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Ab initio investigation of light-induced relativistic spin-flip effects in magneto-optics
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Excitation of a metallic ferromagnet such as Ni with an intensive femtosecond laser pulse causes an ultrafast
demagnetization within approximately 300 fs. It was proposed that the ultrafast demagnetization measured in
femtosecond magneto-optical experiments could be due to relativistic light-induced processes. We perform an
ab initio investigation of the influence of relativistic effects on the magneto-optical response of Ni. To this
end, first, we develop a response theory formulation of the additional appearing ultrarelativistic terms in the
Foldy-Wouthuysen transformed Dirac Hamiltonian due to the electromagnetic field, and second, we compute the
influence of relativistic light-induced spin-flip transitions on the magneto-optics. Our ab initio calculations of
relativistic spin-flip optical excitations predict that these can give only a very small contribution (�0.1%) to the
laser-induced magnetization change in Ni.
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I. INTRODUCTION

Ultrafast laser-induced demagnetization of metallic ferro-
magnets was discovered in 1996 by Beaurepaire et al. [1], who
observed that a ferromagnetic Ni film could be demagnetized
to ∼ 50% in about 300 femtoseconds after excitation with a
short laser pulse. This surprising discovery was followed by
many pump-probe magneto-optical experiments on elemental
metallic ferromagnets that confirmed the phenomenon of
laser-induced demagnetization (see e.g., Refs. [2–8]). More
recently, ultrafast laser-induced demagnetization has been
studied in multi-sub-lattice or multilayer materials employing
element resolved probing techniques in the extreme ultraviolet
and soft x-ray regimes [9–14].

The discovery of ultrafast laser-induced demagnetization
led to an intensive debate on what the underlying microscopic
mechanism of the ultrafast dissipation of spin angular mo-
mentum could be [15–17]. Several mechanisms have been
proposed to explain the ultrafast demagnetization and these
continue to be discussed [18–22]. An early microscopic expla-
nation was based on direct transfer of angular momentum from
the light involving the spin-orbit interaction [18]. Another pro-
posed mechanism is spin dissipation through fast Elliott-Yafet
electron-phonon spin-flip scatterings [20]. Other proposals are
electron-magnon spin-flip scattering [19] or electron-electron
spin-flip scattering [21]. A different scenario is based on the
laser generation of superdiffusive spin currents that transport
spin angular momentum out of the excited ferromagnetic film,
thus reducing its net magnetization [22,23]. Other explanations
have focused on the direct action of the laser on the electron’s
spin, causing either a direct, laser-induced spin flip [24] or
a change of the spin through an ultrarelativistic spin-light
interaction [25].

Despite the still ongoing debate on the mechanism of ultra-
fast demagnetization it has been shown that spin dynamics sim-
ulations within the Landau-Lifshitz-Gilbert, Landau-Lifshitz-
Bloch, or Landau-Lifshitz-Baryakhtar formulations [26–29]
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can be used to describe ultrafast laser-induced demagnetization
in alloys when a sufficiently large and fast dissipation of spin
angular momentum is assumed.

To establish accurately how much demagnetization can be
caused by one of the aforementioned mechanisms, density-
functional theory (DFT) based electronic structure calculations
are indispensable. Recently, DFT-based investigations have
been performed for the Elliott-Yafet electron-phonon spin-
flip scattering in transition metal ferromagnets [30–33]. The
ab initio calculations predicted relatively small demagneti-
zation rates; this gave rise to modified proposals, in which in
addition an ultrafast reduction of the exchange splitting needed
to be taken into account to explain the observed demagne-
tization [34,35]. Another recent computational investigation
suggested that a combination of spin-flip electron-phonon
and electron-magnon scatterings could explain the measured
demagnetizations [36].

A demagnetization scenario involving the direct, relativistic
spin-photon interaction was proposed a few years ago [25]. In
this proposal ultrarelativistic terms stemming from the Dirac
Hamiltonian provide a coupling between the electromagnetic
field of the pump laser pulse and the spins of electrons in
the material [25,37,38]. Model calculations of this mechanism
have recently been made for transitions from the 2s to 2p

levels of a hydrogen atom [39]. A full ab initio investigation
of the influence of the relativistic spin-photon interaction on
the magnetization and magneto-optical response has not yet
been made.

Here, we report an ab initio investigation of the influence
of the relativistic spin-photon interaction. First we present an
analytic theory to analyze which terms are the relativistic terms
that are involved in the coupling of the spin and photon fields.
A notable difference as compared to other recent investigations
[25,39] is the direct consideration of the exchange field
in our approach. Also, we investigate the influence of the
additional relativistic terms on the response theory equations
for the magneto-optical spectrum. The derived expressions
are employed in ab initio calculations of the magneto-optical
Kerr effect (MOKE) of Ni. Our calculations underline that the
influence of relativistic, laser-induced spin-flips is present, but
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is quite small and can thus not account for the substantial
amount demagnetization that is observed in femtosecond
pump-probe magneto-optical measurements.

