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We consider a system of spins on the sites of a three-dimensional pyrochlore lattice of corner-sharing tetrahedra
interacting with a predominant effective xy exchange. In particular, we investigate the selection of a long-range
ordered state with broken discrete symmetry induced by thermal fluctuations near the critical region. At the
standard mean-field theory (s-MFT) level, in a region of the parameter space of this Hamiltonian that we refer to
as �5 region, the ordered state possesses an accidental U(1) degeneracy. In this paper, we show that fluctuations
beyond s-MFT lift this degeneracy by selecting one of two states (so-called ψ2 and ψ3) from the degenerate
manifold, thus exposing a certain form of order-by-disorder (ObD). We analytically explore this selection at
the microscopic level and close to criticality by elaborating upon and using an extension of the so-called TAP
method, originally developed by Thouless, Anderson, and Palmer to study the effect of fluctuations in spin
glasses. We also use a single-tetrahedron cluster-mean-field theory (c-MFT) to explore over what minimal length
scale fluctuations can lift the degeneracy. We find the phase diagrams obtained by these two methods to be
somewhat different since c-MFT only includes the shortest-range fluctuations. General symmetry arguments
used to construct a Ginzburg-Landau theory to lowest order in the order parameters predict that a weak magnetic
moment mz along the local 〈111〉 (ẑ) direction is generically induced for a system ordering into a ψ2 state, but not
so for ψ3 ordering. Both E-TAP and c-MFT calculations confirm this weak fluctuation-induced mz moment. Using
a Ginzburg-Landau theory, we discuss the phenomenology of multiple phase transitions below the paramagnetic
phase transition and within the �5 long-range ordered phase.
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I. INTRODUCTION

In the study of condensed matter systems, mean-field
theory [1] is often the simplest starting point to obtain a
qualitative understanding of the essential physics at play prior
to carrying out a more sophisticated analysis. A standard mean-
field theory (s-MFT) replaces the many-body problem with a
simpler problem of a one-body system interacting with an
averaged field produced by the rest of the interacting particles.
In systems with competing or frustrated interactions, s-MFT
may yield a number of states with a degenerate minimum free
energy below the mean-field critical temperature, T MF

c [2,3].
If these degeneracies are accidental, that is not imposed by
exact symmetries of the Hamiltonian, they may be lifted
by the effects of thermal [4] or quantum [5] fluctuations, a
phenomenon known as order-by-disorder (ObD) [4–8].

The concept of ObD was originally proposed by Villain
and collaborators as the ordered state selection mechanism
for a two-dimensional frustrated Ising model on the domino
lattice [4]. Since this seminal work, ObD has been theoretically
identified and discussed for many highly frustrated magnetic
models [6–18]. These systems generically possess an expo-
nentially [exp(Nα)] large number of classical ground states
(here N is the number of spins in the system and α � 1). As a
result, highly frustrated magnetic systems are intrinsically very
sensitive to fluctuations or energetic perturbations. In the con-
text of experimental studies of real materials, it is difficult to
distinguish a selection of an ordered state via fluctuations from
one that would arise from energetic perturbations beyond the
set of interactions considered in a restricted theoretical model.
Consequently, undisputed examples of ObD in experiments
have remained scarce [19–21].

Quite recently, following an original proposal going back
ten years [22,23], and building on an earlier study [24], several
papers [15–18] have put forward compelling arguments for
ObD being responsible for the experimentally observed long-
range order in the insulating rare-earth pyrochlore oxide [25]
Er2Ti2O7. In this compound, Er3+ is magnetic and Ti4+ is not.
The key observation in those works is that the accidentally de-
generate classical ground states are related by operations with
a U(1) symmetry [16]. This set of classically degenerate states
form the so-called �5 manifold [26]. For a range of interaction
parameters of the most general symmetry-allowed bilinear
nearest-neighbor pseudospin 1/2 exchange-like Hamiltonian
[referred to as H in Eq. (1a) below] on the pyrochlore lattice
of corner-sharing tetrahedra (see Fig. 3), the U(1) degeneracy
is exact at the s-MFT level as long as the cubic symmetry
of the system remains intact. As a shorthand, we henceforth
refer to this region of exchange parameter space as the �5

region, as referred to in the Abstract. Reference [16] showed
that the U(1) symmetry is robust against a wide variety of
perturbations added to H and argued that essentially only
fluctuations can efficiently lift the degeneracy in Er2Ti2O7

when considering bilinear anisotropic interactions of arbitrary
range between the pseudospins.1 Similar arguments were made
in Ref. [15]. In this compound, a particular long-range ordered
state, the ψ2 state (see Fig. 1) [22,23,26–30], is selected.

1It has been pointed out by McClarty et al. that the ψ2 state can
be energetically selected through a van Vleck-like mechanism [43].
Reference [16] argues that this mechanism is too weak by several
orders of magnitude to be at play in Er2Ti2O7. However, a recent
paper [30] questions this assertion.
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FIG. 1. (Color online) Spin configurations of the (a) noncoplanar
ψ2 state, as observed in Er2Ti2O7 [26], and the (b) coplanar ψ3 state
on a single tetrahedron. The pattern is the same on all tetrahedra
in a pyrochlore lattice which is a face-centered cubic lattice with
a tetrahedron basis and these two states, which belong to the �5

manifold, are thus said to have a k = 0 ordering wave vector. The
spin (in blue) at the a sublattice points along (a) the x̂a axis of the
local [111] reference frame for the ψ2 state and along (b) the ŷa axis
of the same local frame for the ψ3 state. The local ẑa axis at sublattice
a points along the local cubic [111] axis at that site such that the local
x̂a, ŷa, ẑa triad of orthogonal unit vectors (orange arrows) fulfills
x̂a × ŷa = ẑa . As illustrated in panels (a) and (b), the local ẑa axis for
sublattice a points directly out of the tetrahedron primitive basis cell.
See Appendix A for more details.

Considering H on the pyrochlore lattice, Wong et al. [17]
and Yan et al. [31] studied the effect of quantum [17,31]
and thermal [31] fluctuations and established a general phase
diagram for this Hamiltonian at T = 0+.

The investigations reported in Refs. [14–17,31] focused
on identifying the mechanism of ground state selection by
taking into account the harmonic quantum [14–17,31] or
classical [14,31] spin fluctuations about a classical long-range
ordered state. On the other hand, the problem of state selection
at temperatures near the critical transition temperature to the
paramagnetic phase has received significantly less attention.
Although there have been numerical studies of ObD selection
of the ψ2 state at T � Tc [14,15,22,23,31–33], or upon
approaching Tc from above [18], an analytical study specifying
the role of the individual microscopic anisotropic spin-spin
interactions in the ObD mechanism at T ≈ Tc has, to the best
of our knowledge, not yet been carried out. The problem
of selection at T � Tc is not only of relevance to the
phenomenology of Er2Ti2O7 or other pyrochlore magnetic
compounds [25], but it is of considerable interest for all
highly frustrated magnetic systems proposed to display an
ObD mechanism.

There are situations where a sort of ObD occurs near
Tc which differ from the textbook cases [4–6,8] where the
state selection near T = 0+, proceeding either via thermal or
quantum selection, is leveraged upon all the way to the long-
range ordered state selected at Tc. For example, the long-range
ordered state selected by ObD can in principle be different for
the T = 0+ and T � Tc regimes. This occurs, for example, for
classical Heisenberg spins on the pyrochlore lattice interacting
via nearest-neighbor antiferromagnetic exchange and indirect
Dzyaloshinskii-Moriya interaction [33,34]. In another class
of problems, different competing long-range ordered states

may have the same free energy at the s-MFT level only over
a finite temperature interval, T ∗ � T � Tc with a transition
to a nondegenerate classical ground state at T ∗. There,
thermal fluctuation corrections to s-MFT can select one of
the competing states over the T ∗ � T � Tc window. This is
what is predicted to occur in the multiple-k state selection in
the Gd2Ti2O7 pyrochlore antiferromagnetic between 0.7 and
1.0 K [35]. Perhaps the most exotic cases arise when a relic
of ObD occurs at the critical temperature, while the classical
ground state is not degenerate for the Hamiltonian considered,
but would be for a closely related Hamiltonian minus some
degeneracy-lifting weak energetic perturbations [14,36,37].
At the phenomenological Ginzburg-Landau level description,
these cases are not paradoxical. They only become so when
one is trying to ascribe a microscopic description to the physics
at stake and the origin for, at least, one further equilibrium
thermodynamic phase transition at some temperature below
the paramagnetic transition at Tc. Finally, and generally
speaking, one may ask whether a discussion of ObD at
T = 0+ is of pragmatic usefulness given that most experiments
for which ObD may pertain typically proceed by cooling a
material from a paramagnetic disordered phase to an ordered
phase and not going below a certain baseline nonzero tem-
perature constrained by the experimental setup. This broader
context provides the motivation for our work which aims
to go beyond the sole consideration of a phenomenological
Ginzburg-Landau theory that contains all terms, relevant or not
(in the renormalization-group sense), allowed by symmetry
and to expose how the different competing microscopic
interactions participate to the degeneracy-lifting near the
transition at Tc.

