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Scaling relation for dangerously irrelevant symmetry-breaking fields
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We propose a scaling relation for critical phenomena in which a symmetry-breaking field is dangerously
irrelevant. We confirm its validity on the six-state clock model in three and four dimensions by numerical
simulation. In doing so, we point out the problem in the previously used order parameter, and present an
alternative evidence based on the mass-dependent fluctuation.
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Irrelevant scaling fields are ubiquitous. While they play
minor roles in most cases, some of them are quite relevant
in the usual sense of the word. A textbook example is the φ4

term in the φ4 theory above the upper critical dimension [1]. In
the present article we discuss cases where such a dangerously
irrelevant scaling field reduces the symmetry of the system,
and demonstrate that it yields a new scaling relation.

Consider a renormalization-group flow diagram including
two fixed points; one describing the critical point and the other
the ordered phase. In principle it is possible that some irrelevant
perturbative field at the critical fixed point contains some
scaling field that is relevant at one of the two. In particular,
when the perturbation is symmetry reducing, it can happen
that both fixed points lie on the same manifold characterized
by zero of the perturbative field as illustrated in Fig. 1. In
such cases, even if the perturbation almost dies out at some
length scale, say ξ , it may recover its amplitude at a larger
length scale, say ξ ′. When the system size is between the two
scaling lengths, ξ � L � ξ ′, the system may look ordered
but still no effect of the symmetry breaking is visible. It
may then appear that an intermediate phase exists where the
system acquires an emergent symmetry. A classical example
of this type of renormalization group flow is the q-state
clock model in three dimensions [2], and its continuous-spin
counterpart.

In fact, such an intermediate phase really exists in two
dimensions [3]. However, based on the Monte Carlo simulation
results, Miyashita [4] suggested a simpler scenario for the
three-dimensional case. Furthermore, Oshikawa [2] pointed
out that the existence of the intermediate phase is very
unlikely because the low-temperature phase is already ordered
in the pure model in three dimensions, and that the whole
low-temperature phase is controlled by the zero-temperature
fixed point, in contrast to the two-dimensional case. The
two-dimensional quantum SU(N ) Heisenberg model may offer
a quantum-mechanical example. While the ground state of
this model is the Néel state up to N = 4, the valence bond
solid state takes over for N � 5 [5]. When described in terms
of effective spins representing the direction of the ordered
valence bond pattern, the system can be regarded as a model
analogous to the clock model. It was discovered that the order
parameter distribution function is almost circularly symmetric,
indicating the extremely small effect of the anisotropy. Later,
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an additional term was introduced [6–8] to control the
quantum fluctuation and drive the system to the true transition
point.

It is now widely accepted that in three dimensions there is no
partially ordered phase with the emergent symmetry. However,
disagreement still persists concerning the scaling relation that
relates the scaling exponent ν ′ that characterizes the longer
correlation length and ν characterizing the shorter correlation
length. In this article we propose a new general scaling relation
and verify its validity by Monte Carlo simulation of the XY

model with the Zq scaling field. To verify the validity of the
new scaling relation, below we first present the numerical re-
sults of the anisotropy order parameter, often referred to as φ6,
suggesting that previously proposed scaling relations do not
actually hold. We further argue that, unlike the conventional
finite-size scaling, the scaling plot of φ6 is not fully supported
by a renormalization group picture; we present a more com-
plete scaling argument supported by Monte Carlo simulation.

Previously, a scaling relation was proposed by Ueno
et al. [9] and by Oshikawa [2]. Their argument is based on
the basic assumption that there is a well defined domain
wall splitting the whole system and the excess free-energy
caused by the domain walls is the scaling variable. The excess
free-energy density per area of the domain wall may be given
by the symmetry-breaking field renormalized up to the scale of
the locally correlated volume λ(ξ ) ∼ λξyλ (yλ represents the
scaling exponent of the symmetry-breaking field at the critical
fixed point). The total domain-wall free-energy then may be
Ld−1λ(ξ ) ∼ (L/ξ−yλ/(d−1))d−1. This yields

ν ′

ν
= −yλ

d − 1
. (1)