In the following, we first provide a derivation of the
relativistic spin-photon interaction starting from the Dirac
equation (Secs. II A and II B). In Sec. II C, the corresponding
momentum operator is derived and results of ab initio
calculations for Ni are presented in Sec. III, and conclusions
are in Sec. IV.

II. THEORY

A. The Dirac-Kohn-Sham equation

To include the relativistic light-spin coupling effects in the
calculation of the magneto-optical Kerr spectra we consider
the Dirac-Kohn-Sham (DKS) equation [40–42]

H |ψ〉 = (E − mc2)|ψ〉 (1)

with H being the DKS Hamiltonian,

H = c α · p + (β − 1) mc2 + V − μBβ � · Bxc. (2)

Here, � = 1 ⊗ σ is the spin operator in the Dirac bispinor
space, V is the unpolarized Kohn-Sham self-consistent poten-
tial, Bxc is the spin-polarized part of the exchange-correlation
potential in the material, p = −i�∇, 1 is the 4 × 4 identity
matrix, and μB is the Bohr magneton, μB = e�

2m
. The matrices

α =
(

0 σ

σ 0

)
and β =

(
1 0

0 −1

)

are the well known Dirac matrices, with σ the Pauli spin
matrices and 1 the 2 × 2 identity matrix. The fully relativistic
state |ψ〉 in Eq. (1) is the Dirac bispinor,

|ψ〉 =
(|ψ+〉

|ψ−〉
)

.

An important point to observe is that in the DKS equation
the exchange field Bxc is different from the standard magnetic
field, as it obviously acts only on the spin degree of freedom
and does not couple to the orbital angular momentum. It is
thus not a proper magnetic field and cannot be represented
by a vector potential [41]. Therefore it is not included as
a vector potential Axc in the linear momentum, i.e., p −
eAxc. However, to account for an external electromagnetic
perturbation (for instance being due to a laser source) we
introduce the vector potential A(r,t), leading to

H = cα · ( p − eA) + (β − 1) mc2 + V − μBβ � · Bxc.

(3)

In Appendix A, we show that, in the nonrelativistic limit, this
form of the DKS equation leads to a Hamiltonian where the
external magnetic field B(r,t) = ∇ × A(r,t) couples to the
spin S (= �

2 σ ) and orbital angular momentum L operators,
but the exchange field Bxc couples only to the spin operator.

The aim of this work is to investigate the influence of
relativistic terms—that lead to a spin-photon field coupling—
on the MOKE spectra. To elucidate the terms that involve both
spin degrees of freedom and the external electromagnetic field,
we rewrite the Hamiltonian in Eq. (3), as a semirelativistic

expansion in terms of order of 1/c2. Such rewriting of the DKS
equation can be achieved in two ways. The small component
of the wave function |ψ−〉 can be eliminated exactly, leading
to an equation which is fully equivalent to the DKS equation,
but for the large component |ψ+〉 only [43]. This equation can
subsequently be expanded in orders of 1/c2. Alternatively, one
can use the Foldy-Wouthuysen (FW) transformation approach
[42,44], however, it needs to be extended to the case where an
exchange field Bxc is present, which was not done before. We
note that apart from the exact transformation of Kraft et al.
[43], a Green function technique was applied by Crépieux
and Bruno [45] to obtain the semirelativistic Hamiltonian.
However, they did not start from the DKS Hamiltonian as
given in Eq. (3), but instead added the external magnetic field
to the exchange field and did not have a vector potential in the
momentum, p − eA (but only p). As discussed further below,
they obtained several similar terms, yet not all that follow
from the FW transformation. In the following, we employ the
Foldy-Wouthuysen transformation to derive the Hamiltonian
terms that give rise to a spin-photon field coupling.

