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Observation of spin-wave dark soliton pairs in yttrium iron garnet thin films
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The formation of a pair of dark solitons from a single nonlinear black spin-wave pulse was observed. The
experiments were carried out with a long and narrow magnetic yttrium iron garnet film strip in a surface spin-wave
configuration. The black spin-wave pulses were excited by the use of microwave black pulses—large-amplitude
microwaves with narrow squarelike dips. Pairs of black solitons were observed in certain input power and input
black pulse width ranges. For each pair, the two solitons show opposite π phase jumps and an overall phase
change of zero. Beyond those power and width ranges, one also observed pairs of gray solitons that showed
opposite phase jumps and a zero total phase change. The formation of a single black soliton was also observed, but
only for an input black pulse that was very narrow. The experimental observations were reproduced by numerical
simulations based on the complex Ginzburg-Landau equation.
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Due to dispersion, a narrow dip on a continuous wave
broadens as the wave propagates. If the wave amplitude is
large, the dip broadening can be further enhanced by the
nonlinearity. This is true for waves that have an attractive
nonlinearity. For waves with a repulsive nonlinearity, however,
the nonlinearity can give rise to a self-narrowing effect that
can cancel the dispersion-produced broadening of the dip.
When a fine balance is achieved between the two effects, the
dip on the continuous wave can evolve into a stable localized
excitation—an envelope dark soliton [1–5]. There are two
types of dark solitons, black and gray. When the dip amplitude
at the soliton center goes to zero, one has a black soliton. When
the amplitude at the dip is nonzero, one has a gray soliton. Both
the black and gray solitons have a jump in the carrier wave
phase at their centers. For black solitons, such a phase jump
is exactly equal to π . For gray solitons, the jump is between
0 and π .

From a physical point of view, a straightforward way to
excite a dark envelope soliton is to use a dark input pulse—a
narrow dip in the amplitude or intensity of a continuous wave
background. This approach has indeed been previously used
to excite black envelope solitons, for example, for surface spin
waves in magnetic yttrium iron garnet (YIG) thin film strips [6]
and for lasers in photorefractive crystals [7]. Theoretically,
however, an initial dark signal should not evolve into a single
dark soliton. Rather, it should develop into a pair of dark
solitons that have opposite phase jumps and an overall phase
change of zero [8–11]. This phase condition is needed because
of symmetry conservation, namely, that the initial experimen-
tal signal has no phase difference across the dark region,
and the zero phase change property should be conserved, as
analyzed in detail in Ref. [9]. Experimentally, the formation of
such a dark soliton pair from a single dark input signal has been
observed not only for temporal solitons in optical fibers [12,13]
but also for spatial optical solitons in Kerr-like media [14],
photovoltaic media [15], and photorefractive crystals [7], but
the phase signature of the dark soliton pairs, namely, opposite
phase jumps, needs to be demonstrated.

*Corresponding author: mwu@colostate.edu

This paper reports experimental evidence for opposite phase
jumps of dark soliton pairs. As in Ref. [6], the experiments
were carried out with a YIG film strip in a surface spin-wave
configuration [16,17] and used as an input signal a single black
spin-wave pulse with no phase change. A pair of black solitons
with opposite π phase jumps was observed in certain input
power and input pulse width ranges. Beyond those ranges, one
also observed pairs of gray solitons that showed opposite phase
jumps and an overall phase change of zero. The formation of a
single black soliton from a dark pulse, similar to that reported
previously in Ref. [6], was also observed, but only for an
initial black pulse that was very narrow. The experimental
results were supported by numerical simulations that made
use of the complex Ginzburg-Landau equation [18,19] and the
experimental parameters.

Figure 1(a) shows a schematic diagram of the experimental
setup. The core components include a long and narrow YIG
thin film strip and two microstrip line transducers placed on
the top of the YIG strip for the excitation and detection of spin
waves. The YIG film strip is magnetized to saturation by an
external magnetic field that is in the plane and perpendicular to
the length of the YIG film strip. This film-field configuration
supports the propagation of surface spin waves [16,17] that
show a repulsive nonlinearity [5,20]. The microwave switch
is fed by a continuous microwave source and is controlled by
a fast pulse generator. It generates black microwave pulses
for the excitation transducer. The signals from the detection
transducer are analyzed directly by a fast oscilloscope and a
spectrum analyzer, without using any microwave amplifiers or
diodes.