Lou, Sandvik, and Balents [10] presented a similar argument,
but they argued that the effect of the anisotropy free-energy
comes from the volume instead of the domain walls. Therefore,
they multiply the renormalized field by the number of
correlated volumes, to obtain (L/ξ )dλξyλ = λ(L/ξ 1−yλ/d )d .
This means

ν ′

ν
= 1 + −yλ

d
. (2)

Here we present another scaling relation that is more
general and differs from the previous ones. We again consider
the generic renormalization group flow of Fig. 1. The bare
Hamiltonian is along the short line near the point “A”
parametrized by t so that t = 0 corresponds to the critical
point. If we start from the point t = 0 on this line, the
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FIG. 1. The generic renormalization flow diagram with four fixed
points: P, Q, X, and Y.

scaling flow takes us to the critical fixed point “X,” where
g = gX and λ = 0. If we start from a point with t = tA > 0
and λ = λA > 0, the scaling flow goes through the points
“C” (|gC − gX| = O(1), λC � 1), “D” (|gD − gY| = O(1),
λD � 1), and approaches the second fixed point “Y” around
which renormalization group flow is characterized by scaling
exponents y ′

g < 0 for the variable g and y ′
λ > 0 for the variable

λ. Because of the presence of λ, the flow deviates from Y, goes
through the point “E” (λE = O(1)), and eventually reaches
some other fixed point. The shorter correlation length ξ equals
�AC, i.e., the length scale that has to be renormalized to go
from A to C, whereas the longer correlation length ξ ′ equals
�AE. The critical intervals are BC and DE. For the interval
BC we have λC ∼ ξyλ . For DE, 1 ∼ λE ∼ λD(�DE)y

′
λ , which

yields �DE ∼ (λD)−1/y ′
λ ∝ (λC)−1/y ′

λ ∼ ξ−yλ/y
′
λ . Therefore,

ξ ′ ∝ �BC�DE ∼ ξ
1+ −yλ

y′
λ .

Thus we have arrived at

ν ′

ν
= 1 + −yλ

y ′
λ

. (3)

In order to determine which scaling relation should apply,
we need independent estimates of the scaling indices ν, ν ′,
yλ, and y ′

λ in (3). Here we consider the XY model in three
dimensions with the Zq anisotropy field:

H = −J
∑
(r,r ′)

cos[θ (r) − θ (r ′)] − λq

∑
r

cos[qθ (r)].

As for ν, previous estimates of the pure XY universality class is
available, ν = 0.6717(1) [11]. As for yλ, previous calculation
according to the first-order ε expansion [2] leads,

yλ = 4 − q + ε

(
q

2
− 1 − q(q − 1)

10

)
,

e.g., yλ = −0.2 for q = 4 and = −3.0 for q = 6. In addition
to this ε expansion, Monte Carlo estimates of the yλ up to
q = 4 are available [12]. In Fig. 2 we plot the estimated
scaling eigenvalues and their extrapolation by the second-order
polynomial along with the result of the first-order ε expansion.
The Monte Carlo estimation of yλ reveals a surprisingly good
agreement with the first-order ε expansion, while the second-
order polynomial fitting slightly deviates from the ε expansion
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FIG. 2. (Color online) The estimated scaling eigenvalues from
Ref. [12] (symbols), the second-order polynomial fitting to them
(dashed curve), and the result of the first-order ε expansion (solid
curve).

at q = 6. From this figure we estimate yλ = −2.5(2) for
q = 6. As for y ′

λ, an argument [2] suggests that the quadratic
fluctuation around the ordered configuration is essential at
the Nambu-Goldstone (NG) fixed point, leading to y ′

λ = 2,
analogous to the scaling eigenvalue of the φ2 field in the
Gaussian field theory. Finally, we consider ν ′. In order to
estimate ν ′ we need a proper scaling variable which obeys
a finite size scaling with ν ′.