B. The time-dependent Foldy-Wouthuysen transformation

To make a clear distinction between pure nonrelativistic
Schrödinger-like terms and relativistic terms (up to the order
of 1/c2), we use the Foldy-Wouthuysen transformation [42].
Formally, the time-dependent FW transformation can be
expressed as

HFW = eiUFW

(
H − i�

∂

∂t

)
e−iUFW , (4)

where eiUFW is a unitary operator that transforms the DKS
Hamiltonian to a block diagonal form, where each block is
2 × 2. The four-component Dirac Hamiltonian is diagonalized
under the assumption that, at all points in the configuration
space, two of the spin components are much smaller than the
other two. This assumption is valid if the kinetic and potential
energy of the electron is much smaller than the rest mass
energy of the electron. Since we are interested only in the
“positive energy” solutions, we will retain only the upper 2 × 2
component of the Hamiltonian (the large component of the
Dirac bispinor). To find the transformed Hamiltonian in a 1/c2

expansion, we write the DKS Hamiltonian as

H = (β − 1) mc2 + O + E (5)

with O = c α · ( p − eA) as an odd operator (i.e., off-diagonal
in the particle-antiparticle Hilbert space) and E = V −
μBβ � · Bxc as an even operator (diagonal in the same space).
Next, we consider the FW operator,

UFW = − i

2mc2
βO. (6)

To obtain an expansion in orders of 1/c2 we use a Taylor
expansion of the operator e±iUFW � 1 ± iUFW + O(1/c2).
This leads to a transformed Hamiltonian

H ′ = (β − 1) mc2 + O′ + E ′, (7)

where O′ is the transformed odd part which is of the order
of 1/c2 and E ′ is the transformed even part. Repeating this
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procedure two times with the operators U ′
FW = − i

2mc2 βO′ to get a further transformed H ′′, O′′, and E ′′, and then working with
the operator U ′′

FW = − i
2mc2 βO′′ on the transformed Hamiltonian H ′′, we get rid of the odd terms up to the order of 1/c6. After

these transformations, we obtain a transformed Hamiltonian written in terms of the original odd and even parts:

H ′′′
FW = (β − 1) mc2 + β

( O2

2mc2
− O4

8m3c6

)
+ E − 1

8m2c4
[O,[O,E] + iȮ]. (8)

Substituting the explicit form of the operators O and E , retaining only the terms up to the order 1/c2 and keeping in mind that,
for the vector potential of the external electromagnetic field, B = ∇ × A and E = − ∂ A

∂t
, we arrive at the Hamiltonian restricted

to the large component of the Dirac bispinor,

HFW = ( p − eA)2

2m
+ V − μB σ · Bxc − μB σ · B − ( p − eA)4

8m3c2
− 1

8m2c2
(p2V ) − e�

2

8m2c2
∇ · E

+ i

4m2c2
σ · ( pV ) × ( p − eA) − e�

8m2c2
σ · {E × ( p − eA) − ( p − eA) × E}

+ μB

8m2c2
{[p2(σ · Bxc)] + 2σ · ( pBxc) · ( p − eA) + 2( p · Bxc) σ · ( p − eA) + 4[Bxc · ( p − eA)] σ · ( p − eA)}

+ iμB

4m2c2
[( p × Bxc) · ( p − eA)]. (9)

Note that, when the momentum operator and a (vector) func-
tion are enclosed in round brackets the momentum operator
acts only on this function. This Hamiltonian is an extension
to the conventional Pauli Hamiltonian (see Appendix A) yet,
including all the 1/c2 terms and all the terms involving Bxc to
the same order. We note in addition that the Hamiltonian (9) is
quite different from the Hamiltonian given by Bigot et al. [25],
as they did not consider the magnetic exchange interaction,
which, however, is the strongest magnetic interaction in a
ferromagnetic material as Fe, Co, or Ni. In a further work,
Vonesch and Bigot [39] considered a static homogeneous
applied magnetic field, expressed by a vector potential,
as well as a time-varying vector potential to describe the
electromagnetic field. Such static homogeneous magnetic field
is nonetheless different from the exchange field Bxc, as the
latter, as mentioned in the previous section, cannot be included
by means of a vector potential [40,41]. Specifically, compared
to the extended Pauli Hamiltonian (9), Vonesch and Bigot
obtain the first, second, fourth, sixth, and eighth terms, as well
as a term similar (but not identical) to the ninth term. As they
did not include an exchange field, they did not obtain any of
the terms containing Bxc, but had a contribution σ · Bext due
to the static applied homogeneous field. In addition they found
an additional term, AL · Aext, the product of the two vector
potentials of the electromagnetic radiation and the constant
external magnetic field. This term, which stems from writing
out ( p − e[AL + Aext])

2, does not appear in our formulation
where the exchange field is not represented by a vector
potential.

Our extended Pauli Hamiltonian (9) can further be com-
pared with the Hamiltonian obtained by Crépieux and Bruno
[45] using a Green’s function-based method. They considered
two different Hamiltonians, one with an effective (including
exchange) vector potential Aeff , and the other one with an
effective magnetic field, Beff . In the first case, they obtained
the same terms as we do from the introduction of the external
vector potential, however, the feasibility of the DFT-based
formulation of such Hamiltonian appears to be an open
question. In the second case, they apply their method to an

effective Hamiltonian where the orbital magnetic effects are
neglected, and make the critical assumption Beff = ∇ × Aeff ;
however, on account of its nature, the exchange part of their
Beff does not satisfy the Maxwell equations as a normal
magnetic field does (see, e.g., Ref. [41]). In our case, we used
a vector potential to account for an external field without any
need to use the mentioned critical assumption, thus giving
in our Hamiltonian the proper E-dependent terms and terms
linear in both, the external vector potential and Bxc fields,
which are missing in the approach of Ref. [45].