In the temperature regime near a phase transition, the
harmonic approximation describing low-energy excitations
usually employed in theoretical discussions of ObD [5–8]
at T = 0+ is not physically justified since large fluctuations
typically accompany the phase transition to the paramagnetic
state. From a fundamental viewpoint, it is thus highly desirable
to study the role of fluctuations beyond s-MFT using a
different method that can be applied at temperatures close to
the critical region. A possible route to tackle this problem
was paved by Thouless, Anderson, and Palmer (TAP) in
their study of the effect of fluctuations in spin glasses [38].
For the case of the Ising spin glass model, Plefka showed
that the TAP correction can be systematically derived using
a perturbative expansion [39]; an approach that was later
generalized by Georges and Yedidia who calculated higher-
order terms in the Plefka’s perturbative expansion [40]. This
approach, which we refer to as extended TAP (E-TAP), consists
of a high-temperature expansion in β ≡ 1/kBT about the
s-MFT solution. It captures corrections to the s-MFT free
energy by including fluctuations in the form of on-site linear
and nonlinear susceptibilities. A second approach allowing
one to go beyond s-MFT is the cluster mean-field theory
(c-MFT) [41,42]. This approach treats short-range fluctuations
within a finite cluster exactly while taking into account the
intercluster interactions in a mean-field fashion.

In the present work, we focus on the problem of ObD
selection near criticality in a spin model on the pyrochlore
lattice with predominant xy interactions using the E-TAP
method. We have recently used this method to investigate
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the problem of partial multiple-k order in pyrochlore mag-
nets [35]. In this paper, we also employ c-MFT. We concentrate
on the �5 manifold for the T � T MF

c regime since �5 is
not only an interesting theoretical playground according to
recent investigations [14–17,30–32,43], it is also of potential
relevance to real pyrochlore materials, such as Er2Ti2O7,
proposed to display an ObD mechanism [15,16,22,29]. In
addition, the interesting case of distinct ObD selection at T =
0+ and Tc, reported in a pyrochlore system with anisotropic
spin-spin coupling [33], further motivates us in investigating
the role of the various spin interactions in the state selection
at T � Tc in a general model of interacting spins on the
pyrochlore lattice.

The rest of the paper is organized as follows. In Sec. II,
we present the bilinear nearest-neighbor spin model defined
by the Hamiltonian H of Eq. (1a) on the pyrochlore lattice
and discuss its symmetries. Focusing on the �5 manifold, we
present a Ginzburg-Landau (GL) symmetry analysis to specify
the general form of the lowest-order anisotropic terms allowed
in the GL free energy (FGL) that can lift the accidental U(1)
degeneracy found in s-MFT. We show that the fluctuation
correction terms to the s-MFT free energy select either the
ψ2 or the ψ3 long-range ordered state of the �5 manifold (see
Fig. 1 and Appendix A for definitions) as well as induce a weak
moment mz along the local [111] direction for the ψ2 state.
In Sec. III A, we present the E-TAP method and determine
the phase boundary at Tc between the ψ2 and ψ3 states in
the space of anisotropic spin-spin coupling constants. We
investigate in Sec. III B how short-ranged fluctuations acting
on the length-scale of a single-tetrahedron can lead to ObD
when incorporated in the self-consistent scheme of c-MFT. The
c-MFT method also allows us to explore semi-quantitatively
the role of nonzero effective Ising exchange (Jzz) on the
selection at Tc. In Sec. IV, we briefly discuss the possibility
of multiple phase transitions in xy pyrochlore magnets as
temperature, for example, is varied. Finally, we close with
a discussion in Sec. V. A number of appendices are provided
to assist the reader with the technical details of the E-TAP
calculations. In Appendix A, we detail the spin configurations
of the ψ2 and ψ3 states. In Appendix B, we analyze the
symmetry properties of the ψ2 and the ψ3 states to show that a
fluctuation-induced local mz moment is only compatible with
a ψ2 long-range ordered state. We provide in Appendix C
the details of the E-TAP calculations and the diagrammatic
approach employed.

II. MODEL

We consider the following Hamiltonian on the pyrochlore
lattice [16,44]:

H = H0 + H1, (1a)

H0 =
∑
〈ij〉

JzzS
z
i S

z
j − J±(S+

i S−
j + S−

i S+
j ), (1b)

H1 =
∑
〈ij〉

J±±(S+
i S+

j γij + S−
i S−

j γ ∗
ij )

+ Jz±{Sz
i (ζijS

+
j + ζ ∗

ij S
−
j ) + i ↔ j}, (1c)

where S±
i ≡ Sx

i ± iS
y

i and S
μ

i , with μ = z, + ,−, is defined
in the local [111] coordinate frame [44] attached to each of the

four pyrochlore sublattices (see Fig. 1). Si can be treated clas-
sically as a three-component vector or quantum mechanically
as an operator such as a Si = 1/2 pseudospin. In the context
of magnetic rare-earth pyrochlores, Si would represent either
the total angular momentum J within a simplified model of
J- J coupling [30,45–47], or a pseudospin 1/2 describing the
single-ion ground state doublet [15,16,25,44–48].

As we are foremost interested in the selection of classical
ordered phases at 0 � T � Tc, we shall treat Si generally
classically with |Si | = 1/2 for all i. However, in Sec. III B,
where we use the c-MFT method, we consider Si = 1/2
quantum mechanically, mostly for computational ease. In
Eq. (1), Jzz, J±, J±±, and Jz± are the four symmetry-allowed
independent nearest-neighbor exchange parameters, while
ζij = −γ ∗

ij are bond-dependent phases on a single tetrahedron
defined in Refs. [16,44,48].2

It is important for the discussion that follows to split H
into the two terms H0 and H1 in Eq. (1a) and consider the
symmetry properties of each term. H0 has a U(1) symmetry: it
is invariant under a rotation of Si by an arbitrary global angle
about the local 〈111〉 axes. On the other hand, the H1 term in
Eq. (1a) is only invariant under rotations of Si by 2π

3 , reducing
the symmetry of H to Z6 (C3[111] × Z2).

We consider an s-MFT treatment of the Hamiltonian of
Eq. (1), which orders in a state with a k = 0 ordering wave
vector in a certain region of the parameter space centered
around a dominant J± (�5 region). In this state, all the magnetic
moments in the system lie predominantly perpendicular to the
local [111] direction and point in the same direction in the
local coordinate system (see Fig. 1). These spin configurations
define the �5 manifold [26]. As a result, mi ≡ 〈Si〉, the on-site
magnetization,3 and φi ≡ tan−1(my

i /mx
i ), the azimuthal angle

expressed in the local [111] coordinate system, are independent
of the lattice site index i. We henceforth drop the index i of φi

and mi for these k = 0 spin configurations.
As first noted in Ref. [16], in the �5 region, the s-MFT

free energy is independent of φ and the system displays an
accidental U(1) symmetry within such a s-MFT description.
However, since H only has a global Z6 symmetry, we expect
that in a treatment of the problem that goes beyond s-MFT,
this “artificial” U(1) symmetry to be reduced to a Z6 symmetry
in the paramagnetic phase, which gets spontaneously broken
in the ordered phase. In this context, we note that a high-
temperature series expansion of the quantum model (1a),
with values {J±,J±±,Jz±,Jzz} appropriate for Er2Ti2O7 [16],
shows explicitly that such a Z6 anisotropy develops in the
paramagnetic phase upon approaching Tc from above [18].
Also, a recent Monte Carlo study has investigated the critical
behavior of a classical version of this model [32]. We now
present a Ginzburg-Landau (GL) symmetry analysis that
allows one to anticipate the form of the lowest order fluctuation
corrections to s-MFT that lift the U(1) degeneracy.

2It has recently been pointed out by Y.-P. Huang, G. Chen, and M.
Hermele [49] that there are cases (for example, Nd3+ in Nd2Zr2O7

and Dy3+ in Dy2Ti2O7) where the single-ion ground state doublet is
a so-called “dipolar-octupolar” doublet in which γij is independent
of the 〈i,j〉 bond.

3〈· · · 〉 represents a thermal Boltzmann average.
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Ginzburg-Landau (GL) symmetry analysis

We start by defining the complex variable

mxy ≡
√

m2
x + m2

y exp(iφ), (2)

which corresponds to the magnitude and direction of the on-
site magnetization m = 〈Si〉 in the local xy plane.

For simplicity, we first consider a strictly local-xy state and
assume mz = 0. The allowed terms in the Ginzburg-Landau
(GL) free energy can only be of even powers in mxy due to
time-reversal symmetry, τ . On the other hand, the rotation by
2π/3 about the cubic 〈111〉 axes, or C3 symmetry, forbids
the existence of terms of the form mn

xy + (m∗
xy)n unless n is a

multiple of three. The resulting terms have the ability to lift
the accidental U(1) degeneracy of the �5 manifold since they
introduce a dependence of the GL free energy on the azimuthal
angle φ, the orientation of m in the local xy plane [see Eq. (2)].
Considering the effect of C3 and τ together, assuming strictly
xy order (mz = 0), the lowest order term that breaks the U(1)
symmetry must therefore have n = 6 and be of the form

η6(T )
[
m6

xy + (m∗
xy)6], (3)

where the anisotropy strength η6 depends on temperature
T . We note that such a sixth order term is dangerously
irrelevant for the three-dimensional xy universality class.4

This means that while it does not affect the critical properties
of the system [32,50], this term plays a crucial role in the
selection of a specific long-range ordered state by lifting
the U(1) s-MFT degeneracy at T � Tc. Higher-order terms
f6n ∼ |mxy |6n (n > 1) are also generated by fluctuations, but
are even more irrelevant than f6 at Tc. As an example, we
discuss in Sec. IV the effects of competing f6 and f12 terms at
T < Tc as the amplitude |mxy | grows upon cooling below Tc.

If we now include the z component of the order parameter,
i.e., mz 
= 0, a U(1) symmetry-breaking term arises at fourth
order in the components of m in the GL free energy. Such a
term was only recently noted in a numerical study [30] but
whose microscopic and symmetry origins were not discussed.
Again, based on the combined effect of the C3 and τ symmetry
operations, the degeneracy-lifting fourth order term in the GL
free energy has the form

ω(T )mz

[
m3

xy + (m∗
xy)3

]
, (4)

where, here again, the anisotropic coupling ω depends on
T . Together, Eqs. (3) and (4) identify the form of the two
lowest-order terms in the GL free energy capable of lifting the
degeneracy within the �5 manifold.