In the previous studies, an order parameter that character-
izes the symmetry reduction from U (1) to Z6,

φ6 ≡ 〈cos(6θ0)〉
was analyzed by assuming φ6 ∼ f (tL1/ν ′

) [2,10]. Here θ0 is
the angle of the average magnetization, i.e.,

(m0 cos θ0,m0 sin θ0) ≡ 1

N

∑
r

( cos θ (r), sin θ (r)),

and 〈· · · 〉 represents a thermal average. In Fig. 3(a) we show the
finite size scaling of φ6 against (Tc − T )L1/ν ′

with ν ′ = 1.45
which is estimated from the Bayesian method [13]. Estimated
ν ′ considerably deviated from Ueno’s scaling relation (1) and
Lou’s scaling relation (2); they give ν ′ 	 0.84 and ν ′ 	 1.23
from known exponents ν and yλ, respectively. Indeed, when
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FIG. 3. (Color online) The finite size scaling of φ6 for the Z6-
anisotropic XY model with λ6/J = 5 in three dimensions. (a)
ν ′ = 1.45, (b) ν ′ = 1.23. For the scaling we used the data set of
(Tc − T )/J � 0.4.
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we use even relatively acceptable Lou’s value ν ′ = 1.23, the
overlap of the data becomes clearly worse [see Fig. 3(b)].
Therefore, scaling relations (1) and (2) seem to fail in the
present critical phenomenon.

Note, however, this finite-size scaling plot of φ6 is different
from conventional finite-size scaling in that it is not clear
whether we would obtain a perfect data collapse even in
the limit of infinite system size. More specifically, to regard
φ6 as a scaling operator in its full value range, θ0 must be
a dimensionless scaling operator, which is not so obvious.
Therefore, the meaning of scaling analysis based on φ6 is
not clear, even if the resulting plottings may look reasonably
good [14]. We propose another scaling variable whose scaling
form is directly calculated from the effective theory around the
NG fixed point.

Suppose that we start from the high-temperature phase
and gradually cool the system passing the transition point.
Because of the asymptotic U (1) symmetry, the ordering angle
θ0, selected by the spontaneous symmetry breaking, can be any
value in the interval [0,2π ). Once the ordering angle has been
selected, it does not change (in a finite time) and determines
the “mass of the particles.” More specifically, the effective
Hamiltonian that characterizes the system at the length scale
larger than the (first) correlation length ξ can be obtained
by expanding H = ∫

dd r ′[ 1
2 (∇θ )2 − λ′

q cos qθ ] in terms of
the small fluctuation around the direction of the spontaneous
ordering, φ ≡ θ − θ0:

Hθ0 = 1

2

∫
dd r ′[(∇φ)2 + λ′

qq
2 cos(qθ0)φ2]

− λ′
qL

′d cos qθ0 + O(φ3). (4)

Note that r ′ implies the renormalized length r ′ ∼ r/ξ . This
Gaussian field theory indicates that Fourier modes of fluctua-
tion are governed by renormalized anisotropy and macroscopic
orientation θ0 as

〈|φk′ |2〉θ0 ∼ 1

k′2 + λ′
qq

2 cos qθ0
, (5)

where 〈· · · 〉θ0 means the average with the condition that
the macroscopic orientation is equal to θ0. Note that every
quantity in this expression is normalized up to the length
scale ξ , i.e., λ′

q = λqξ
yλ , r ′ ≡ r/ξ , and k′ ≡ kξ . Then, if we

take the wave number k′ as 2π/(L/ξ ), 〈|φk′ |2〉θ0 obeys the
scaling form 〈|φk′ |2〉θ0 ∼ (L/ξ )2f (L/ξa) with a ≡ 1 − yλ/2.
This form indicates that ξ ′ ∼ ξa or ν ′/ν = a.

In order to estimate this exponent, we carried out Monte
Carlo simulation of the XY model with anisotropy, λ6 = 5J .
We computed the spin structure factor at |k| = 2π/L as an
observable for the finite size scaling. Based on the effective
Hamiltonian around the NG fixed point, the spin structure
factor is also expected to depend on the ordering direction of
the bulk θ0. The angle dependent spin structure factor Sk(θ0) ≡
1
N

〈| ∑i
�Sie

ik·r i |2〉θ0 is naturally related to the Fourier transform
of the renormalized angle fluctuation 〈|φk′ |2〉θ0 , through the
relation