The Hamiltonian (9) looks cumbersome at first sight but
its physical content is readily explained. (1) The first and
second terms comprise the usual Schrödinger Hamiltonian
for a particle in an external field V (which in this case is
a self-consistent potential) and where the minimal coupling
with an external vector potential A(r,t) is present (this may
represent, in general, any kind of external electromagnetic
field). (2) The third term is a Zeeman-like term due to the
presence of the magnetic exchange field. (3) The fourth term is
the standard Zeeman term with the external magnetic field. (4)
The fifth term is the relativistic mass correction. (5) The sixth
and the seventh terms are respectively the Darwin terms related
with the self-consistent potential V and the standard Darwin
term arising from the external perturbation. (6) The eighth and
the ninth terms are those which in a central potential V give rise
to the spin-orbit coupling. (7) All the remaining terms, except
the last, can be seen as corrections to the spin-orbit coupling
due to the spin-polarized exchange field. This is more apparent
using the identity

r p = rp̂r − r
r

× L, (10)

where p̂r = −i� ∂
∂r

is the spatial part of the momentum
operator. (8) The last term depends on the Bxc field but is
independent of the spin.

The terms which involve a direct coupling of the spin to the
external electromagnetic field are the fourth, eighth, ninth, and
tenth ones. Via these terms it would in principle be possible to
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control the spin of electrons in a magnetic material by applying
an external laser field.

C. Strategy for the numerical implementation

Our aim is to implement the above-derived relativistic terms
in a suitable formalism for ab initio calculations. An adequate
way to achieve this is to consider the change of the Hamiltonian
due to the applied electromagnetic field, which then is treated
as a perturbation within Kubo linear-response theory to
obtain the corresponding optical conductivity tensor (see, e.g..
Ref. [46]).

The standard strategy for the derivation of the conductivity
tensor consists in gathering the external magnetic vector
potential related linear terms in an interaction Hamiltonian
[47],

δ〈HI 〉 = −
∫

d r j · δ A, (11)

and then to rewrite the current density operator j in terms
of the momentum operator. This procedure is straightforward
in the fully relativistic approach [see Eq. (3)] because the
momentum operator, which is the conjugate of the position
operator, is given as

�D = − im

�
[r,H ] = mc α, (12)

and the variation of the DKS Hamiltonian [Eq. (3)] results
easily:

j = −δHI

δ A
= ec α = e

m
�D. (13)

However, in the semirelativistic limit this equivalence breaks
down. The expression of the conjugate momentum operator,
obtained using the position-momentum conjugation relation
starting from the extended Pauli Hamiltonian [Eq. (9)], is

�P = p + 1

4mc2

[
2p2

m
p + iσ × ( pV )

+μB{σ · ( pBxc) + ( p · Bxc)σ + 2Bxc(σ · p)

+ 2σ (Bxc · p) + i( p × Bxc)}
]
, (14)

where all the terms in the square brackets are due to relativistic
corrections. The first and the second terms in the square
brackets are related to the relativistic mass correction and
the spin-orbit coupling, respectively, and can be obtained by
means of the standard FW transformation in the absence of
the exchange field; all the remaining terms are new and stem
from relativistic corrections and the exchange field in the DKS
equation. To reformulate this momentum operator, we use that
it has been seen in Ref. [48] that the current density operator
in the semirelativistic limit can be written in the form

j (r) = jπ + j sp = e

m
�P − ie

2m
(←−p × σ + σ × p), (15)

where ←−p means that the operator p operates to the left. Here,
the second and third terms, representing j sp, the spin-polarized
current density, underline a crucial difference between the
momentum operator and the current density operator. These
terms can be obtained in several ways. They can be derived

from a variation of the Hamiltonian with respect to A as
already done in Ref. [47], or they can be derived by applying
the Foldy-Wouthuysen transformation to the fully relativistic
Dirac current j = ec α [49]. Here, we adopted a different
approach to derive the spin-polarized current, see Appendix C.
For our purpose, however, it is important to note that the
additional j sp term does not give any contribution. In fact, its
matrix elements which are required for an ab initio calculation,
are

〈�n| j sp|�m〉 = e�

2m

∫
V

d r ∇ × [�∗
n (r)σ�m(r)]

= e�

2m

∫
S

d� n × [�∗
n (r)σ�m(r)], (16)

with n the unit vector normal to the surface. This integral
vanishes when we consider the infinite surface of integration
that encloses our sample. Consequently, we have proved that,
for our purpose, we can work with the current operator given
by the momentum operator �P.