It turns out that the sixth order term of Eq. (3) and the
fourth order term of Eq. (4) have the same net effect in lifting
the degeneracy beyond s-MFT as can be shown by combining
them into a single term in the GL free energy, FGL. Consider
first the quadratic terms in FGL of the form r0(m2

x + m2
y) +

r1m
2
z . Here r0 and r1 are chosen to be different to emphasize

the distinct criticality for the xy and z components of the order

4It is dangerously irrelevant since at temperatures T < Tc this
becomes relevant above a length scale λ, which diverges as a power
of the correlation length [32,50].

parameter m. Next, taking into account the terms of Eqs. (3)
and (4), we have

FGL = r0
(
m2

x + m2
y

) + r1m
2
z + ωmz

[
m3

xy + (m∗
xy)3]

+ η6
[
m6

xy + (m∗
xy)6

] + F (4)
GL(mxy,mz)

+F (6)
GL(mxy,mz) + · · · . (5)

This can be rewritten as

FGL = r0
(
m2

x + m2
y

) + r1

[
mz + ω|mxy |3 cos(3φ)

r1

]2

− ω2|mxy |6
2r1

+
(

2η6 − ω2

2r1

)
|mxy |6 cos(6φ)

+F (4)
GL(mxy,mz) + F (6)

GL(mxy,mz) + · · · , (6)

where we used Eq. (2) to go from Eqs. (5) to (6). In Eqs. (5)
and (6), F (4)

GL and F (6)
GL are fourth- and sixth-order terms and

· · · represents terms that are of higher order in the components
of m. We take r1 > 0 to enforce no criticality for the mz

component of m. Upon minimizing Eq. (6) with respect to
mz, we obtain

mz = −ω|mxy |3 cos(3φ)/r1. (7)

Hence, after having minimized FGL with respect to mz, we
have

δFGL(φ) ≡ 2η̄6|mxy |6 cos(6φ), (8)

with

2η̄6 ≡ (2η6 − ω2/2r1), (9)

and where δFGL(φ) is the anisotropic part of FGL, the U(1)
degeneracy-lifting term on which we focus. The minimum
of δFGL is either cos(6φ) = ±1 depending on the sign of
η̄6. This happens for φ = nπ/3 or φ = (2n + 1)π/6, with
n = 0,1, . . . ,5 with these two sets of angles corresponding,
respectively, to the ψ2 and the ψ3 states (see Fig. 1). So, when
η̄6 < 0 (η̄6 > 0), the minimum free-energy state is ψ2 (ψ3).
The boundary between ψ2 and ψ3 is thus determined by the
real roots of η̄6. A similar discussion is invoked in Ref. [17] to
describe the zero temperature ψ2-ψ3 phase boundaries arising
from quantum ObD.

We note that the fluctuation corrections to s-MFT induce
a local mz moment to the minimum free-energy state, which
was found to be strictly ordered in the local xy plane at the
s-MFT level.5 Since this moment is proportional to cos(3φ),
only the ψ2 state can have a nonzero mz. This result is also
expected based solely on symmetry considerations for the ψ2

and ψ3 states (see Appendix B). The induced moment is,
however, small just below Tc since it is proportional to |mxy |3
and inversely proportional to r1 which remains firmly positive
away from spontaneous Ising criticality at r1 = 0.

5We note that, as we were concluding the present work, a very
recent paper by Petit et al. [30] building on the model of Ref. [43],
also reported a weak mz moment in a mean-field theory calculation
considering anisotropic J- J couplings and the crystal electric field
of Er2Ti2O7.
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At the phenomenological GL level, Eq. (8) is the final result
demonstrating how the U(1) degeneracy at the s-MFT level
may be lifted by the anisotropic terms of Eqs. (3) and (4).
In this work, however, we are rather interested in exposing
how the coefficient of the symmetry-breaking terms in the free
energy of Eq. (6), η̄6, can be determined at a microscopic level
when going beyond a s-MFT description. Specifically, we wish
to explore the leading dependence of η̄6 upon the J±±, Jz±,
and Jzz anisotropic exchange couplings near Tc.

III. METHODS AND RESULTS

In Sec. III A, we use the E-TAP method to compute the
phase boundary between the ψ2 and ψ3 states determined by
the function η̄6 in Eq. (8) for T � T MF

c . In this calculation,
we consider for simplicity Jzz = 0 in Eq. (1).6 In Sec. III B,
we conduct a complementary numerical study of fluctuation
corrections to the s-MFT using cluster-MFT (c-MFT), which
allows us to explore the effect of fluctuations at the level of
one tetrahedron for both Jzz = 0 and Jzz 
= 0. Since we are
essentially interested in the �5 region where the dominant
interaction is J± in Eq. (1), we express the rest of the
couplings in units of J± and we henceforth denote the
scaled (perturbative) interactions with lower case letters, i.e.,
j±± ≡ J±±/J± and jz± ≡ Jz±/J±.

A. Extended-TAP Method (E-TAP)

1. Method

In a magnetic system with static magnetic moments, a given
moment is subject to a local field due to its neighbors. In
an s-MFT treatment, the moment affects its own local field
indirectly; this is an artifact of s-MFT. The so-called Onsager
reaction field introduces a term in the s-MFT free energy that
cancels this unphysical effect to leading order. As was shown
by Thouless, Anderson, and Palmer (TAP) [38], this reaction-
field correction is particularly important in setting up a proper
mean-field theory description of spin glasses with infinite-
range interactions [51]. Here, we present an extended version
of the TAP method (E-TAP) first developed by Georges and
Yedidia [40] for Ising spin glasses and which includes the
lowest-order fluctuation corrections originally calculated by
TAP as well as those beyond.

To proceed, we must first modify the E-TAP procedure of
Ref. [40] to study the case of three-component classical spins
with anisotropic exchange interactions. In the E-TAP method,
nonzero on-site fluctuations, i.e., 〈Sα

i S
β

i 〉 
= 〈Sα
i 〉〈Sβ

i 〉 [40], are
taken into account via a high-temperature expansion (small β)
of a Gibbs free energy:

G = − 1

β
ln Tr

{
exp

[
−βH +

∑
i

λi · (Si − mi )

]}
. (10)

Here, mi is the average magnetization at site i, mi ≡ 〈Si 〉 and
λi is a Lagrange multiplier, which fixes mi to its mean-field

6Considering Jzz 
= 0 contributions to the cos(6φ) coefficient would
require calculating higher-order terms in β in the expansion of
Eq. (10). Such a calculation is beyond the scope of the present work.

value. The high-temperature expansion introduces fluctuations
about the s-MFT solution. Defining βG(β) ≡ G̃(β), the first
two terms of the expansion in powers of β, G̃(0)/β and G̃′(0),
are the entropy and energy at the s-MFT level, respectively.
The prime represents differentiation with respect to β. The
higher-order terms in the β expansion of the Gibbs free energy
correspond to fluctuation corrections to the s-MFT free energy
that generate the terms that lift the U(1) degeneracy. We
aim to calculate the higher-order terms (beyond β2) in the
β expansion of Eq. (10) that contribute to the degeneracy
lifting term 2η̄6|mxy |6 cos(6φ) of Eq. (8) to lowest order
in the coupling constants j±± and jz±.7 In other words,
we are considering the selection near mean-field criticality
and perturbative (in jz± and j±±) vicinity of the U(1)
symmetric portion of the theory [H0 in Eq. (1a)]. Since we
are focusing on the expansion of G in Eq. (10), we write its
correction δG beyond the s-MFT solution as suggested by
Eq. (8):

δG = 2η̄6(j±±,jz±)|mxy |6 cos(6φ). (11)

As discussed in Sec. II A, η̄6(j±±,jz±) = 0 determines the
phase boundaries between the ψ2 and the ψ3 states in the
space of coupling constants j±± and jz±. We now proceed to
calculate η̄6(j±±,jz±) with the E-TAP method.

In the nth order of the β expansion, factors of the form
jk
±±j l

z± arise, where k and l are positive integers and k + l = n.
Each power of j±± and jz± contributes factors of e±2iφ and
e±iφ , respectively [see Eq. (1c)], to the corresponding term in
the β expansion. By a simple power counting of these factors,
one can pinpoint the terms that contribute to cos(6φ) and
cos(3φ) that are necessary to compute due to their contribution
to ω and η6 and, consequently, to η̄6 (see. Eq. (9)), and which
arise at different orders in β in the E-TAP calculation. It
is straightforward arithmetic to find what combinations of
k and l in jk

±±j l
z± generate cos(6φ) and cos(3φ) terms. We

then calculate ω and η6 in Eqs. (5) and (6) in terms of the
microscopic couplings j±± and jz± using the E-TAP method
(see Appendix C). We obtain ω(j±±,jz±), η6(j±±,jz±), and
thus η̄6(j±±,jz±), all to lowest nontrivial order in j±± and jz±.
These read as8

ω(j±±,jz±) = a0βj±±jz± + β2(a1j
2
±±jz± + a2j

3
z±)

+β3(a3j
3
±±jz± + a4j±±j 3

z±) (12)

and

η6(j±±,jz±) = b0β
2j 3

±± + b1β
3j 2

±±j 2
z±

+ b2β
4j±±j 4

z± + b3β
5j 6

z±, (13)

7We recall that J± is the dominant interaction and j±± and jz± are
being treated perturbatively in Eq. (1).

8We note that E-TAP corrections of the coefficient r1 in Eq. (5) does
not contribute to η̄6(j±±,jz±) when it is calculated to the lowest order
in the coupling constants j±± and jz±, and we therefore use its s-MFT
r1 = 2/β value.

