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Thermodynamics of two-dimensional spin models with bimodal random-bond disorder
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We use numerical linked cluster expansions to study the thermodynamic properties of the two-dimensional
classical Ising, quantum XY , and quantum Heisenberg models with bimodal random-bond disorder on the square
and honeycomb lattice. In all cases, the nearest-neighbor coupling between the spins takes values ±J with equal
probability. We obtain the disorder-averaged (over all disorder configurations) energy, entropy, specific heat, and
uniform magnetic susceptibility in each case. These results are compared with the corresponding ones in the clean
models. Analytic expressions are obtained for low orders in the expansion of these thermodynamic quantities in
inverse temperature.
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I. INTRODUCTION

Solid-state materials deviate in various ways from the pe-
riodic idealizations sometimes used to describe them theoreti-
cally. In crystals, for example, such deviations can occur due to
the presence of lattice distortions, impurity atoms (that may or
may not be magnetic), and vacancies in the lattice, collectively
termed disorder. Disorder can significantly influence material
properties. A dramatic example for noninteracting electrons is
Anderson localization [1]. In spin systems, which is the focus
of this work, quenched disorder in spin interactions leads to
frustration and can generate spin glasses [2]. A spin glass is
a remarkable state of matter where, loosely speaking, spins
are “frozen” in an irregular pattern, i.e., they display very
slow dynamics under external driving. Although this phase
does not exhibit spin order in the traditional sense (e.g., a
ferromagnet), it is still distinctly different from a paramagnet.
Experimentally, spin glasses are generally associated with a
cusp in the ac susceptibility at a certain temperature above
which the system behaves like a paramagnet [3]. Whereas no
standard order parameter captures a glassy transition, glass
order parameters exist that do so (see, e.g., Refs. [2,4]).

In two-dimensional (2D) lattices (the focus of this work),
the effects of quenched disorder on classical spins have been
studied extensively over the years [2]. However, the calcu-
lation of thermodynamic properties and correlation functions
continues to be a computational challenge [5,6]. While it is
generally believed that no spin-glass phase exists for nonzero
temperatures [2], zero-temperature phases continue to be
debated for various models of interest (see, e.g., Refs. [5,7]).
For quantum spin models, the sign problem [8,9] in quantum
Monte Carlo simulations and the exponential growth of the
Hilbert space, relevant to full exact diagonalization calcula-
tions, represent an even greater challenge. Because of this,
the properties of disordered quantum spin systems, and of
quantum spin glasses in particular, have remained essentially
unexplored. The existing literature on the subject has dealt
almost exclusively with classical models.

Our goal in this work is to use a recently introduced
numerical linked cluster expansion (NLCE) for disordered
systems [10] to study the thermodynamic properties of the
classical Ising (with S = 1/2) and quantum (spin-1/2) XY

and Heisenberg models with bimodal random-bond disorder

on the square and honeycomb lattice. NLCEs allow us to
obtain the finite-temperature properties of these models in
the thermodynamic limit through the exact diagonalization of
finite-size clusters. We specifically study the energy, entropy,
specific heat, and uniform magnetic susceptibility (for the
magnetization in the z direction) as a function of temperature.
Since any glassy phase is only expected to emerge at zero
temperature in these models, if at all, we do not study the
spin-glass order parameter. In future work, we will study
quantum quenches [10–13] to examine the possibility of
disorder-driven localization in two dimensions.

Our results are briefly as follows: For clean systems, they
match well with known results for the square lattice: we report
additional results for the honeycomb lattice. For the disordered
systems, we unveil some interesting features. In the Ising
model, the uniform susceptibility χ∼1/T for all orders of
the linked cluster expansion—we demonstrate this explicitly.
The susceptibility in the Heisenberg model also increases
with decreasing temperature (up to the lowest temperature
we can access). These two cases differ starkly from the XY

model in which the uniform susceptibility (for magnetization
in the z direction, i.e., the same quantity calculated in the
other two models) shows a plateau at low temperatures. At
high temperatures, the clean and disordered models behave
identically with regard to the energy, specific heat, and entropy
up to third order in inverse temperature, and they exhibit
identical susceptibilities up to second order—we show this
explicitly in Sec. IV via a high-temperature expansion.