D. Optical conductivity tensor and MOKE

Once the required current density operator, and thus the
interaction Hamiltonian (11), is known, linear-response theory
can be applied to obtain the conductivity tensor σαβ(ω). The
most accurate way to evaluate the conductivity tensor would
be to invoke the linear-response time-dependent DFT, which
includes the contribution of the exchange kernel to account for
nonequilibrium electron interaction processes in the excited
state [50,51]. However, such calculations on the here-desired
relativistic level have not yet been performed. Also, it is our
aim to interpret MOKE experiments where the employed laser
intensity is less then 1011 W/m2. In this regime the number
of electrons removed from below the Fermi energy in Ni is
about 0.01 electron [52] and therefore we do not expect that
such rearrangement of electrons will give rise to a significant
contribution from excited-state electron-electron interaction.
Furthermore, it was shown previously that the bare Kohn-
Sham linear-response theory described very well the measured
magneto-optical spectra of metals [46].

As it is shown in Appendix B, the conductivity tensor within
the Kohn-Sham linear-response theory can be expressed by
an identical equation valid for the fully relativistic, semirel-
ativistic and nonrelativistic ( j = e

m
p) cases. In terms of the

Kohn-Sham single-particle energy dispersion relations εn(k)
and matrix elements of the current operator jα

nm(k), which
can be easily obtained in the framework of band structure
calculations, it reads

σαβ(ω) ≈ − i

�V

∑
nn′k

[
f (εn(k)) − f (εn′(k))

ωnn′ (k)

× jα
n′n(k)jβ

nn′(k)

ω − ωnn′ (k) + i/τ

]
, (17)

where �ωnn′ (k) = εn(k) − εn′ (k). Here the parameter τ ac-
counts for the lifetime broadening.

It has already been proven that magneto-optical Kerr
spectra are well described in a DFT band-structure framework
using this single-particle formulation of the linear-response
theory [43,53]. The polar MOKE spectra are related to the
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conductivity tensor elements by the equation

�K(ω) = θK(ω) + iεK(ω)

� − σxy(ω)

σxx(ω)
√

1 + 4πi
ω

σxx(ω)
. (18)

Here the exchange field is chosen along the local z axis and �K

is the complex polar Kerr angle that can be divided in the real
Kerr rotation θK and imaginary Kerr ellipticity εK. Expression
(18) is not exact, but in our actual calculations below we used
the longer exact expression [46]. Note that in pump-probe
magneto-optical experiments the transient MOKE signal is
measured, which is often taken to be a direct measure of the
changing atomic magnetization [1,24].

In the following, we compute the influence of the relativistic
spin-photon couplings terms on the magneto-optical spectra of
Ni. To evaluate their influence, all the calculations described
in the next section are performed with switching on and off
the terms in square brackets of Eq. (14). To be precise, our ab
initio implementation of the relativistic momentum operator
matrix elements use Eq. (10) in Ref. [43], which is exact to all
order in 1/c2.

III. MAGNETO-OPTICAL KERR EFFECT
CALCULATIONS FOR NICKEL

To elucidate the influence of the relativistic spin-photon
interaction on the magneto-optical response, we preformed
ab initio calculations for nickel. In particular, we compare
computed Kerr effect spectra obtained using either the
nonrelativistic expression of the momentum operator p =
−i�∇ in the evaluation of the conductivity tensor Eq. (17),
which determines the polar Kerr effect, or the semirelativistic
expression for the momentum operator in Eq. (14).

It is already well known that the magneto-optical Kerr effect
is by itself a relativistic effect, since it is directly related to
spin-orbit coupling [54,55] present in the ab initio calculated
electronic structure (particularly, in the wave functions).
The latter we compute with a relativistic (four-component)
extension of the augmented-spherical wave (ASW) code [56],
adopting the local spin density approximation (LSDA) to
the DFT. As has been shown previously, using only the
nonrelativistic momentum operator in the conductivity tensor
calculations (in conjunction with fully relativistic electronic
structure calculations) provides a good description of the
MOKE of metallic ferromagnets [46], including Ni.