174424-5



JAVANPARAST, DAY, HAO, AND GINGRAS PHYSICAL REVIEW B 91, 174424 (2015)

TABLE I. Values of ai in ω(j±±,jz±) multiplied by 102.

a0 a1 a2 a3 a4

−0.593 −1.13 −0.451 −0.938 7.21

and, consequently,

2η̄6(j±±,jz±) = c0β
2j 3

±± + c1β
3j 2

±±j 2
z± + c2β

4j±±j 4
z±

+β5(c3j
4
±±j 2

z± + c4j
2
±±j 4

z± + c5j
6
z±). (14)

In Eqs. (12)–(14), ai (i = 0, . . . ,4), bj (j = 0, . . . ,3), and
ck (k = 0, . . . ,5) are numerical coefficients determined by the
explicit E-TAP calculation too lengthly to reproduce here, but
whose derivation is described in Appendix C. Considering the
highest power of coupling constants j±± and jz± in Eq. (14),
one needs to compute terms up to sixth order in the high-
temperature expansion of G in Eq. (10).

2. Results

In order to obtain the numerical value of the ai , bj ,
and ck coefficients in Eq. (14), we employ a diagrammatic
technique to represent the terms in the β expansion and which
constitutes the computational core of the E-TAP method.
These diagrams are composed of vertices and bonds [52]. The
vertices correspond to lattice sites covered by a diagram and
the bond represents the interaction between the vertices that
it connects. The details necessary to carry out the calculations
using diagrams are presented in Appendix C 4. As mentioned
earlier, for computational simplicity, we only consider the case
of jzz = 0. Recalling Eq. (9), and noting that to the lowest order
we can use the s-MFT value of r1, r1 = 2/β, we find

2η̄6(j±±,jz±) = 10−5 × [−6.50β2j 3
±± + 57.3β3j 2

±±j 2
z±

+ 26.5β4j±±j 4
z± + 27.8β5j 6

z±

− 7.95β5j 4
±±j 2

z± − 4.60β4j 3
±±j 2

z±

+ 66.5β5j 2
±±j 4

z±
]
. (15)

In deriving Eq. (15), we used ω and η6 in Eqs. (12) and (13),
respectively, with the numerical values of ai and bj coefficients
given in Tables I and II.

Since η̄6(j±±,jz±) = 0 determines the boundaries between
the ψ2 and ψ3 states, we need to compute the roots of Eq. (15).
In order to be consistent with the above E-TAP derivation
perturbative in jz± and j±±, we ought to only consider the
lowest order term in the root of η6 given by Eq. (15). We find
that Eq. (15) has one real root which to, the lowest order in the
coupling constants, reads

j±± ≈ p0j
2
z± + · · · , (16)

where the · · · represent higher-order terms in jz± and p0 ≈
9.37β, which determines the phase boundary between the

TABLE II. Values of bj in η6(j±±,jz±) multiplied by 104.

b0 b1 b2 b3

−0.322 2.92 1.42 1.42

J
±±

/J
±

Jz±/J±

-2

-1

0

1

2

-3 -2 -1 0 1 2 3

ψ3

Jzz/J± = 0

ψ2

ψ4(PC)

SF

FIG. 2. (Color online) The jzz = 0 phase diagram of the model at
T � Tc. The �5 region corresponds to the region enclosing the ψ2 and
ψ3 states taken together. The �5 region is circumscribed by an outer
(red) parabola j±± = 2j 2

z±/3 − 2 and a horizontal red line at j±± = 2
obtained from the s-MFT calculation [17]. The phase boundary
between the ψ2/ψ3 states obtained from the E-TAP calculations (i.e.,
the roots of η̄6 = 0, see text) is represented by the black line. The
phases outside of the boundaries of the �5 region are the following: a
splayed ferromagnet (SF) [44] canted from the [100] cubic direction
and the so-called ψ4 or Palmer-Chalker (PC) state [17,26,53]. Both
the SF and the PC phases have k = 0 ordering wave vector.

ψ2 and the ψ3 states for jzz = 0, jz± � 1, and β � βc. The
corresponding ψ2-ψ3 boundary for β = 0.253 � βMF

c = 1/4,
providing an estimate of the boundary in the limit T → T −

c ,
is shown Fig. 2. The “outer” s-MFT boundaries of the overall
�5 region for jzz = 0 is also shown in this figure. Outside
the �5 boundary, the system orders in a Palmer-Chalker (PC)
state [17,26,53] or a splayed ferromagnet (SF) [44].

It was found in Ref. [17] that, at zero-temperature, quantum
fluctuations yield three distinct phase boundary for jzz = 0, a
result confirmed in Ref. [31], even in the regime jz± � 1 and
j±± � 1, for which the E-TAP results for the ordered state
selection at T � Tc presented here apply. The combination
of the E-TAP results with those from Ref. [17] suggests,
because of the different ψ2/ψ3 boundaries at T = T −

c and
T = 0, the possibility of multiple transitions between ψ2 and
ψ3 as the temperature is decreased well below Tc as was
found for the model of Ref. [33]. Such a multiple-transition
scenario constitutes an exotic variant of the more conventional
ObD phenomenon since fluctuations select distinct long-range
ordered states in different temperature regimes (T � Tc and
T = 0+). That being said, one should be reminded that since
the E-TAP phase diagram of Fig. 2 was constructed on
the basis of a lowest order fluctuation correction to s-MFT
described by Eqs. (12)–(14) and for a classical version of H in
Eq. (1), this discussion of multiple transitions is therefore only
qualitative within the present E-TAP calculation. However, we
expand further on this topic in Sec. IV within a Ginzburg-
Landau theory framework. In the low-temperature regime,
T � Tc, a study that incorporates high-order magnon-magnon
interaction at nonzero temperature starting from the results of
Ref. [17] would be of interest to explore this phenomenology
further. This is, however, beyond the scope of the present work.
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B. Cluster mean-field theory (c-MFT)

It is interesting to ask to what extent a calculation,
any calculation, that goes beyond s-MFT may reveal an
ordered state selection at T � Tc. For this reason, we study
in this section the effect of fluctuations numerically using
c-MFT. This method incorporates fluctuations at the level
of one tetrahedron by exactly diagonalizing the Hamiltonian
corresponding to the tetrahedron and treating the interactions
between different tetrahedra at the s-MFT level. The c-MFT
approach does not involve a perturbative scheme in powers
of β compared with the E-TAP method where fluctuations
are included through an expansion of the Gibbs free energy
in powers of β [see Eq. (10)]. In c-MFT, fluctuations are
limited to one tetrahedron while, in the E-TAP method,
fluctuations beyond one tetrahedron are included up to the
range spanned by the diagrams generating the sixth order terms
in the high-temperature expansion of G (see Appendix C 4
for details). One practical advantage of the c-MFT method
compared to the E-TAP approach is that c-MFT allows us to
easily investigate the effect of nonzero Jzz on the selection of
the ψ2 versus the ψ3 state. In what follows, we first provide
the details of the c-MFT method and then present in Fig. 4 the
results of the calculations for various Jzz values.

1. Method

The c-MFT that we use here may be viewed as a general,
nonperturbative, and rather system-independent way to obtain
(numerical) results beyond s-MFT. While the approach is not
specific to the type of spins (classical or quantum) considered,
we restrict ourselves to quantum spins 1/2 for a tetrahedron
cluster. A pragmatic reason for using quantum spins here is to
avoid the complicated eight integrals over the solid angle that
correspond to the classical trace for classical spins taken as
vectors of fixed length |Si | = 1/2 and orientation defined by
an azimuthal and a polar angle. To illustrate the method, we
write the model Hamiltonian (1) in the compact form:

H =
∑

〈ij〉,μ,ν

J
μν

ij S
μ

i Sν
j , (17)

with μ,ν = z, + ,− and

J
μν

ij :=
⎛
⎝ Jzz Jz±ζij Jz±ζ ∗

ij

Jz±ζij J±±γij −J±
Jz±ζ ∗

ij −J± J±±γ ∗
ij

⎞
⎠ . (18)

For N sites on the pyrochlore lattice, there are N/4 “up”
and N/4 “down” corner-sharing tetrahedra (see Fig. 3). The
diamond lattice, dual to the pyrochlore lattice, offers a simple
representation of the tetrahedra that tessellate the lattice as
elementary units. We note that the diamond lattice is bipartite
(it is composed of 2 fcc sublattices, say A and B). As
we consider ordered phases with a k = 0 ordering wave
vector, we assume in the c-MFT method that all tetrahedra
on sublattice A are equivalent and interact with each other
only through the mean fields. We re-express model (17) in a
more suggestive form as a sum over sublattice A (labelled with
I or I ′) and take i,j = 1,2,3,4 as the sublattice indices:

H =
∑
I∈A

∑
〈ij〉,μ,ν

J
μν

ij S
μ

i,I S
ν
j,I +

∑
〈I,I ′〉∈A

∑
〈ij〉,μ,ν

J
μν

ij S
μ

i,I S
ν
j,I ′ . (19)

FIG. 3. (Color online) The pyrochlore lattice, with spins located
at the vertices of corner-sharing tetrahedra. There are two orientations
of tetrahedra indicated by the black and red colored tetrahedra with
the interaction paths represented by the colored lines. The centers
of the tetrahedra form a diamond lattice (with sublattice A and B
corresponding respectively to, say, the black and red tetrahedra). In
c-MFT, the interaction in-between the black tetrahedra is treated at
the mean-field theory level.