The paper is organized as follows. In Sec. II, we introduce
the three models we study (the spin-1/2 Ising, XY , and
Heisenberg models) and summarize some of their known
properties in the square and honeycomb lattice. Section III
briefly describes NLCEs for systems with disorder. Numerical
results for the latter, and a comparison with those for clean
systems, are presented in Sec. IV. We conclude with a brief
summary in Sec. V.

II. MODELS

We are interested in the thermodynamic properties of vari-
ous spin-1/2 models on the square and honeycomb lattice (see
Fig. 1). In the absence of disorder, and for nearest-neighbor
interactions, those models do not exhibit frustration on either
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FIG. 1. (Color online) Schematic of lattice models, square (left)
and honeycomb (right), with bond disorder considered in this work.
The red and blue bonds represent Jij = ±J . Black dots at vertices
represent the spins. It is easy to see that the bond disorder causes
frustration by trying to arrange the spins to minimize energy.

lattice, which are both bipartite. While the thermodynamic
properties of the various models studied here are qualita-
tively similar on both lattice geometries, there are significant
quantitative differences, e.g., in the critical temperatures for
the onset of quasi-long-range order [14]. These differences
have their origin in the different coordination number in both
lattices, with the honeycomb lattice having the smallest one.
Hence, not surprisingly, for the spin-1/2 antiferromagnetic
Heisenberg model, the staggered magnetization is significantly
suppressed on the honeycomb lattice as compared with the
square lattice [15]. Disorder, on the other hand, leads to
frustration on both lattices, and to a qualitative change of the
intermediate- to low-temperature properties with respect to the
clean systems. Frustration can be easily identified by trying to
assign spins to the various sites in Fig. 1 to minimize the energy.
If one takes the Ising Hamiltonian discussed below, one finds
that for the overwhelming majority of disorder realizations,
there is no single spin configuration that minimizes the energy
on all bonds.

We should stress that for both the clean and disordered
cases, we expect quantum fluctuations to strongly modify the
results for the spin-1/2 XY and Heisenberg models from their
classical counterparts (see, e.g., Ref. [16] for examples of the
effects of quantum fluctuations in frustrated spin-1/2 XY and
Heisenberg models on the honeycomb lattice). Our focus in
this work is on systems with bimodal random-bond disorder,
where the nearest-neighbor coupling between the spins takes
values ±J with equal probability.

A. Ising model

The Hamiltonian for the spin-1/2 Ising model can be
written as

HIsing =
∑
〈ij〉

JijS
z
i S

z
j , (1)

where Sz
i = ±1/2 is the spin at site i, and the sum is over

nearest neighbors. In the absence of disorder (Jij = J for
all i,j ), Eq. (1) has served as the quintessential model for
magnetism and was solved exactly on a two-dimensional (2D)
square lattice by Onsager [17]. In the presence of continuous
disorder, the Hamiltonian in Eq. (1), commonly known as

the Edwards-Anderson model [18], has also become a widely
studied model for spin glasses.

The Ising model has a discrete Z2 symmetry, i.e., the
transformation Sz

j → −Sz
j for all j leaves the Hamiltonian

invariant. This symmetry can be spontaneously broken at
sufficiently low temperatures to create an ordered phase. For
Sz

i = ±1/2, the critical temperature is given by Tc/|J | =
1/2 log(1 + √

2) ≈ 0.57 for the square lattice and Tc/|J | =
1/2 log[(

√
3 + 1)/(

√
3 − 1)] ≈ 0.38 for the honeycomb lat-

tice, and it is the same for the ferro- and antiferromagnetic
cases [14]. The latter is because, for bipartite lattices, a unitary
transformation relates both models. This can be easily seen by
rewriting the Hamiltonian in Eq. (1) as HIsing = ∑

i JiS
z
i,ASz

i,B ,
where A and B are the two sublattice indices. One can then go
from Ji → −Ji , i.e., between the ferro- and antiferromagnetic
models, via the transformation Sz

i,A → −Sz
i,A and Sz

i,B → Sz
i,B .

