bit variable. The same
applies for the corresponding bonds. We choose spins from
the same position in 64 different samples, which is sometimes
known as asynchronous multispin coding. Bit operations are
used to perform the update for all bit-coded spins at the same
time. We only need to differentiate between a few possible

cases of spin alignments using boolean logic at the bit level.
Then we look up the precalculated flipping probabilities from
constant memory and apply them for the matching bits. It
is customary to save computational effort by using only one
random number for multiple samples. As no suitable and
efficient random number generators were available at the
time of implementation, we established a 1024bit variant of
a Xorshift generator [50]. The generator was optimized for
generating a single random number per thread and kernel,
as was needed here. With this complete implementation we
reach single-spin-flip times of ≈8 ps on a GeForce GTX 570
GPU. Of the prior implementations [38–42,51,52] of Ising
and Edwards-Anderson model only the one by Weigel [41] is
faster. But it uses multihit updates, which means each thread
block updates for several flip attempts per spin, thus requiring
the costly global synchronization less frequently. This is no
problem if one is interested in equilibrium properties, but
this changes the dynamics, as, e.g., visible by the reduced
growth of correlations. Therefore, that is undesirable when
one wants to actually study the nonequilibrium dynamic aging
properties, as in the current work. The recent Ref. [53] was also
brought to our attention, which reports faster single-spin-flip
times of ≈3 ps. But this was done on a newer, more powerful
GPU, so we cannot say how this directly compares to our
implementation.

For the current work we only had access to two GPUs and
consequently designed this approach for maximum efficiency
per GPU. However, if one had access to a larger number, it
would be preferable to be able to distribute samples better
among GPUs. For this purpose one can simply reduce the
number of samples to M = 2m (m < 6) by storing 64/M spins
from different positions per sample in a multispin. A simple
way is to split the system into 64/M equal parts along one
dimension and assign spins at the same relative positions to
the bits {i,i + M,i + 2M, . . .} in the same multispin. This
effectively makes it look and work like a smaller system, with
the caveat that when coupling over the “periodic boundary”
one has to rotate the bits of the multispin variable by M

positions. The computational overhead for this change is
negligible but it has two other problems. First this effectively
shrinks our systems which might result in low occupancy and
efficiency of the GPUs processors. But the bigger problem
is that we cannot use the same random number for spins
from the same sample. Thus we have to generate 64/M

random numbers per kernel instead of just one. Because of this
requirement, the synchronous multispin coding corresponding
to M = 1 is very inefficient, and a more balanced choice like
M = 8 is preferable.

IV. RESULTS

We simulated a total of 192 samples of randomly initialized
1283 systems with two replicas each. The simulations were
performed on two GeForce GTX 570. We took the parameters
T = 0.8 and p ∈ [0.5,1] and performed 108 time steps, which
takes about 63 h per batch of 64 multispin-coded samples.
At the measure points the whole system configurations were
simply stored to hard disk and the generated data was later
postprocessed to gain access to the correlation functions.
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FIG. 2. (Color online) Spatial correlation C4 over the distance r

at different waiting times tw for a 1283 system at p = 0.5. Multiple
close points were merged to give a clearer picture.

An exemplary spatial correlation C4 from (3) for p =
0.5 is shown in Fig. 2. The two replicas utilized for the
calculation make correlations visible despite the model’s
inherent disorder. The curves show a seemingly exponential
decay for larger distances. The steeper gradient for small
distances is incorporated in the scaling form (4) with the
power law r−α . As one would expect, the correlations spread
to larger distances as time passes suggesting a growing length
scale.

Our first approach to extracting this coherence length ξ is a
fit of (4) with the stretched exponential form for g. However,
the values α ≈ 0.5 and β ≈ 1.5 which are suitable deep in
the spin-glass phase (p ≈ 0.5) might depend on the value of
p. To get the most consistent values at a particular p we
performed multifits of the curves for all different tw � 10 at
once, i.e., with universal values of α and β (independent of
tw), but individual values ξ (tw). Naturally the choice of points
included in the fit can have an influence on the outcome. As
such we generally restricted it to r � 3 and specifically found
the cleanest results, when only using points at integer-valued
distances r . Those are always located along the lattice axes.
But as a reference we did the same fits also with all r � 3
and use these for calculating our error bars for α, β, and ξ . In
detail we estimate our errors as the difference between the fit
results for our restricted point set and the larger one plus both
of the normal statistical errors from the two different fits. Still,
this might underestimate the errors a bit, because for multifits
statistical independence of the data is assumed, while in our
case the measurements are from the same runs, just at different
waiting times tw; thus they are correlated.