We then proceed to apply a s-MFT approximation only on
the second term of Eq. (19): we neglect any fluctuations be-
tween the A tetrahedra while taking full account of fluctuations
within the A tetrahedra. The self-consistently determined mean
fields 〈Sμ

i,I 〉 ≡ mi,I are introduced to decouple the intercluster
bonds. Again, because we focus on the �5 manifold with
k = 0 ordering wave vector, we have translational invariance
of sublattice A, which implies mν

i,I ′ = mν
i,I . By performing this

approximation, Eq. (19) reduces to a sum over the A tetrahedra
coupled together by the mean fields:

HMF =
∑
I∈A

∑
i,j,μ,ν

J
μν

ij

×
(

1

2
S

μ

i,I S
ν
j,I + S

μ

i,Im
ν
j,I − 1

2
m

μ

i,Im
ν
j,I

)
. (20)

Any thermodynamic average is readily computed from HMF.
In particular, it is straightforward to show that the physical
solution {mμ

i } that minimizes the free energy corresponds to
m

μ

i = 〈Sμ

i 〉, where the thermodynamic average is taken with
respect to the cluster mean-field Hamiltonian HMF. While we
focus on the |Si | = 1/2 case, we note that c-MFT could be used
for |Si | > 1/2 and extended to clusters with more than four
spins. The method (using quantum spins) is only constrained
by the computational limitations of the required exact full
diagonalization over the cluster considered [54].

2. Results

The critical temperature Tc is a function of the J±, Jz±,
and J±± exchange parameters. For every point in the phase
diagrams (i.e., for a given set of exchange couplings jz±
and j±±), we determine Tc by identifying the temperature
at which there is a minimum of the free energy and the
development of a numerically nonzero on-site magnetization
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Jz±/J±

Jzz/J± = 0.01

ψ2

ψ3

J
±±

/J
±

Jz±/J±

-2

-1

0

1

2

3

ψ2

ψ3

Jzz/J± = 0

Jz±/J±
-3 -2 -1 0 1 2 3

ψ2

ψ3

Jzz/J± = 0.5

J
±±

/J
±

Jz±/J±

-2

-1

0

1

2

3

-3 -2 -1

Jzz/J± = 0.1

ψ2

ψ3

ψ4(PC)

SF SF

SFSF

ψ4(PC)

ψ4(PC)ψ4(PC)

FIG. 4. (Color online) The c-MFT phase diagram at T � Tc ob-
tained for positive jzz = 0.5,0.1,0.01,0. The region circumscribed by
the red line is the ψ2/ψ3 �5 region. For a given phase boundary (fixed
jzz), the area above (below) that phase boundary line corresponds to
the ψ2 (ψ3) phase. The phase boundaries for negative values of jzz will
be approximately a reflection of the presented phase boundaries with
respect to the jzz = 0 line. Again, the phases outside of the boundaries
of the �5 region are: a splayed ferromagnet (SF) canted from the [100]
cubic direction [44] and the so-called ψ4 [26] or Palmer-Chalker (PC)
state [53].

m. For definitiveness, we then take a temperature slightly
below Tc, T = 0.9Tc, for each (jz±,j±±) and determine which
state (ψ2 or ψ3) is selected. We record this state selection over
a grid of points that span the �5 manifold.

The c-MFT ψ2/ψ3 phase boundary obtained for various jzz

values is presented in Fig. 4. The previous symmetry analysis
in Sec. II A of the �5 manifold showed that a nonzero mz

component is only compatible with the ψ2 state. As a corollary
and confirmation of this expectation, we observe that as jzz is
varied, the ψ2/ψ3 phase boundary position shifts. This can
be understood physically in the following way. A negative
jzz favors a “4-in/4-out” hence nonzero mz and thus the ψ2

state. Conversely, a positive jzz on a single tetrahedron alone
would favor a “2-in/2-out” spin configuration and therefore
disfavor a 4-in/4-out configuration. However, an ordered state
built with such 2-in/2-out spin configuration would have a
nonzero net magnetization on each tetrahedron, as well as
for the whole system since we consider a k = 0 propagation
vector, which is forbidden for the �5 representation under
discussion. Therefore, the best that a positive jzz can do is
to favor the ψ3 state (mz = 0) against ψ2 (mz 
= 0) and the
boundary shifts accordingly, as shown in Fig. 4.

A comment is warranted regarding the flat (Jz±–
independent) ψ2/ψ3 phase boundary predicted by c-MFT
for Jzz = 0 in Fig. 4. This is to be contrasted with the
E-TAP results of Fig. 2 and the T = 0 quantum fluctuation
calculations of Ref. [17] (see Fig. 3 therein), which both
show a Jz±-dependent ψ2-ψ3 phase boundary for Jzz = 0.
This Jz± independent c-MFT result can be rationalized in
the following way with the argument proceeding through a
sequence of steps. In the c-MFT approximation that considers

a one-tetrahedron cluster, the mz dependence of the free energy
comes only from the Jzz term because of the special role the C3

symmetry plays when considering such a cluster. The reason
is that every spin on a one-tetrahedron cluster is coupled
to three idential “exterior” mean fields mj,I because of the
k = 0 ψ2 or ψ3 long-range ordered states considered. As a
result, terms such as (

∑
i S

±
i )(

∑
j ζijm

z
j,I ) vanish due to the

C3 symmetry that imposes the necessary form for the ζij bond
factors [16,44,48]. The same argument of course applies for
terms of the form (

∑
i m

±
i,I )(

∑
j ζij S

z
j ). Consequently, the free

energy depends on mz explicitly only via the Jzz coupling
since the combined dependence on Jz± and mz is eliminated
via the above argument. When Jzz = 0, all dependence of the
c-MFT free energy on mz disappears, and thus no-dependence
on Jz± can remain, as found in Fig. 4. On the other hand,
when Jzz 
= 0, the c-MFT free energy depends on mz. In that
case, Jz± coupling the Sz

i and S±
i components will, through

the intratetrahedra fluctuations that are incorporated into the
c-MFT calculation, renormalize the effective intratetrahedron
zz component sublattice susceptibility and thus the net effect
of intertetrahedra mean field (

∑
j Jzzm

z
j,J ). As a result,

for Jzz 
= 0, a Jz± dependence of the ψ2/ψ3 phase bound-
ary is observed for a single-tetrahedron c-MFT calculation
(see Fig. 4).

While the above argument for the Jz± independence of the
boundary for the Jzz = 0 case applies for a single tetrahedron
cluster c-MFT, we expect the boundary for larger clusters to
depend on Jz±, even for Jzz = 0. In that case, Jz± may induce a
mz dependence that would result in a behavior similar to E-TAP
results for Jzz = 0. The reason is that, for larger clusters, the
sites on the perimeter of the cluster may be coupled to the
mean-field parameters mj,I coming from less than three sites
related by C3 symmetry, and which caused the intertetrahedron
mean field to vanish for a four-site tetrahedron cluster as
discussed above. Notwithstanding this caveat associated with
the special symmetry of the four-site tetrahedron cluster, we
nevertheless believe that the evolution of the boundary upon
varying Jzz shown in Fig. 4 to be roughly qualitatively correct
for Jzz 
= 0.

IV. MULTIPLE TRANSITIONS AT T < Tc

The results above, along with those of Refs. [17,31], suggest
that in some circumstances the state selected at Tc may differ
from the low-temperature phase selected by harmonic (classi-
cal or quantum) spin waves. For example, Ref. [33] found
that, in a classical pyrochlore Heisenberg antiferromagnet
with additional indirect Dzyaloshinskii-Moriya interaction,
the state selected at T � Tc is ψ2, while the one selected
at T = 0+ is ψ3. One might then ask what are the generic
possibilities that may occur in xy pyrochlore magnets for
which the anisotropic exchange terms position them in the
degenerate �5 manifold. Considering the lowest-order term in
mxy , one has, as discussed above in Sec. II A,

δFGL(φ) = f6(T ) cos(6φ). (21)

f6(T ) ≡ 2η̄6|mxy |6 is a function of temperature, T , for fixed
anisotropic exchange terms J±, Jzz, Jz±, and J±±, with the
sign of f6(T ) dictating which state is selected at a given
temperature. If f6(T = 0+) stays of the same sign for all
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φ(deg)

(b)

δFGL(φ)

(a)

δFGL(φ)

FIG. 5. (Color online) (a) Sequence of δFGL(φ) with f12 = −1
and f6 = −2, −1, 0, 1, and 2 (from top to bottom). There is a first-
order transition at f6 = 0. (b) Sequence of δFGL(φ) with f12 = 1 and
f6 = −6, −4, −2, 0, 2, 4, and 6 (from top to bottom). In mean-field
theory, there are Ising-type second-order transitions at f6 = ±4|f12|.

0 < T < Tc, only a single phase is realized below Tc. With
solely this lowest-order anisotropic term in δFGL, the only
other possibility is a first order transition between ψ2 and
ψ3 at some temperature T ∗ < Tc when f6(T ) changes sign at
T = T ∗. However, as one gets far below Tc, higher-order terms
in |mxy | can become of significant magnitude inFGL. One may
then extend the Ginzburg-Landau free energy by incorporating
higher-order harmonics in the anisotropy potential as

δFGL(φ) =
∑
n=1

2η̄6n(T )|mxy |6n cos(6nφ). (22)

Keeping only the two lowest-order terms for illustration
purposes, we have

δFGL(φ) = f6(T ) cos(6φ) + f12(T ) cos(12φ), (23)

where f6n ≡ 2η̄6n|mxy |6n. For simplicity, consider first
f12 = −1 As f6(T ) varies from f6(T ) < 0 to f6(T ) > 0, a
first-order transition occurs when the minimum of δFGL shifts
discontinuously, in a first-order transition, from φ = 0 (ψ2

state) to φ = π/6 (ψ3 state) [see Fig. 5(a)]. A more interesting
behavior is in principle possible. Consider now f12 = +1.
In that case, second-order (Ising-type) transitions occur at
f6 = ±4|f12|. For example, for f6 < −4, the minimum is
at φ = 0 (a ψ2 state), and a second order transition to a
f6-dependent angle φ occurs at f6 = −4. As f6 continues

growing and become less negative (at fixed f12 = +1), the
magnetic moment orientation φ continues increasing until
another second-order transition to the ψ3 state occurs at
f6 = +4 [see Fig. 5(b)]. While the direct ψ2 to ψ3 transition
observed in the pyrochlore Heisenberg antiferromagnet with
indirect Dzyaloshinskii-Moriya interaction [33] suggests that
this system belongs to the first case, the second scenario
is perhaps not excluded in more complex models in which
both temperature and applied magnetic field are varied
simultaneously, or when the magnetic Er3+ sites are diluted
by nonmagnetic ions [55,56].