In Fig. 1, we show the comparison between the
interband-only optical conductivity elements, Re[σxx(ω)] and
ωIm[σxy(ω)], computed with the nonrelativistic momentum
operator as well as with including the relativistic corrections to
the momentum operator. The calculations are performed with
a broadening �/τ = 0.03 Ry. As it is apparent from the plot
the contribution due to the relativistic terms does not lead to an
appreciable change in the conductivity spectra. The influence
of the additional light-spin interaction terms on the MOKE
spectra is shown in Fig. 2. As expected from the results shown
in Fig. 1, the comparison in Fig. 2 shows that, also for the Kerr
spectra, the contribution from the relativistic correction terms
is very small.
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FIG. 1. (Color online) Calculated optical conductivity spectra
Re[σxx(ω)] (top) and ωIm[σxy(ω)] (bottom) of fcc Ni, using the rela-
tivistic and nonrelativistic current density formulations. The blue lines
are calculated considering the momentum operator in nonrelativistic
approximation ( p = −i�∇). The orange dotted-dashed lines are the
calculations performed using Eq. (14) as momentum operator.

To quantify the influence of the relativistic terms on
the conductivity tensor, we show in Fig. 3 (top panel)
the difference between the off-diagonal components of the
conductivity tensor calculated with and without the relativistic

0 1 2 3 4 5 6 7
Photon energy (eV)

-0.4

-0.2

0

0.2

0.4

C
om

pl
ex

 M
O

K
E

 (
de

g.
)

θK nonrelativistic

θK relativistic

εK nonrelativistic

εK relativistic

Ni

FIG. 2. (Color online) Calculated magneto-optical Kerr rotation
and Kerr ellipticity of Ni. The black and blue lines are, respectively,
the Kerr rotation θK and ellipticity εK calculated without taking
into account the additional relativistic terms of the momentum
operator. The red and yellow dashed lines are the Kerr rotation and
ellipticity, respectively, calculated retaining the relativistic terms of
the momentum operator.
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FIG. 3. (Color online) (Top) Differences between the off-
diagonal conductivity σxy(ω) components computed with the rela-
tivistic and the nonrelativistic current operators. (Bottom) Calculated
absolute value of the difference in σxy (�K) normalized to the quan-
tities |σxy,nr| (|�K,nr|) computed with the nonrelativistic momentum
operator.

terms in the momentum operator. This difference is of the
order of 10−4 (×1015 s−1) for both the real and imaginary
part. Note that the difference curves in Fig. 3 are very smooth
and do not show any jitter. The reason for its absence is the
high numerical accuracy in the calculation of σxy(ω), which
is still appreciably higher (better than 10−7) (for details of
the numerical implementation, see [53]). Hence there is no
doubt that we can adequately capture the influence of the
relativistic corrections terms. In Fig. 3 (bottom panel), we plot
the absolute values of the differences in σxy normalized to the
nonrelativistic off-diagonal conductivity, i.e., |�σxy |/|σxy,nr|,
and the same for the complex Kerr angle, i.e., |��K|/|�K,nr| =
(�θ2

K + �ε2
K)1/2/(θ2

K,nr + ε2
K,nr)

1/2. For both quantities, the
normalized differences are of the order of 0.1%. Thus, we can
conclude that the relativistic spin-photon terms do contribute
to the magneto-optical signal of Ni, but that this contribution
is rather small. The spin-photon induced change in the MOKE
signal would consequently be present during the pump pulse,
where it would be interpreted as as magnetization change of
the order of 0.1%.

IV. DISCUSSION AND CONCLUSIONS

Previous estimations of the influence of the relativistic
spin-photon interaction have been made by Vonesch and
Bigot [39], who considered optical transitions on a hydrogen
atom within the framework of an extended Pauli Hamiltonian.
Calculating the matrix elements of the spin-photon terms in
their Hamiltonian, they found that these were of the order of
1 × 10−6 (whereas the nonrelativistic term p · A was of order
1). The largest contribution in their treatment originated from
the cross term AL · Aext of the vector potential of the laser
radiation and an external magnetic field, which, as mentioned

before, does not arise in our treatment. Vonesch and Bigot esti-
mated a change in the normalized Kerr rotation of 0.5 × 10−3.
Thus even with the additional term this estimated change in
the Kerr rotation is in overall accord with ours for metallic Ni.

Nonetheless, in spite of the nonzero influence, our ab initio
calculations do not evidence that relativistic light-induced
spin-flip transitions could provide a notable demagnetization
channel. They would appear as a small demagnetization effect
during the pump pulse, which is in experiments typically
about 70-fs wide. However, during and immediately after the
pump pulse there will also be the influence of “bleaching,”
that is, the reduction in the optical excitation channels caused
by the presence of pump-laser excited electrons [52,57]. The
influence of such nonequilibrium electron populations on the
MOKE spectra of Ni have been evaluated previously [58], yet
without the here-investigated relativistic spin-photon effects,
and were found to be significant. We can thus conclude that the
nonequilibrium populations have a larger effect on the apparent
MOKE signal than the relativistic spin-photon interaction.