The results for both exponents α and β as a function of the
probability p are shown in Fig. 3. A strong change can be seen
around the phase transition pc ≈ 0.77 from 0.4 < α < 0.5
and 1.4 < β < 1.45 in the spin glass phase to α ≈ 0, which
is to be expected in the ferromagnetic phase, and β ≈ 1.3
for p > pc. Thus the equilibrium phase disorder driven phase
transition is well visible in the analysis of the nonequilibrium
aging behavior. Note that when getting closer to p = 1, i.e.,
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FIG. 3. Scaling exponent α of the spatial correlation over the bond
probability p for a 1283 system. The vertical line marks p = pc. Inset:
associated scaling exponent β.

in the ferromagnetic phase, the system quickly develops a
complicated behavior [54–57] not yet fully understood and
not compatible with the scaling assumption in Eq. (4). Thus
when addressing the range where the coherence length is small,
we only have the first few times tw available to work with, i.e.,
the fits according to (4) generally cannot be fitted as well at
later times.

The second approach [29,33] for calculating ξ uses the
integral estimation ξ1 according to (6). Like in the original
work we take the integrals up to the point where the value
of C4 first becomes smaller than three times its error, and
approximate the rest of the integrals with our fitted function.
Figure 4 shows results for the coherence length ξ as a
function of the waiting time tw for both different approaches,
respectively. As is visible from the figure, both methods agree
well for a large stretch of waiting times but disagree close
to the beginning and the end. While the integral results look

100
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101 102 103 104 105 106 107 108

ξ

tw

Fit
Integral

100

101

102 104 106 108

L=32
L=64
L=128

FIG. 4. (Color online) Coherence length ξ as a function of the
waiting times tw for a 1283 system at p = 0.5. The values are
calculated by fitting and integral estimation, respectively. Inset:
results by fitting estimation for different side lengths L ∈ {32,64,128}
at p = 0.9.
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FIG. 5. (Color online) Power law exponent z of the coherence
length as a function of the bond probability p for L = 1283 and
L = 64. For L = 128, the two curves correspond to the fitting and
integral estimation of ξ , respectively, which agree pretty well. To give
an impression of the finite-size effects, also the result from the fitting
approach for L = 64 (exhibiting more systematic errors due to the
small system size) is included. The vertical line marks p = pc.

closer to a power law, the fit results give a bit higher estimates
for ξ at the end and bend down at short times. A grave problem
arises with finite size effects in the ferromagnetic phase, as can
be seen in the inset of Fig. 4. When ξ becomes comparable to
the system’s own length scale L, the values get overestimated
and the systems start to actually equilibrate. This means we
would need to go to even larger systems to get better results in
the ferromagnetic phase at these temperatures.

Anyway, to study the dependence on the concentration
p of ferromagnetic bonds, we fitted power laws of the
form ξ (tw) ∼ t

1/z
w , which is the most-simple yet widespread

approach. This power-law behavior however is subdued at
the beginning. So for fitting purposes we found it is best to
add a constant term, that then usually takes negative values.
A crossover to logarithmic growth has been proposed and
tested for the spin glass [25,26]. This is also compatible
with our data, but we find no noticeable improvement over
the simple power law, possibly because simulation times
are still not long enough. Such a crossover was also found
[58] for a strictly ferromagnetic random-bond model, which
might behave similar to our case for p > pc. Here we do not
see a clear crossover either and the finite size effects add
to the difficulty. The determined exponents z for different
p are shown in Fig. 5 for both methods of extracting ξ .
The phase transition can again be seen. Starting from a
constant value between 10 and 11 in the spin glass phase z

has a peak around the phase transition before decreasing in
the ferromagnetic phase. Larger values of z correspond to
slower growth of correlations and consequently overall slower
behavior and equilibration. So it fits expectations that the spin
glass phase has much higher values of z than the ferromagnetic
phase. But interestingly we can see an even more pronounced
slowdown in the critical region around the disorder-driven
phase transition. Here the dynamics are so slow that one could
expect even just a logarithmic growth of the coherence length
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FIG. 6. (Color online) Autocorrelation C as a function of the time
distance t at different waiting times tw for a 1283 system at p = 0.5.