For the experimental data presented below, the YIG film
strip was 5.6 μm thick, 2 mm wide, and 50 mm long. It
was cut from a larger single-crystal YIG wafer grown on a
gadolinium gallium garnet substrate by liquid phase epitaxy.
The magnetic field was set to 909 Oe. The microstrip line
transducers were 50 μm wide and 2 mm long and were end
shorted. The separation of the two transducers was set to
6.8 mm. The input pulses applied to the excitation transducer
were squarelike dips on a continuous microwave signal, with
the amplitude at the dips less than 5% of the amplitude of
the microwave background. The power level of the microwave
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FIG. 1. (Color online) (a) Schematic of the experimental config-
uration. (b) Transmission responses of the transducer-YIG-transducer
structure measured at two different input power levels (Pin), as
indicated.

background was controlled by a microwave amplifier and a
tunable microwave attenuator inserted between the microwave
switch and the excitation transducer. The amplifier had a
30 dB dynamic range, a peak output power of 2 W, and a linear
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FIG. 2. (Color online) Output signals obtained for a fixed input
pulse width of 29 ns and different input power levels (Pin), as
indicated. The voltage wave signals are shown in light blue, while
the wave phase profiles are shown in light red. The black and gray
solitons are marked by B and G, respectively.
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FIG. 3. (Color online) Output signals obtained for a fixed input
power of 8.3 dBm and different input pulse widths (τin), as indicated.
The voltage wave signals are shown in light blue, while the wave
phase profiles are shown in light red. The black and gray solitons are
marked by B and G, respectively.

response from 2 to 8 GHz. These characteristics ensured that
the nonlinear response of the system was determined solely by
the YIG film.

Figure 1(b) shows the transmission responses (S21) of the
transducer/YIG/transducer structure measured at two different
input power levels (Pin), as indicated. One can see three
results from the data in Fig. 1(b): (1) The spin-wave frequency
range is about 4.5–5.0 GHz. For the data presented below, the
carrier wave frequencies of the input signals all fell within this
frequency range. (2) The transmission profiles are relatively
smooth. This indicates that the spins on the film surfaces are
unpinned, and a repulsive nonlinearity is expected for the entire
4.5–5.0 GHz frequency range. In films with strongly pinned
surface spins, one has a repulsive nonlinearity only in narrow
frequency ranges [21,22]. (3) The transmission for Pin =
10.8 dBm is notably smaller than that for Pin = − 4.2 dBm.
This difference results from nonlinear damping [23], which
was considered in the numerical simulations presented below.

Figures 2 and 3 present representative experimental data
for the formation of dark solitons. Figure 2 shows the output
signals measured for a fixed input black pulse width τin = 29 ns
and different Pin levels, as indicated. Here, Pin denotes the
power level of the microwave background of the signals
applied to the excitation transducer. In contrast to Fig. 2, Fig. 3
shows the output signals obtained for a fixed input power
Pin = 8.3 dBm and different pulse widths, as indicated. In
both the figures, the voltage waves are shown in light blue,
while the corresponding phase profiles are shown in light red.
The black and gray solitons are marked with “B” and “G,”
respectively. Note that all the data were obtained with an input
carrier wave frequency of 4.609 GHz, and the phase profiles
show the phase data of the output signals relative to the phase
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of a reference continuous wave with the same frequency as the
input carrier waves [24].