The specific heat of the clean model diverges at the
critical temperature for both the square and the honeycomb
lattices. Equivalently, the derivative of the energy diverges
at the critical temperature, but the energy remains finite
throughout. For the antiferromagnetic model, the susceptibility
is known to be finite everywhere, with an infinite slope at the
critical temperature. The maximum value of the susceptibility
occurs at Tm = 1.537Tc and Tm = 1.688Tc for the square
and honeycomb models, respectively [14,19], i.e., above the
critical temperature. Our results for the clean systems are
consistent with these. However, we cannot study the critical
phase or the properties of the system very close to criticality
(see Figs. 3 and 4).

The Ising model with bimodal disorder has been studied
extensively in the past [4,5,7,20–27]. It is reasonably well
established that no glassy phase exists for T > 0 [22,23]. It
has, however, been established that a glassy phase appears at
zero temperature in this model [7]. At finite temperature, our
results for this case are described in Sec. IV A.

B. XY model

The spin-1/2 XY model can be written as

ĤXY =
∑
〈ij〉

Jij

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

)
, (2)

where Ŝ
x,y

i are spin operators at site i, proportional to the
Pauli matrices. We consider only the isotropic case, in which
the model has a continuous U(1) rotation symmetry in the
plane. The presence of a continuous symmetry precludes, via
the Mermin-Wagner theorem [28], a finite-temperature phase
transition involving the breaking of this continuous symmetry
from occurring. For d � 2 dimensions, the fluctuations in any
putative ordered phase appearing from breaking a continuous
symmetry grow with system size for finite temperatures,
destroying any order (see, e.g., Ref. [29]). Hence, this model
has an ordered phase only at T = 0.

However, in two dimensions there can still be a finite-
temperature Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion [30,31] below which the system exhibits quasi-long-range
spin order. The critical temperature for the BKT transition
in the spin-1/2 XY model in the square lattice is Tc/|J | ≈
0.34 [32,33]. We should stress that both classical [34]
and quantum models with continuous symmetries in two

174413-2



THERMODYNAMICS OF TWO-DIMENSIONAL SPIN MODELS . . . PHYSICAL REVIEW B 91, 174413 (2015)

dimensions can exhibit this kind of behavior [35]. We should
also mention that most studies in the literature report results
for the ferromagnetic XY model (J < 1). However, as for
the Ising model, in the square and honeycomb lattice a
unitary transformation relates the ferro- and antiferromagnetic
models, and the critical temperature is the same in both. Our
calculations for the susceptibility of the clean case on the
square lattice converge down to temperatures of T/|J | ≈ 0.4,
which is compatible with the onset of quasi-long-range order
for Tc/|J | � 0.34 [32,33].

C. Heisenberg model

The spin-1/2 Heisenberg model, also known as the XXX

model, can be written as

ĤHeis =
∑
〈ij〉

Jij Ŝi · Ŝj , (3)