with waiting time. Thus we also tried right at p ≈ pc a fit
to the functional form ξ (tw) ∼ log(tw/t0)z̃ with parameters
t0 and z̃. The fit worked as well as the power-law fit; thus
we are not able to distinguish a very slow power-law growth
from a logarithmic growth here. For values of p close to one,
note that the finite-size effect in ξ affects the values of z,
which causes a deviation from the expected z = 2 for p = 1.0.
Furthermore, we tried to extrapolate the value of pc from this
data. For this purpose, we fitted a Gaussian to the peaks of
the L = 64 and L = 128 data, while the data for L = 32
has a very pronounced peak at p = 0.78 (spacing �p =
0.01). As a result, we obtain estimates pc(L = 32) = 0.78(1),
pc(L = 64) = 0.777(2), and pc(L = 128) = 0.772(1). Thus
no pronounced finite-size effect is visible; see also the peak
of the L = 64 data in Fig. 5. This can be expected, since
we analyzed nonequilibrium data in the time interval where
the coherence length is much smaller than the system size.
Thus it does not make much sense to try to extrapolate pc for
large system sizes, which appears anyway not necessary since
the obtained values for pc are very well compatible with the
finite-size estimate from equilibrium studies.

In order to validate these results for ξ we will take a look
at the autocorrelation C from (7). An example for p = 0.5
is shown in Fig. 6. Obviously, the use of the powerful GPU
technique allowed us to obtain a very good statistics over large
time scales such that we can observe very clean power-law
behavior over many magnitudes of time. Transitions can be
seen around t = tw, respectively, from the equilibrium regime
with slow algebraic decay to the aging regime with faster
decay. This corresponds to the notion that up to time tw the
system is equilibrated on length scales of size ξ (tw) and it takes
time t > tw to make a spin feel that a system is not equilibrated
at longer length scales.

To obtain x, often called the equilibrium exponent in
spin glass context and defined in Eq. (8), we perform fits
inspired by Ref. [59] of the form C∞(t) = A · t−x + M2. This
is particularly difficult in the ferromagnetic phase p > pc,
since we performed the simulation at rather low temperatures
relative to Tc. This means that the magnetization M is rather
large, allowing only for a small drop of the correlation towards
M2 over time. Thus we first plotted C∞(t) − M2 on a log-log
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FIG. 7. Exponent x of the autocorrelation as a function of the
bond probability p for a 1283 system. The vertical line marks p = pc.
Inset: the square of the equilibrium magnetization estimated from a
fit to the quasiequilibrated region of C.

scale and varied M2 such that we observed a straight line
on a time interval as large as possible. This time interval
we used for the actual fit. Typically this resulted in an
interval like [10,104]. We show in Fig. 7 the exponent x at
different probabilities along with the squared magnetization
in the inset. In the spin-glass phase M2 naturally starts at
basically zero but then makes its appearance slightly before
the transition and grows, almost approaching 1 for p → 1. The
exponent begins growing at the same point from an initial value
x ≈ 0.019 for the spin glass p = 0.5 and reaching x ≈ 0.4 for
the ferromagnet p = 1.0. Deep in the ferromagnetic regime
M2 ≈ 1; thus the correlation function drops only slightly. Thus
the value of x is difficult to measure with our method in that
regime.

Next we test the assumption that the aging part scales
with ξ (tw + t)/ξ (tw) in the spin-glass phase at p = 0.5 by
trying a collapse in Fig. 8 using a multiplicative decomposi-
tion C(tw,t) = Ceq(t) · Cage(tw,t). We used the results for ξ

previously obtained using the fit approach. This gave a better
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FIG. 8. (Color online) Collapse of the autocorrelation C at dif-
ferent waiting times tw for a 1283 system at p = 0.5. The values for ξ

are interpolated from the fitting results. x is adjusted for best collapse.
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FIG. 9. (Color online) Collapse of the autocorrelation C at dif-
ferent waiting times tw for a 1283 system at p = 0.8. The values
for ξ are interpolated from the integral results. x, A and an additive
constant ξ0 ≈ −0.66 to ξ are adjusted for best collapse.

collapse than the integral results especially for small tw. For
the display in Fig. 8, we subtract 1 from our abscissa to make
the collapse of values for t 
 tw and thus ξ (tw + t) ≈ ξ (tw)
better visible. As can be seen from the figure, the quality of
the collapse is very good.

The optimal value of x ≈ 0.016 for the collapse is a bit
smaller than the fit result shown in Fig. 7 and generally seems
to be susceptible to the particular form of ξ . Note that we
tried also collapses with an additive decomposition C(tw,t) =
Ceq(t) + Cage(tw,t) but this resulted everywhere in the spin-
glass phase in a worse overlap of the curves even with its
additional free parameter.