The demagnetization of Ni after an intensive laser pulse
has recently been computed by Krieger et al. [59], who
employed the time-dependent DFT formalism. Assuming
extremely intense electromagnetic fields with a laser intensity
of 1014–1015 W/m2 they computed an appreciably larger
demagnetization (of ∼50%) than we do, which they attribute
to dominance of nonlinear effects. Conversely, in the current
investigation we are in the moderate fluency regime, with
typical laser intensities of �1011 W/m2, where the linear
interaction Hamiltonian Eq. (11) should be sufficient, and there
is only a small number of electrons present in the excited state;
for this regime, our results should be valid.

Summarizing, we performed the Foldy-Wouthuysen trans-
formation on the Dirac-Kohn-Sham equation in the presence of
the exchange magnetic field as it is required for the relativistic
density functional theory in the framework of the local spin
density approximation. We obtained a Hamiltonian where
several terms are consistent with results derived previously
in Ref. [45]. We further showed that the spin-polarized term in
the current density operator is irrelevant for the calculation of
the conductivity spectra. We discussed the modification caused
by the relativistic spin-photon terms to the linear-response
theory for the conductivity, and showed that an identical linear-
response expression can be obtained for the nonrelativistic,
semirelativistic, and fully relativistic interaction Hamiltonians.
We then calculated the influence of the relativistic correction
terms to the magneto-optical Kerr spectra of nickel. In the
moderate fluency regime, where the linear-response theory
is expected to be valid we find that relativistic spin-photon
interactions can give a small modification (�0.1 %) of the
off-diagonal optical conductivity and of the MOKE signal.
Thus our calculations confirm that relativistic spin-photon
interactions do exist, as originally proposed in Ref. [25], but
we do not find that these could provide a notable channel of
laser-induced magnetization loss.
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APPENDIX A: THE PAULI HAMILTONIAN

In the presence of an external electromagnetic field (char-
acterized by the vector potential A(r,t)), the fully relativistic
Dirac Hamiltonian (first without exchange field) has the form

H = cα · ( p − eA) + (β − 1) mc2 + V. (A1)

In the nonrelativistic limit (which is obtained by performing
the FW transformation), it exactly gives the Pauli Hamiltonian

HP = ( p − eA)2

2m
+ V − e�

2m
σ · B, (A2)

where the external magnetic field is given by B = ∇ × A. If
we choose for simplicity a gauge such that

A = B × r
2

,

which fulfills the Coulomb gauge (∇ · A = 0) for the uniform
magnetic field. Then, with this Pauli Hamiltonian one can show
how the different magnetic contributions arise.

Namely, the Pauli Hamiltonian can be rewritten as

HP =
(

p2

2m
+ V

)
− μB B · (L + gS) + e2

8m
(B × r)2 ,

(A3)

with g the Landé g-factor, which is 2 for spin degrees of free-
dom. The first term obviously is the unperturbed Hamiltonian,
the dominant perturbation is the paramagnetic contribution
and the last term is the diamagnetic contribution [60]. Note
that the external magnetic field couples to both the spin and
orbital angular momentum operators, as it should be.

For magnetic materials the Pauli exclusion principle gives
in addition rise to magnetic exchange. To include magnetic
exchange (which dominates over the dipole-dipole interaction)
the DKS Hamiltonian has to be written as [61]

H = c α · ( p − eA) + (β − 1)mc2 + V − μBβ � · Bxc,

(A4)

where the exchange field Bxc has to be separated from the
external magnetic vector potential as it would otherwise couple
to the orbital degrees of freedom. The FW transformation of
this Hamiltonian leads to the Hamiltonian given in Eq. (9).

APPENDIX B: DERIVATION OF THE OPTICAL
CONDUCTIVITY

Introducing the electromagnetic field A(r,t) produced by
the intensive laser pulse the first-order interaction Hamiltonian
could be written in terms of the momentum operator [Eq. (14)]
of the unperturbed Hamiltonian,

HI = − e

m
� · A. (B1)

This form of the interaction enters in the nonrelativistic,
semirelativistic, and fully relativistic cases. Here we consider
the semirelativistic case corresponding to the extended Pauli

Hamiltonian. We also note that, using a proper gauge, A =
B×r

2 , the above mentioned Hamiltonian can be rewritten as the
first-order interaction Hamiltonian in E(r,t). Using the gauge,
it is obvious that r · A = 0, which gives

d

dt
(r · A) = 0 ⇒ ṙ · A = r · E

⇒ e

m
� · A = er · E. (B2)

Therefore the first-order interaction Hamiltonian can equally
well be written in the form