where Ŝi = (Ŝx
i ,Ŝ

y

i ,Ŝz
i ), and Ŝ

x,y,z

i are spin operators at site i,
proportional to the Pauli matrices. The Heisenberg model has
an SU(2) symmetry, the highest of the three models considered
in this work. The ground state in the clean case (Jij = J )
is an ordered ferromagnet or antiferromagnet depending on
the sign of the coupling constant J . As for the XY model,
long-range order only occurs at zero temperature. However,
in contrast to the XY model, the 2D Heisenberg model does
not develop quasi-long-range order at finite temperature. This
is due to the fact that the internal symmetry group, SU(2)
[O(3)] for the quantum (classical) Heisenberg model, is non-
Abelian, as opposed to the XY model, which has an Abelian
symmetry group, U(1) [O(2)] for the quantum (classical) cases.
Vortices or point defects, which are responsible for the BKT
transition [31], occur only in the latter case [36]. Furthermore,
in two dimensions, O(N ) models with N � 3 or SU(N ) models
with N � 2, i.e., with non-Abelian symmetry groups, can be
shown via perturbation theory to be asymptotically free, which
for spin models translates to a renormalization-group flow
toward paramagnetism [37,38].

The results for the clean system presented here for the
square lattice are nearly identical to the spin-1/2 results
presented in Ref. [39], which also compares with other known
results.

III. NUMERICAL LINKED CLUSTER EXPANSIONS

Numerical linked cluster expansions (NLCEs) are a com-
putational technique that can be used to calculate extensive
properties (per lattice site) of translationally invariant lattice
systems. NLCEs, which are based on linked cluster expan-
sions [40–42], were introduced in Ref. [43], where it was
shown that the results obtained for thermodynamic properties
were exact in the thermodynamic limit for systems with a finite
correlation length. Furthermore, results could be obtained
at significantly lower temperatures as compared to high-
temperature expansions for models that develop long-range
order at zero temperature. In several subsequent works, NLCEs
have been shown to be a powerful computational technique not
only for determining the thermodynamic properties of a variety
of lattice models [44–49], but also for studying thermalization
(or the lack thereof) at long times after a quench in isolated

FIG. 2. (Color online) Clusters up to the fourth order in the
site-based NLCE on the square lattice. The two three-site clusters
have the same Hamiltonian. At fourth order, in addition to three
clusters with identical Hamiltonian, two topologically new clusters
appear—the closed loop and the “⊥.” Each topologically new cluster
is diagonalized separately.

quantum systems [10–13]. For completeness, we provide a
brief description of NLCEs. Details of how to implement them
can be found in Ref. [50].

In NLCEs, the expectation value of an extensive observable,
per site, O in a translationally invariant system can be
calculated as a sum over contributions from all clusters c of
different sizes that can be embedded on the lattice,

O =
∑

c

M(c) × WO(c), (4)

where M(c) is a combinatorial factor equal to the number of
ways that a particular cluster c can be embedded, per site,
on that lattice. WO(c) is the weight of cluster c for the given
observable, which is calculated via the inclusion-exclusion
principle

WO(c) = O(c) −
∑
s⊂c

WO(s). (5)

O(c) is the expectation value of the observable O on the
specific cluster c. Within NLCEs, O(c) is calculated using
full exact diagonalization. The expansion is carried out order
by order, i.e., by first considering clusters with one site, then
two sites, and so on. Beyond the bare sum in Eq. (4), several
resummation schemes exist that accelerate the convergence
of the expansion [44]. Here we will report results from
Wynn and Euler resummation techniques whenever they
allow us to extend the convergence of the results to lower
temperatures [44].

Examples of clusters up to fourth order in the site-based
NLCE used here on the square lattice are shown in Fig. 2.
At third order, although there are two geometrically different
clusters, they are topologically identical. They have the same
Hamiltonian for the models with nearest interactions consid-
ered here. At fourth order, there are three clusters (including
the one with the four sites on a line) that again have the
same Hamiltonian for the models considered here. However,
two topologically new clusters appear, namely the closed
loop and the “⊥.” They have to be individually diagonalized.
From the fourth order and beyond, the number of distinct
topological clusters increases rapidly (exponentially with the
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number of sites), making the calculations increasingly costly.
References [44,49] provide details on the various topological
clusters on the square and honeycomb lattice, respectively, as
well as the number of such clusters as a function of the order
of the expansion.