Sk(θ0) ∼ ξd−2xh〈|φk′ |2〉θ0 , (6)

where the prefactor ξd−2xh with the scaling dimension of the
magnetization at the XY critical fixed point xh comes from
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FIG. 4. (Color online) The angle dependent spin structure factor
Sk(θ0) (filled circle) and the probability distribution of ordering angle
θ0 (open circle) for the Z6-anisotropic XY model with λ6/J = 5,
L = 64 at T/J = 2.0 < Tc/J (Tc/J = 2.202) in three dimensions.

the renormalization effect. Figure 4 shows an example of
Sk(θ0) below the critical temperature Tc. As expected from the
behavior of 〈|φk′ |2〉θ0 , Sk(θ0) shows a periodic change of its
amplitude with the period of 2π/6. In addition, the minimum
appears at the maximum of the distribution function, which is
consistent with (5).

In order to capture the scaling behavior of this an-
gle (or mass) dependent fluctuation, we define the angu-
lar Fourier transform of the spin structure factor: S̃k ≡

1
2π

∫ 2π

0 dθ0Sk(θ0) cos(qθ0). From Eqs. (5) and (6) we expect
that the finite-size scaling of S̃k is given as

S̃k ∼ Lμg[(Tc − T )L1/ν ′
], (7)

where

μ = 2(d − yλ − 2xh)

2 − yλ

. (8)

In addition, we can write down the expected scaling function
g(x) from the angular Fourier transform of (5) as

g(x) ∝ xν(2xh+yλ−d)

(
1 − 1√

1 − cx2ν ′

)
, (9)

where c is a nonuniversal constant.
Figure 5(a) shows the finite size scaling of S̃k for the

three-dimensional (d = 3) model against (Tc − T )L1/ν ′
with

ν ′ = 1.511 which is calculated from the known exponents ν =
0.6717 and yλ = −2.5 through the new scaling relation (3).
The vertical axis is also scaled by L−μ with μ = 1.983
estimated from the exponents ν,yλ and xh = 0.519 [11] by (8).
The data seem to be almost converged for the larger sizes
and also its scaling function is well fitted by the expected
function (9). These observations strongly support the the new
scaling relation (3).

In retrospect, even if we take the line of reasoning of Ueno
et al., we might have had to multiply (L/ξ )d−1 instead of
Ld−1 because we are working with the renormalized world
with the original length scale L being shrunk to L/ξ . If we
adopt this correction, Ueno’s scaling relation (1) would have
been

ν ′

ν
= 1 + −yλ

d − 1
,
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FIG. 5. (Color online) Log-log plot of the angular Fourier trans-
form of the angle dependent spin structure factor S̃ for the Z6-
anisotropic XY model with λ6/J = 5 in three dimensions (a) and
in four dimensions (b). (a) The finite-size scaling plot assuming
μ = 1.983 and ν ′ = 1.511. (b) The finite-size scaling plot assuming
μ = 2.0 and ν ′ = 1 in four dimensions. The critical temperatures
Tc/J = 2.202 for three dimension and Tc/J = 3.3143 for four
dimensions are estimated from the binder ratios of the magnetization.
The solid curves are the fittings of the scaling function (9) assuming
ν = 0.6717, xh = 0.519, yλ = −2.5 for three dimensions and ν =
0.5, xh = 1, yλ = −2 for four dimensions with the relation ν ′/ν =
1 − yλ/2.

which yields an identical result to the present scaling relation
for d = 3. In Fig. 5(b) we plot the finite size scaling of the S̃k

for the four-dimensional (d = 4) model along with the fitting
curve of the scaling function (9). Although we still observe
the strong finite size correction, the data seem to converge to
the scaling function (9) supporting the new scaling relation (3)
also in four dimensions.

In summary, we have proposed a generic scaling relation for
critical phenomena in which a dangerously irrelevant scaling
field plays an important roll. Monte Carlo simulations for
an XY model with a Zq symmetry-breaking field strongly
supported the validity of a new scaling relation. While we
could have used more conventional quantities, such as the
specific heat for instance, to demonstrate the new scaling
relation, we have not done that mainly because of technical
difficulty. The effect of ξ ′ would appear only as the crossover
between two temperature regimes, one with a subdominant
contribution from the phase fluctuation and the other without,
offering an evidence much less clear than the one presented
above.
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