In the above discussion, we have implicitly assumed that
the anisotropic terms [mz(mxy)3 + c.c.]k and [(mxy)6 + c.c.]l ,
which give terms of the form |mxy |6n cos(6nφ) in the Ginzburg-
Landau theory once mz has been eliminated (see discussion in
Sec. II A), are generated by thermal fluctuations beyond the
Ginzburg-Landau free energy derived by a s-MFT treatment
of the microscopic model H in Eq. (1). However, it is,
in principle, possible that virtual crystal-field excitations
(VCFE) [30,43,45,46] mediated by the bare multipolar in-
teractions between the rare-earth ions would generate [30,57]
an effective pseudospin-1/2 Hamiltonian more complex than
the one given by Eqs. (1a), (1b), and (1c) and involve
multispin (e.g., ring-exchange-like) interactions capable of
lifting degeneracy at the classical level without invoking
order-by-disorder [15,16]. However, one naively expects those
interactions generated by VCFE to be significantly smaller
compared with the J±, J±±, Jz±, and Jzz of Eq. (1a), as
stated in Ref. [16]. Whether those terms are truly inefficient
in competing with order-by-disorder, once the commonly
large prefactors of combinatoric origin arising in high-order
perturbation theory have been taken into account, must await
a detailed calculation.

V. DISCUSSION

In this work, we first used an extended TAP (E-TAP) method
to analytically study the problem of order-by-disorder (ObD)
near the critical temperature of a general three-dimensional
xy antiferromagnetic model on the pyrochlore lattice with the
Hamiltonian (1) with Jzz = 0. We focused on the �5 manifold,
which is U(1) degenerate at the standard mean-field theory
(s-MFT) level. The fluctuations corrections to the free energy
beyond s-MFT were organized as an expansion in powers
of the inverse temperature, β, and to lowest orders in the
coupling constants j±± = J±±/J±, jz± = Jz±/J± and the on-
site magnetization m. We established that in different parts
of the �5 region, the ψ2 and ψ3 states are the only minima
of the free energy selected by fluctuations up to the lowest-
order U(1) symmetry-breaking terms considered. The phase
boundary between ψ2 and ψ3 can then be obtained by finding
the real roots of Eq. (14) in terms of J±±/J± and Jz±/J±. We
also numerically studied the ObD mechanism in the 3D-xy

pyrochlore system using a cluster mean-field theory (c-MFT).
Using this method, we obtained a phase boundary between ψ2

and ψ3 states for a variety of Jzz values shown in Fig. 4.
Using a Ginzburg-Landau theory, along with E-TAP and

c-MFT calculations, we predict that for a state ordered in
the local xy plane at the s-MFT level, fluctuations can
induce a small out-of-xy-plane mz component of the on-site
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magnetization. This fluctuation-induced local z component
of the magnetization is only compatible with the ψ2 state.
We expect the size of this moment to be small, since it is
proportional to |mxy |3 � 1 for T � T MF

c [see Eq. (7)]. Yet,
on the basis of the c-MFT results, we might anticipate that
nonzero mz has an important effect on the phase boundary
between the ψ2 and the ψ3 states for Jzz 
= 0, as illustrated in
Fig. 4 (see also the caption of the figure).

By considering the single phase boundary between the
ψ2 and ψ3 states for T � Tc along with the multiple ψ2-ψ3

boundaries found at T = 0+ in Ref. [17], for j±± � 1
and jz± � 1, the regime for which the perturbative E-TAP
solutions above apply, one may expect to find multiple
phase transitions between ψ2 and ψ3 states upon decreasing
temperature from T � Tc to T ∼ 0+. While possible in
principle and found in a numerical study [33], such multiple
transitions in real xy pyrochlore magnetic materials have not
yet been reported. Since in the E-TAP calculations the j±± and
jz± couplings were treated perturbatively, the E-TAP phase
boundary in Eq. (16) is valid for small j±± and jz± and would
thus need to be modified for nonperturbative j±± and jz±,
that is, closer to the boundaries of the �5 region with the
splayed-ferromagnet (SF) phase (see Fig. 2). A case in point
is the Heisenberg pyrochlore antiferromagnet with indirect
Dzyaloshinskii-Moriya interaction [33]. This model displays
a transition at T +

c from a paramagnetic state to ψ2, followed
at T −

c < T +
c by a transition from ψ2 to ψ3 [33], and for which

the corresponding anisotropic exchange J±, J±±, Jz±, and Jzz

are such that this model lives right on the �5 to SF classical
phase boundary [17].

The difference between the phase boundaries obtained
by E-TAP and c-MFT for Jzz = 0 (see Figs. 2 and 4)
arises from the different range of fluctuations considered
in these two methods. In c-MFT, because of the exact
diagonalization of the Hamiltonian on a single tetrahedron
and the s-MFT treatment of the intertetrahedra couplings, the
fluctuation corrections considered are short-ranged (limited
to the nearest-neighbors). However, in the E-TAP method,
by considering the higher-order terms in the β expansion,
specifically β4 and beyond where larger (more extended)
diagrams appear in the calculation (see Appendix C, Sec. C 4),
fluctuations beyond nearest-neighbors are included. It would
be of interest to benchmark these arguments by performing
c-MFT calculations for larger clusters.

The E-TAP corrections to the s-MFT free energy could
also be computed for the Jzz 
= 0 case. The procedure for
considering Jzz 
= 0 is conceptually the same as for the Jzz = 0
case for which, using the E-TAP method, we calculated the
terms in the high temperature expansion of Eq. (10) that
contribute to the degeneracy-lifting cos(3φ) and cos(6φ) terms
in the free energy. To obtain these terms to the lowest order in
the coupling constants J±±, Jz±, and Jzz, one would need to
consider the high temperature expansion of G up to the seventh
order in β and calculate the degeneracy lifting terms following
the power-counting prescription explained above Eq. (12).
However, the number of terms of the form j l

zzj
m
±±jn

z±, with
fixed l + m + n value l, m, and n positive integers, and thus the
number of diagrams to be computed, proliferate significantly
as to make this calculation a significant undertaking. The Jzz 
=
0 case thus stands on its own as an independent future study.

Finally, we remark that variants of the E-TAP method
presented in this work could be applied to models other than
the pyrochlore structure to analytically investigate the role of
fluctuations beyond s-MFT in selecting a specific long-range
ordered state close to the critical temperature. One example is
the case of Heisenberg spins on face centered cubic (fcc) lattice
interacting via magnetostatic dipole-dipole interaction [58,59].
Generally speaking, one might expect that a consideration
of an E-TAP analytical description of fluctuations at the
microscopic level may help shed light on the role of individual
symmetry-allowed interactions in the ordered state selection
near the critical temperature over a broad range of frustrated
spins models for which an accidental degeneracy exists in a
standard mean-field theory description.
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APPENDIX A: ψ2 AND ψ3 STATES

The ψ2 states have spin configurations with a k = 0
ordering wave vector and with the following spin orientations
on a tetrahedron expressed in the global (Cartesian) reference
frame:

ê1
0 = 1√

6
(−1, −1,2), (A1a)

ê1
1 = 1√

6
(1,1,2), (A1b)

ê1
2 = 1√

6
(1, −1, −2), (A1c)

ê1
3 = 1√

6
(−1,1, −2). (A1d)

Here, the subscripts correspond to the four sublattice labels
in the pyrochlore lattice and the superscripts refer to different
symmetry-related ψ2 states. {ê2

i } and {ê3
i }, i = 0, . . . ,3, can

be obtained from Eq. (A1) by C3 (π/3) rotations with respect
to the 〈111〉 directions. ψ3 states can be obtained from the ψ2

ones, by a π/6 rotation of each spin about its local [111] axis.

APPENDIX B: SYMMETRY GROUPS
OF ψ2 AND ψ3 STATES

The symmetries of either ψi state (i = 2,3) form a group
known as the little group of the corresponding state. The
generators of the ψ3 little group include the C2 rotation by
π about one of the cubic x, y or z axes (depending on the
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particular ψ3 state), the improper rotation by π/2 (S4) about
the same cubic axis, and two plane reflections σ1 and σ2 with
respect to planes spanned by the cubic axis and one of the
two tetrahedron bonds perpendicular to the cubic axis. The
generators of the little group of ψ2 states include τS4, τσ1,
and τσ2 where τ is the time-reversal symmetry operation.

Considering the action of the symmetry operations in the
ψ2’s and ψ3’s little groups on the possible configurations with
a finite onsite mz moments on a single tetrahedron (i.e., all-
in/all-out, 2-in/2-out, 3-in/1-out, and 1-in/3-out where “in”
and “out” indicates whether mi,z is positive or negative on
site i), only all-in-all-out configuration is invariant under the
symmetry operations of the ψ2’s little group while none of the
above configurations are invariant under the ψ3’s little group
symmetry operations. As a result, only the ψ2 state can possess
a finite onsite mz moment which displays an all-in-all-out
configuration on a single tetrahedron and therefore does not
produce a net magnetic moment on a tetrahedron.