Recently, in Ref. [10], it was shown that NLCEs can also
be used to study systems with disorder. As described above,
NLCEs can only be used for translationally invariant systems.
A priori, disorder breaks translational invariance. However, we
are only interested in disorder-averaged physical quantities.
If we take a disorder average over all possible disorder
configurations in models with bimodal disorder, we restore
translational invariance, and the equivalent of Eq. (4) reads

O =
∑

c

M(c) × WO(c), (6)

where the overline denotes the disorder average. The disorder
average of the weights is in turn given by

WO(c) = O(c) −
∑
s⊂c

WO(s). (7)

In other words, the disorder average can be carried out order
by order for each observable. The calculations then proceed
as for the translationally invariant system if one replaces O(c)
by O(c).

The computations in the presence of disorder are much
more challenging than for translationally invariant systems
because of the additional average over all possible disorder
realizations. For example, the largest clusters we consider here
for the quantum models in the square lattice have 13 sites. At
this order, there are a total of ∼1.9 × 106 connected clusters,
of which 5450 are topologically distinct [44]. Each of these
has to be fully diagonalized for the 2� disorder configurations
corresponding to the � bonds in the cluster. This has to, of
course, be carried out for all lower orders as well, each with
a different set of topologically distinct clusters and disorder
configurations. For the clean systems, we report results for
cluster with up to 15 sites for the square lattice. In that case,
one has to diagonalize 42 192 topologically distinct clusters
with 15 sites.

NLCE calculations fail to converge when correlations in
the thermodynamic limit extend beyond the largest clusters
considered. Therefore, NLCEs cannot be used to calculate
observables in phases with long-range order unless one tailors
the expansion to account for those [51]. Since disorder
usually shortens correlations at low temperatures, NLCEs
are particularly useful to study quantum disordered systems,
despite the increase of computational cost because of the
disorder average. It will become apparent when we discuss our
results for the various thermodynamic properties of interest
in this work that NLCEs converge to lower temperatures
in disordered systems when compared to clean systems. As
mentioned before, quantum Monte Carlo simulations in the
presence of disorder are severely limited by the sign problem.

IV. RESULTS

In this section, we discuss the results of our NLCE-based
study of the three spin models described in Sec. II on the square
and honeycomb lattice. In what follows, we set J = 1 as the

energy scale. For each model and lattice geometry, we report
the energy (E), entropy (S), specific heat (Cv), and uniform
susceptibility for the magnetization along the z axis (χ ) as a
function of temperature. These quantities are defined as

E = 〈Ĥ 〉
N

, Cv = 〈Ĥ 2〉 − 〈Ĥ 〉2

NT 2
(8)

S = log Z

N
+ E

T
, χ = 〈(Ŝz)2〉 − 〈Ŝz〉2

NT
,

where the overline denotes a disorder average, the angular
brackets denote the thermal expectation value in the grand-
canonical ensemble (at zero chemical potential), N is the
number of sites, and T is the temperature. As mentioned
earlier, the disorder average is carried out over all disorder
configurations at each order in the NLCE. In all cases, the
disorder-averaged results are compared with those in clean
systems.

For all observables, we report bare NLCE results for the
highest two orders of our site-based NLCE expansion, which
are determined by the number of sites l in the largest clusters
studied. Namely, we report the results from Eq. (6) when the
contributions of all clusters with up to l sites are added, where
l takes the two largest values in our calculations for each
model in each lattice geometry. We also report results using
two different resummation schemes, indicated as Wynnn and
Eulern. The subscript n denotes the order of the resummation
process (see Ref. [44] for details). The resummation schemes
allow us to access significantly lower temperatures than the
bare results in some cases, as indicated below.