The data in Figs. 2(a) and 2(b) show the key results of this
paper—the demonstration of a pair of black solitons. For each
soliton, the dip almost goes to zero, and the phase shows a π

jump at its center. For each pair, the phase jumps of the two
solitons are opposite, and the overall phase change is zero.
With an increase in Pin, from 3.3 to 8.3 dBm, the black soliton
pair evolves into a pair of gray solitons, as shown in Fig. 2(c).
For each gray soliton, the dip amplitude is nonzero, and the
phase jump is less than π (about 0.92π ). Nevertheless, the
two solitons have opposite phase jumps, and the total phase
change is almost zero, the same as the black soliton pairs in
Figs. 2(a) and 2(b). When Pin is increased to 13.3 dBm and
then to 18.3 dBm, one observes only a single gray soliton,
as shown in Figs. 2(d) and 2(e). With a further increase in
Pin, one observes nonsolitonic wave forms only, as shown in
Fig. 2(f). Note that independent of the value of Pin, the zero
phase change condition is always satisfied.

The data in Fig. 3 show that the formation of dark
soliton pairs also depends on the width of the initial black
pulse. Figure 3(b) shows a pair of black solitons obtained at
τin = 29 ns. It is essentially the same as the pairs shown in
Figs. 2(a) and 2(b). For a narrower initial black pulse with
τin = 23 ns, however, one observes only a single black soliton,
as shown in Fig. 3(a). As will be discussed shortly, this single
black soliton is similar to the one reported previously in
Ref. [6]. In contrast, for broader initial pulses, one observes
multiple gray solitons or nonsolitonic dips, as shown in
Figs. 3(c)–3(f). At τin = 71 ns, for example, the signal consists
of three gray solitons and two nonsolitonic dips, as shown in
Fig. 3(e). Note that the overall phase change is always zero for
all the data shown in Fig. 3, the same as for data in Fig. 2.

The experimental results presented above can be repro-
duced by numerical simulations using the so-called complex
Ginzburg-Landau equation [18,19]

i

[
∂u

∂t
+ vg

∂u

∂x
+ ηu

]
− 1

2
D2

∂2u

∂x2
− 1

6
D3

∂3u

∂x3

+ (N + iν) |u|2u = 0, (1)

where u is the spin-wave amplitude, x is the spatial coordinate,
t is the temporal coordinate, vg is the group velocity, η is
the damping coefficient, D2 is the dispersion coefficient, D3

is the third-order dispersion coefficient, N is the nonlinearity
coefficient, and ν is the nonlinear damping coefficient. In com-
parison with the standard nonlinear Schrödinger equation [3],
Eq. (1) incorporates three additional terms: one describes the
third-order dispersion, and the other two describe the linear
and nonlinear damping of the spin waves. These additional
terms are required in order to reproduce the experimental
responses.

The simulations used the split-step method to solve the
derivative terms with respect to x and used the Runge-Kutta
method to solve the equation with the rest of the terms [25,26].
The split-step method uses Fourier transformation to convert
the space domain (x) of the equation into the wave-number
domain (k), turning the differential parts of the equation into
simpler linear algebra. A high-order Gaussian-type dip, instead
of a square black pulse, was used in simulations as the initial
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FIG. 4. (Color online) Comparisons between experimental data
and numerical simulations. The gray dashed curves show the data
measured at different input power or input pulse widths, as indicated.
The light blue and light red curves show the simulated envelope and
phase profiles, respectively. The simulations shown in (a), (b), and
(c) were obtained with uin = 7×10−5 and τin = 29 ns, uin = 8×10−4

and τin = 29 ns, and uin = 8×10−4 and τin = 23 ns, respectively. For
easy comparison, all the profiles were normalized in amplitude and
shifted in time.

black pulse. The use of a square black pulse as an initial pulse
gave rise to numerical noise due to the discontinuities at the
pulse edges. Though it is also possible to use the fundamental
Gaussian function, a high-order Gaussian dip better resembles
the experimental situation.