APPENDIX C: EXTENDED TAP METHOD (E-TAP)

In this appendix, we first derive the general form of the
E-TAP corrections up to sixth order in β. Next, we illustrate
our method for calculating the terms in the β expansion
of the Gibbs free energy, G, of Eq. (10) by focusing on
two calculation examples. Finally, we discuss the general
properties of the diagrammatic approach employed to carry
out the computation of the various terms entering the E-TAP
calculation.

1. Derivation

The E-TAP method is based on a perturbative expansion
of the Gibbs free energy as a function of inverse temperature,
β, beyond that given by s-MFT. There are several ways of
deriving these corrections [60]. Here, we employ and extend
the method presented by Georges and Yedidia [40] for Ising
spin glass, which provides the corrections due to fluctuations
about the s-MFT solution, order by order in β. In this part
of the appendix, we focus on a temperature regime close to
the mean-field transition temperature, T � T MF

c , and derive
the E-TAP corrections for classical Heisenberg spins of fixed
length |S| = 1/2.

The Hamiltonian in Eq. (1), H, can be written as

H =
∑
i<j

S
μ

i J
μν

ij Sν
j , (C1)

greek labels represent Cartesian coordinates and implicit
summation over repeated superscripts is used. A Taylor series
expansion of Eq. (10) in powers of β reads

G(β) = 1

β

[
G̃(β)

∣∣∣∣
β=0

+ ∂G̃(β)

∂β

∣∣∣∣
β=0

β

+ 1

2!

∂2G̃(β)

∂β2

∣∣∣∣
β=0

β2 · · ·
]
, (C2)

where G̃(β) = βG(β). We define

U ≡ 1

2

∑
ij

δS
μ

i J
μν

ij δSν
j , (C3)

where

δSν
j ≡ Sν

j − mν
j (C4)

are spin fluctuations about the s-MFT solution. As shown in
Ref. [40], the derivatives of G̃(β) with respect to β can be
evaluated in terms of expectation values of powers of U and
Tn, that read

∂ (βG(β))

∂β
= 〈H〉, (C5a)

∂2 (βG(β))

∂β2
= −〈U 2〉, (C5b)

∂3 (βG(β))

∂β3
= 〈U 3〉, (C5c)

∂4 (βG(β))

∂β4
= −〈U 4〉 + 3〈U 2〉2 − 3〈U 2T2〉, (C5d)

∂5 (βG(β))

∂β5
= 〈U 5〉 − 10〈U 2〉〈U 3〉 − 3〈U 2T3〉

+ 7〈U 3T2〉 + 6
〈
UT 2

2

〉
, (C5e)

∂6(βG(β))

∂β6
= −〈U 6〉 + 15〈U 4〉〈U 2〉 + 10〈U 3〉2 − 30〈U 2〉3

− 12〈U 4T2〉 + 10〈U 3T3〉 − 3〈U 2T4〉
− 27

〈
U 2T 2

2

〉 + 18〈UT2T3〉 − 6〈UT3〉〈U 2〉
+ 51〈U 2〉〈U 2T2〉 + 6〈U 2〉〈T 2

2

〉 − 6
〈
T 3

2

〉
,

(C5f)

and where Tn is defined as

Tn ≡
∑

i

∂nλi

∂βn
· δSi . (C6)

Since ∂λ/∂β|β=0 = hi[40], where h
μ

i = ∑
j,ν J

μν

ij mν
j , the

terms involving involving Tn come from considering fluctu-
ations of the local mean field. On the other hand, the Un terms
take into accont the fluctuations of the on-site magnetization
[see Eqs. (C3) and (C4)] within the ensemble set by the s-MFT
solution. The 〈· · · 〉 above denotes a thermal average. For a
general observable O, 〈O〉 is given by

〈O〉 = Tr[O exp(−βH + ∑
i λi · (Si − mi ))]

Tr[exp(−βH + ∑
i λi · (Si − mi ))]

. (C7)

The first two terms in Eq. (C2) correspond to the s-MFT free
energy, while the higher-order terms in β provide corrections
beyond s-MFT. Calculating the expectation value of powers of
U at β = 0 reduces to the evaluation of mean-field averages
of the form 〈

δS
α1
i1

δS
α2
i2

· · · δSαn

in

〉
MF, (C8)

where in represents the site label and αn represents a Cartesian
coordinate. n is the number of δS factors in Eq. (C8). From
now on, we drop the MF subscript for compactness of notation.
For n = 1, the expectation value in Eq. (C8) is zero due
to the relation mi = 〈Si 〉. For n � 2, however, Eq. (C8) is
nonzero only if there is no site label that appears only once.
For example, averages of the following form have a nonzero
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contribution:〈
δS

α1
i δS

α2
i δS

α3
j δS

α4
j δS

α5
j

〉 = 〈
δS

α1
i δS

α2
i

〉〈
δS

α3
j δS

α4
j δS

α5
j

〉
. (C9)

The expectation values above can be calculated using the
self-consistent s-MFT equations for three-component classical
spins, which are given by the Langevin function,

mi = λi

|λi |
[

coth(|λi |) − 1

|λi |
]

. (C10)

Consequently,

〈
δSα

i δS
β

i

〉 = ∂mα
i

∂λ
β

i

≡ χ
αβ

i , (C11)

〈
δSα

i δS
β

i δS
γ

i

〉 = ∂χ
αβ

i

∂λ
γ

i

, (C12)

and, in general,

〈
δS

α1
i δS

α2
i · · · δSαn

i

〉 = ∂
〈
δS

α1
i δS

α2
i · · · δSαn−1

i

〉
∂λ

αn

i

. (C13)

Since we are interested in a temperature range close to Tc,
Eq. (C10) can be expanded for small |λi |:

mα
i = λα

i

3

[
1 − (|λi |)2

15
+ 2(|λi |)4

315
+ · · ·

]
, (C14)

The expansions of Eqs. (C11)–(C13) at T � Tc can be
computed by differentiating Eq. (C14) with respect to different
components of the vector λi Lagrange multipler.

In the rest of this section, we focus on the specific
problem of the s-MFT U(1) degeneracy of the �5 manifold
displayed by the Hamiltonian of Eq. (1) in a wide range of
the {J±,J±±,Jz±,Jzz} anisotropic exchange parameters [17].
Below, we calculate the degeneracy-lifting contributions from
〈U 2〉 and 〈U 2T2〉 in Eqs. (C5b) and (C5d) to demonstrate
the general idea of the method. Higher order terms can be
calculated using a similar procedure.

2. 〈U2〉 Calculation

Using Eq. (C3), we have

〈U 2〉 = 1

22

∑
〈i1,j1〉

∑
〈i2,j2〉

J
α1β1
i1j1

J
α2β2
i2j2

〈
δS

α1
i1

δS
β1
j1

δS
α2
i2

δS
β2
j2

〉
, (C15)

where the summations are performed over lattice sites and
summation is implied for greek superscripts. To proceed, we
need to specify all the possible pairings of the factors δSit , δSjt

(t = 1,2) in the 〈δSα1
i1

δS
β1
j1

δS
α2
i2

δS
β2
j2

〉.
Considering the description provided above Eq. (C9), the

only nonzero pairings of site indices in Eq. (C15) are i1 = i2,
j1 = j2 and i1 = j2, j1 = i2, with the constraint i1 
= j1 and
i2 
= j2 imposed by the Hamiltonian; J

αβ

ii = 0 for all α and β.
This leads to

〈U 2〉 = 1

2

∑
〈i,j〉

J
α1β1
ij J

α2β2
ij

〈
δS

α1
i δS

α2
i

〉〈
δS

β1
j δS

β2
j

〉
. (C16)

The computational complexity of the method requires the
usage of a diagrammatic approach, which we now introduce
by considering, for example, the calculation of Eq. (C16).

i
α1

α2

j
β1

β2

1

α2β2

(a)

(b)

βα1J

J

ij

ij

FIG. 6. (Color online) (a) Diagrammatic representation of the
term J

α1β1
ij J

α2β2
ij 〈δSα1

i δS
α2
i 〉〈δSβ1

j δS
β2
j 〉 in Eq. (C16). (b) All diagrams

corresponding to αi,βi = z,+, i = 1,2 with z appearing only once
among the greek superscripts. The same number of diagrams are
present for the case where αi,βi = z,−. Again z appears only once.

In this equation, for a given i, j , αt , and βt with t = 1,2,
J

α1β1
ij J

α2β2
ij 〈δSα1

i δS
α2
i 〉〈δSβ1

j δS
β2
j 〉 can be represented by a dia-

gram of the form illustrated in Fig. 6(a). In this figure, the
vertex labels match the labels of the lattice sites that the
diagrams cover. Each vertex represents an average of the form
〈δSα1

i · · · δSαt

i 〉, where t is the number of bonds (solid lines)
connected to that vertex. In the case of Eq. (C16) as indicated
in Fig. 6(a), the averages are 〈δSα1

i δS
α2
i 〉 and 〈δSβ1

j δS
β2
j 〉. The

bonds represent the elements of the coupling matrix, J
αβ

ij . It
is straightforward combinatorics to take into account only the
terms that contribute to the degeneracy-lifting factors, cos(3φ)
or cos(6φ). We next proceed to demonstrate this point.