Starting in the region p > 0.7, when M2 first becomes
measurably larger than zero, the additive decomposition can
give a good collapse as well and beyond the transition p >

0.77 the multiplicative collapse ceases working. Here p = 0.8
seems to be the furthest we can go into the ferromagnetic phase,
before larger errors and finite-size effects prevent finding a
good collapse at all. We show this collapse in Fig. 9 using the
integral results for ξ this time, as they are slightly better suited
here. In addition to the parameters x and A associated with
Ceq we have to introduce an additive constant ξ0 ≈ −0.66 to
ξ , see label of the x axis, in order for the collapse to work.
This constant represents the corrections to scaling which arise
at small correlation lengths, where the additive decomposition
is apparently more susceptible to them. The exponent x ≈ 0.1
is slightly larger than the fit result this time and again very
sensitive. For the scaling of the x axis, we also tried different
growth laws like power law, enhanced power law, or logarithm
law [7,60] instead of the actually measured correlation lengths.
This usually gave better collapses by adjusting the parameters,
but the end results were unphysical, possibly due to over-
fitting. Thus we do not show these collapses here.

Finally, we also studied the aging behavior of the auto-
correlation, i.e., at long times beyond tw in the ferromagnetic
phase. Here a power-law behavior C(t) ∼ t−λ is visible. For
intermediate waiting times, e.g., tw = 104, the fit works well
in the range pc < p < 0.95 and the value of λ changes only
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slowly with p, i.e., increases from λ = 0.090(1) for p = 0.8
to λ = 0.131(2) for p = 0.95. For smaller waiting times the
dependence of λ on p is stronger, e.g., for tw = 100 it grows
from λ = 0.116(1) at p = 0.8 to λ = 0.209(1) at p = 0.95
and finally λ = 0.257(2) at p = 0.975.

V. CONCLUSION

We were able to perform relatively long simulations of the
random-bond Edwards-Anderson model at low temperatures
for multiple different bond probabilities p from the spin-glass
phase up to the ferromagnetic one. This was made possible
largely through the use of general-purpose GPU (CUDA)
computing, which has become feasible in recent years. Thus
the CUDA-based approach allows for very fast simulations of
spin glasses at much cheaper costs compared to standard CPU
systems or even compared to specific FPGA-based hardware
like the Janus computer [36].

The aging behavior of the spin-glass phase seen in previous
studies, restricted to p = 0.5, was reproduced well. The
main purpose of our work was to study the aging behavior
of the system as a function of the variable fraction p of
ferromagnetic bonds. Using this nonequilibrium study, we
could easily detect the transition from the spin-glass phase
to the ferromagnet, when altering the bond probability p. This
was visible in all quantities we measured. Note that further into
the ferromagnetic phase finite-size effects began to complicate
matters considerably and we cannot give exact results there.
Our entry point, the spatial correlation, contains information
about the growing length scale of a system but, because we
lack an explicit form for it, getting reliable values is difficult.
The integral estimators taken from Refs. [29,33] have proven
useful but do not seem to work as well at short times. A
multifit of the assumed form (4) can help out for these cases.
It also turns out the matching form changes noticeably when
crossing the phase transition line. While the exponent β of the
stretched exponential only lowers slightly, the other exponent
α basically vanishes in the ferromagnetic phase, thus arriving
at a simpler form.

The autocorrelation exhibits a quasiequilibrated part with
power law behavior in the spin-glass phase. This part ap-
proaches a plateau for the ferromagnet associated with the
square of the equilibrium magnetization M2. The exponent
x grows when moving deeper into the ferromagnet phase.
On the other hand, the range over which a power law can
be fitted becomes smaller; thus x is becoming harder to
measure. The aging part, on the other hand, can be scaled
well with the quotient ξ (tw + t)/ξ (tw) in the spin-glass and
a bit into the ferromagnetic phase, also giving credence to
their calculated values. The assumption of power law growth
works for the coherence length albeit with a small correction
for early values. However, we did not delve into testing a
crossover to logarithmic growth. The power law exponent z is
naturally higher for the slower dynamics of the spin glass. But
it also shows additional slowdown in the critical region around
the phase transition. In essence all findings agree with the
general expectations that in the ferromagnet the equilibrium
state is more uniform and stationary and systems can arrive
there much faster. Nevertheless, we were quite surprised how
well the equilibrium disorder-driven transition shows up when
measuring the nonequilibrium aging properties.

However, our whole approach was focused on the long
time simulation of spin glasses and as such we could not get
as good results for the ferromagnet. Because of the faster
evolution a different emphasis would have to be placed to
fare better. Also it can be seen as a bit questionable to make
use of the trick of recycling random numbers for different
samples without a strong influence of the disorder. In any case,
beyond the physical results, the developed implementation and
analysis methods can be used to proceed further efficiently with
investigations of the equilibrium and nonequilibrium behavior
of the random bond model.
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