Figure 4 shows representative simulation results. In each
row, the gray dashed curves show the envelope and phase
profiles of the signal measured at certain Pin and τin values,
as indicated, while the light blue and light red curves show
the simulated envelope and phase profiles, respectively. The
simulations presented in Figs. 4(a)–4(c) were carried out with
uin = 7×10−5 and τin = 29 ns, uin = 8×10−4 and τin = 29 ns,
and uin = 8×10−4 and τin = 23 ns, respectively, where uin

denotes the background amplitude of the initial spin-wave
signal. The other parameters used are as follows: vg =
3.6×106 cm/s, η = 5.28×106 rad/s, D2 = −3×103 rad ·
cm2/s, D3 = 1 rad · cm3/s, N = −1×1010 rad/s, and ν =
6.28×109 rad/s. Among these parameters, uin is the only
fitting parameter, while all others were calculated based on the
properties of the YIG film sample. Note that the experimental
and numerical results in Fig. 4 are normalized in amplitude
and shifted in time for the purpose of easy comparison.

One can see from the data in Fig. 4 that the experimental
responses can be well reproduced by numerical simulations.
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Furthermore, the simulations presented in Fig. 4, together
with additional simulations, indicate two important results as
follows. First, a black spin-wave pulse genetically evolves into
a pair of black solitons, as in Figs. 2(a), 2(b), and 3(b), or a
pair of gray solitons, as in Fig. 2(c), for a certain initial power
range and a certain initial pulse width range. All of the soliton
pairs show an overall phase change of zero. These results agree
with theoretical expectations [8–10]. Second, when the initial
black pulse is too narrow to evolve into a soliton pair, it may
develop into a single black soliton-like object, as shown in
Fig. 4(c). This is similar to that reported previously in Ref. [6]
and is consistent with the standard nonlinear Schrödinger
equation model [3,5]. The existence of a single black soliton,
however, does not break the zero phase change condition.
This is clearly shown by the two phase profiles shown in
Fig. 4(c). The simulated profile shows a phase jump of −π

at the soliton center, a gradual increase in the phase for the
wave forms both leading and following the soliton, and an
overall phase change of zero. The experimental profile shows
a slightly different feature—the phase undergoes a jump of
−π at the soliton’s center and a gradual phase increase of
π for the wave form following the soliton. In addition, the
simulations also indicated that the slight asymmetry of the
experimental amplitude and phase profiles was associated with
the third-order dispersion.

Several important points should be noted. First, in addition
to providing experimental evidence for the intrinsic phase char-
acteristic of dark soliton pairs, this paper also demonstrates that
dark soliton pairs not only exist in optical systems [7,12–15]
but also take place in spin-wave systems, thereby indicating
the universal feature of the dark soliton pair phenomenon.
Second, previous work on spatial solitons has indicated that
an initial dark signal could also develop into a sequence of dark

solitons whose number is more than two and is even [7,10]. It
is important that future work demonstrate such development
for temporal dark solitons and study the phase features of
the solitons. Third, the numerical simulations in this paper
indicate that the complex Ginzburg-Landau equation [18,19]
appears to be a more accurate model for nonlinear spin waves
in magnetic thin films than the standard nonlinear Schrödinger
equation, although the latter has been proved to be a generally
good model for many different types of nonlinear waves [3,5].
Finally, the simulations in this paper revealed the existence
of a soliton triplet that consists of a bright soliton embraced
by two black solitons. The data in Fig. 2(c) present a similar
effect. Future study, both experimental and theoretical, on such
soliton triplets is of great interest.

In summary, this paper reported on the formation of black
soliton pairs from nonlinear black spin-wave pulses. For each
soliton, the dip almost goes to zero and the phase shows a
π jump at its center. For each pair, the phase jumps of the
two solitons have opposite signs and the overall phase change
is zero. The formation of such black soliton pairs requires
the initial black pulses to have appropriate power and widths.
Beyond them, the formation of a gray soliton pair is also
possible, which also shows opposite phase jumps and a zero
overall phase change as the black soliton pairs. When the initial
pulses are too narrow to support black or gray soliton pairs,
they can evolve into single black solitons. This is consistent
with the standard nonlinear Schrödinger equation [3,5] and the
previous experimental observation [6].
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Science Foundation (Awards No. DMR-1407962 and No.
ECCS-1231598) and the Russian Science Foundation (14-12-
01296).
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