HI = −e
∑

i

r i · E ≡ Be−iω+t , (B3)

where r i are the positions of the electrons and ω+ ≡ ω + i/τ .
In linear-response theory, the total average, induced current
J = jV , with V the volume of the system, is computed from
(see, e.g., Ref. [62])

J (t) = Tr(ρ0J ) + 1

i�

∫ t

−∞
dt ′〈[J (t),HI (t ′)]〉0, (B4)

where 〈. . . 〉0 means that the average has to be computed
with the equilibrium density matrix ρ0. The first term refers
to the equilibrium current density, which is usually taken
to be zero in linear-response theory. Note, however, the
difference to the derivation given in Refs. [47,62], where
this is not done and a second-order interaction term A2 is
introduced in the Hamiltonian [47]. This term is rewritten
in Refs. [47,62] and leads to the Drude response [first term
in (B6) below]. Such term should, however, not be included in
a linear-response treatment, and it is actually not needed, as our
derivation shows. Our formalism is valid in the nonrelativistic,
semirelativistic, and fully relativistic cases. We introduce the
linear interaction Hamiltonian according to (B3) in the second
term of Eq. (B4) and calculate the integral. Partial integration
of this second term leads to

Jα(t) = 1

i�
〈[Jα(t),B(t)]〉0

e−iω+t

−iω+

− 1

i�

∫ t

−∞
dt ′〈[Jα(t),Ḃ(t ′)]〉0

e−iω+t ′

−iω+ , (B5)

where Ḃ is the derivative of B, which is related to the current,
Ḃ(t) = −e

∑
i ṙ i(t) · E = −J(t) · E. Using Eq. (B3), we

calculate the commutators and it is evident that the integral
leads to the current-current correlation in the average current,

Jα(t) = iNe2

mω+ Eα(t)e−iω+t

− 1

i�

∫ t

−∞
dt ′〈[Jα(t),Jβ(t ′)]〉0

Eβ(t ′)e−iω+t ′

iω+ . (B6)

The conductivity response to the electromagnetic field is given
as

jα(t) =
∫ t

−∞
dt ′σαβ(t − t ′)Eβ(t ′). (B7)

Now, comparing both equations we obtain the linear-
response expression for the conductivity. Computed in Fourier
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space, the conductivity in terms of (noninteracting) single-
particle states is then (see Ref. [46] for details)

σαβ(ω) = ie2Nδαβ

V mω+

+ i

V �ω+
∑
nn′

f (εn) − f (εn′)

ω+ − ωn′n
jα
nn′j

β

n′n, (B8)

where jnn′ are the matrix elements of the current density
operator for the single-particle states n and n′, f (εn) is the
Fermi-Dirac distribution function of the nth state having
energy εn and �ωn′n = εn′ − εn. This linear-response expres-
sion is exact for the nonrelativistic, semirelativistic, and fully
relativistic cases. In the semirelativistic limit, the two terms in
Eq. (B8) can be approximately joined together, which yields

σαβ(ω) ≈ − i

�V

∑
nn′

f (εn) − f (εn′)

ωnn′

jα
n′nj

β

nn′

ω − ωnn′ + i/τ
, (B9)

where the ≈ sign relates to the intraband term (i.e., n = n′) for
which the approximation �P ≈ p has been made.

APPENDIX C: DERIVATION OF THE
SPIN-POLARIZED CURRENT

The current density operator in semirelativistic form was
previously shown [48,49] to contain a term j sp = − ie

2m
(←−p ×

σ + σ × p). This term also appears in our treatment. When
we apply the FW transformation to the DKS Hamiltonian in

Eq. (2), we find a term i
2m

σ · ( p × p), in the Hamiltonian. This
term is taken to be zero for obvious reasons. However, it is this
term that leads to the spin-polarized current density j sp.

Defining the charge density as ρ = eδ (r − r̂) and using
the Heisenberg equation of motion for the above-given
Hamiltonian term,

dρ

dt
= 1

i�

[
eδ (r − r̂) ,

i

2m
σ · ( p × p)

]

= e

2m�
σ · {[δ(r − r̂), p] × p + p × [δ(r − r̂), p]}

= ∇ · ie

2m
{σ × p + ←−p × σ }

= −∇ · j sp. (C1)

In this derivation, we make use of the fact that the commutator
in the position basis is [δ (r − r̂) , p] = i�|r〉∇r〈r|. Using
the continuity equation, we extract the spin-polarized current
density operator as

j sp = − ie
2m

{σ × p + ←−p × σ }. The matrix elements are
given by

〈�n| j sp|�m〉 = − e�

2m

∫
V

d r
{
�∗

nσ × ∇�m−�m∇�∗
n × σ

}

= e�

2m

∫
V

d r∇ × [
�∗

nσ�m

]
. (C2)
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