Based on the symmetry analysis of Sec. II A, we note
that since 〈U 2〉 involves four powers of δS

αt

i . 〈U 2〉 can
only contribute degeneracy-lifting terms of the general form
∝ mz|mxy |3 cos(3φ) and where the proportionality factor is
generated by the anisotropic couplings j±± and jz± in
Eq. (1c). We recall that j±± and jz± each contributes a
factor e±2iφ and e±iφ in the power counting method. The
−iφ and −2iφ correspond to the presence of δS− and
(δS−)2 in Eq. (C16), respectively, which in turn, implies the
presence of J –

ij ≡ j±±γ ∗
ij or J z−

ij ≡ jz±ζ ∗
ij matrix elements in

J
α1β1
ij J

α2β2
ij 〈δSα1

i δS
α2
i 〉〈δSβ1

j δS
β2
j 〉. So for a given i and j , only

the following combination of terms can generate cos(3φ):

J++
ij J z+

ij 〈δS+
i δS+

i 〉〈δSz
j δS

+
j

〉 + J –
ij J

z−
ij 〈δS−

i δS−
i 〉〈δSz

j δS
−
j

〉
,

(C17)

where the first term generates the e3iφ contribution to cos(3φ)
while the second term generates e−3iφ . All possible ways of
generating the factor e3iφ are illustrated in Fig. 6(b), which
is the same as the number of ways of generating e−3iφ .
Ultimately, Eq. (C16) can be rewritten as

〈U 2〉 = 2j±±jz±

⎛
⎝〈δSzδS+〉〈δS+δS+〉

∑
ij

γij ζij + H.c.

⎞
⎠ .

(C18)

Based on Eqs. (C11) and (C14) and recalling from Sec. II
that m and φ do not require site indices in the �5 manifold,
we have dropped the site labels of δS’s in Eq. (C16) when
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writing Eq. (C18). The lattice sum,
∑

ij γij ζij , can be carried
out using a computer program for different lattice sizes with
linear dimension L. Up to sixth order in the β expansion,
the lattice sums per site for different terms in Eqs. (C5) are
independent of L for L � 2. Accordingly, we have

1

N

∑
ij

γij ζij = −6. (C19)

Using Eqs. (C11) and (C14), the averages in Eq. (C18) can
be written as

〈δSzδS+〉 = 18
45mzm+ + · · · , (C20)

〈δS+δS+〉 = 18
45m2

+ + · · · , (C21)

where to the lowest order of interest in m which, in this case,
is the fourth order, we kept λα � 3mα and neglect all higher-
order terms. Finally, Eq. (C18) gives

〈U 2〉/N = (−0.96mzm
3
+ + H.c.)j±±jz±

= −1.92j±±jz±mz|mxy |3 cos(3φ). (C22)

We note that Eq. (C22) contributes to ω in Eq. (6) which,
in turn, is necessary to evaluate η̄6(j±±,jz±) in Eq. (11). All
other terms in Eq. (C5) involving solely powers of U and
no Tn terms can be calculated in a similar way. The number
of diagrams increases as one considers higher-order terms in
the β expansion of Eq. (10). As a result, finding the number
and type of nonzero average of the form of Eq. (C8) is most
easily done using a computer program. The details of this type
of calculations are presented in Appendix C 4. Some of the
diagrams that appear at higher order in the β expansion are
illustrated in Fig. 7.

(3,3) (2,2,2)

(4) (8)

(4,4) (2,2,4)

(8) (48)

(2,2,2,2) (2,3,3)

(48) (96) (12)

FIG. 7. (Color online) For details, see the text in Appendix C 4.
We also note that the contribution of disconnected diagrams (e.g., the
diagram at the bottom right corner) in Eq. (C5) adds up to zero.

3. 〈U2T2〉 Calculation

Due to the presence of Tn in Eq. (C6), in this case
n = 2, averages that involve Tn need to be carried out
slightly differently in comparison with averages containing
only powers of U . The difference comes from the presence
of the factor ∂nλi/∂β

n in Eq. (C6). Considering Eq. (C5a)
and the relation ∂λ/∂β|β=0 = hi [40], we obtain the following
relation:

∂λα

∂β
= ∂〈H 〉

∂mα
= ∂2 (βG(β))

∂mα∂β
, (C23)

From Eq. (C23), one can write

∂nλα

∂βn
= ∂n+1 (βG(β))

∂mα∂βn
. (C24)

Using Eq. (C6), 〈U 2T2〉 can therefore be written as

〈U 2T2〉 = 1

22

∑
i1j1

∑
i2j2

∑
k

J
α1β1
i1j1

J
α2β2
i2j2

∂2λ
α3
k

∂β2

× 〈
δS

α1
i1

δS
β1
j1

δS
α2
i2

δS
β2
j2

δS
α3
k

〉
. (C25)

Using Eq. (C24), we have

∂2λ
α3
k

∂β2
= ∂3 (βG(β))

∂mα∂β2
= −∂〈U 2〉

∂mα3
. (C26)

The term 〈δSα1
i1

δS
β1
j1

δS
α2
i2

δS
β2
j2

δS
α3
k 〉 in Eq. (C25) can be dealt

with as described previously in Appendix C 1. The outcome
reads〈

δS
α1
i1

δS
β1
j1

δS
α2
i2

δS
β2
j2

δS
α3
k

〉 = 4
〈
δS

α1
i1

δS
α2
i1

〉〈
δS

α3
k δS

β1
k δS

β2
k

〉
,

(C27)

where the factor of 4 comes from the number of different ways
of pairing site indices yielding nonvanishing results. On the
other hand,

〈U 2〉 = 1

2

∑
ij

J
α1β1
ij J

α2β2
ij

〈
δS

α1
i δS

α2
i

〉〈
δS

β1
j δS

β2
j

〉
, (C28)

and, in turn,

∂〈U 2〉
∂m

α3
k

= ∂λ
α3
k

∂m
α3
k

∑
ij

J
α1β1
ij J

α2β2
ij

∂
〈
δS

α1
i δS

α2
i

〉
∂λ

α3
k

〈
δS

β1
j δS

β2
j

〉
,

(C29)

where ∂λ
α3
k

∂m
α3
k

� 3. Here, we ignored higher-order terms which

do not contribute to the degeneracy lifting terms of fourth or

sixth order in components of m in Eq. (C25). The ∂〈δSα1
i δS

α2
i 〉

∂λ
α3
k

expression can be calculated using Eq. (C12). Substituting
Eqs. (C27) and (C29) in Eq. (C25), we obtain the final
expression which can be represented by a “fused” diagram
shown in Fig. 8. This diagram has a new type of vertex
represented with a red square. This vertex is labeled with only
one site index and its mathematical expression is〈

δS
α3
k δS

β1
k δS

β2
k

〉〈
δS

α3
k δS

γ1
k δS

γ2
k

〉
, (C30)
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FIG. 8. (Color online) “Fused” diagram corresponding to
〈U 2T2〉. The vertex represented by the (red) square represents the
following: 〈δSα3

k δS
β1
k δS

β2
k 〉〈δSα3

k δS
γ1
k δS

γ2
k 〉.

where again there is a sum over repeated greek superscripts.
As a result, the final expression reads

〈U 2T2〉 = − ∂λ
α3
k

∂m
α3
k

∑
ijk

J
α1β1
ik J

α2β2
ik J

α3β3
jk J

α4β4
jk

〈
δS

α1
i δS

α2
i

〉

× 〈
δS

α3
k δS

β1
k δS

β2
k

〉〈
δS

α3
k δS

β3
k δS

β4
k

〉〈
δS

α3
j δS

α4
j

〉
.

(C31)

From this point on, one can adopt the procedure presented
previously for the 〈Un〉 terms to obtain the final result.
All other averages that contain Tn, e.g., 〈Un1Tm1Tm2〉 and
〈T m1

n1
T m2

n2
〉, where ni , mi with i = 1,2 are natural numbers,

can be calculated following a similar procedure.

4. On diagrams

In this section, we make a few comments about the different
diagrams that appear in the E-TAP expansion. First, we focus
on diagrams corresponding to 〈Un〉 with n = 2,3, . . . , in
Eq. (C5). The diagrams for n = 3,4 are illustrated in Fig. 7.
In this figure, blue circles represent a given lattice site and the
number of lines (bonds) connected to the circles is the number
of paired δS’s at that lattice site. The degree of the vertices
is indicated above each diagram and is written in the form

of (α1, . . . ,αm) where m is the number of vertices and αi is
the number of bonds connected to vertex i. The number of
times that each diagram appears in the process of pairing δS’s,
referred to as diagram count, is indicated in parentheses to the
right of each diagram in Fig. 7. The diagrams are distinguished
by the degree of their vertices and their adjacency matrix
eigenvalues [52]. The adjacency matrix M is a m × m matrix
with matrix elements Mij (0 < i,j � m) corresponding to the
number of lines connecting the ith vertex to the j th vertex. We
enumerate these diagrams using a computer program in which
we generate all possible diagrams given a certain number of
vertices of a given degree. Then, we remove all diagrams that
include any onsite interactions which are forbidden since there
is no onsite interaction in the Hamiltonian of Eq. (1). For the
remaining diagrams, we build their adjacency matrix which
we then diagonalize. M is a symmetric matrix and thus has
a set of real eigenvalues which defines a graph equivalence
class. Graph with the same adjacency matrix eigenvalues
correspond to graphs with the same topology, i.e., they are
isomorphic [61]. The number of graphs with a given topology
is noted in parentheses to the right of the graph in Fig. 7.

The fifth and sixth order terms of the E-TAP expansion in β,
contain, respectively, 9 and 26 types of connected diagrams.
We note that the contribution of disconnected diagrams in
Eq. (C5) adds up to zero [52].

The so-called fused diagrams appear in terms of the form
〈UmTn〉 and 〈TmTn〉, where m,n � 2 are positive integers.
They are constructed by fusing the diagrams similar to the
ones in Fig. 7 together. An example of such a fused diagram
and the corresponding details of its definition is given in the
caption of Fig. 8.

We note that some of the diagrams do not cover lattice sites
beyond one tetrahedron, for example, the triangular diagram
and the two site diagram in the top row of Fig. 7. Only, diagrams
of this type contribute to fluctuations incorporated in the cluster
mean-field theory (c-MFT) calculations. However, their effect
is incorporated to all orders in β in the c-MFT calculation.
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