Before discussing each model and observable in detail,
we review a few general observations for completeness and
pedagogy. In all models and observables discussed here, the
numerical results at intermediate to high temperatures in the
presence of disorder are close to those of the corresponding
clean system. Whereas this is obvious for temperatures so
high that the first-order correction to the infinite temperature
result is negligibly small, we notice from our results in
Figs. 3–8 that the observables in clean and disordered models
are indistinguishable for temperatures as low as T = 2 (barring
the susceptibility).

To show why this is so, we expand the partition function for
small inverse temperature β ≡ 1/T , Z = Tr(e−βĤ ) ≈ Tr(1 −
βĤ + β2Ĥ 2/2 + · · · ). The models we consider have only
nearest-neighbor coupling, i.e., Ĥ = ∑

〈ij〉[Jij Ĥij + h(Ŝz
i +

Ŝz
j )/2], where we have included a magnetic field h as a source

to calculate the uniform susceptibility in the z direction. The
most general two-site Hamiltonian that describes all models
of interest here is given by Hij = γ (Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j ) + �Ŝz
i Ŝ

z
j ,

which becomes the Ising model for γ = 0,� = 1, the XY

model for γ = 1,� = 0, and the Heisenberg model for γ =
� = 1. With this in mind, to first order in β, the high-
temperature expansion for Z can be written as Z = 2N −
β

∑
〈ij〉 Tr[Jij Ĥij + h(Ŝz

i + Ŝz
j )/2], where N is the number

of lattice sites. Note first that Tr(Ŝz
i ) = 0 (the Pauli matrices

are traceless), and second that Tr(Ĥij ) = 0, so that the linear
correction vanishes. Therefore, to first order in β, the clean
and the disordered systems have the same partition function.
This is true regardless of the type of disorder.
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FIG. 3. (Color online) Spin-1/2 Ising model on the square lattice.
Panels (a)–(d) show the energy, entropy, specific heat, and uniform
susceptibility vs T , respectively. Solid lines depict disorder-averaged
quantities, while dashed lines depict results for the clean system.
Thin lines report bare results for the last two orders of the NLCE,
while thick lines report the results of two resummation techniques. A
thin continuous line following the results of the resummations reports
results for a lower order of the same resummation technique, and it
is used to gauge their stability. The dotted vertical line marks the
position of the phase transition. The dashed-dotted line shows exact
analytic results for the clean system in the thermodynamic limit.
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FIG. 4. (Color online) Spin-1/2 Ising model on the honeycomb
lattice. Panels (a)–(d) show the energy, entropy, specific heat,
and uniform susceptibility vs T , respectively. Solid lines depict
disorder-averaged quantities, while dashed lines depict results for
the clean system. Thin lines report bare results for the last two
orders of the NLCE, while thick lines report the results of two
resummation techniques. A thin continuous line following the results
of the resummations reports results for a lower order of the same
resummation technique, and it is used to gauge their stability.
Resummation results are not presented for the clean case as they
do not extend the convergence to lower temperatures. The dotted
vertical line marks the position of the phase transition.
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FIG. 5. (Color online) Spin-1/2 XY model on the square lattice.
Panels (a)–(d) show the energy, entropy, specific heat, and uniform
susceptibility vs T , respectively. Solid lines depict disorder-averaged
quantities, while dashed lines depict results for the clean system.
Thin lines report bare results for the last two orders of the NLCE,
while thick lines report the results of two resummation techniques. A
thin continuous line following the results of the resummations reports
results for a lower order of the same resummation technique, and it
is used to gauge their stability. The dotted vertical line marks the
position of the phase transition.
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FIG. 6. (Color online) Spin-1/2 XY model on the honeycomb
lattice. Panels (a)–(d) show the energy, entropy, specific heat,
and uniform susceptibility vs T , respectively. Solid lines depict
disorder-averaged quantities, while dashed lines depict results for
the clean system. Thin lines report bare results for the last two
orders of the NLCE, while thick lines report the results of two
resummation techniques. A thin continuous line following the results
of the resummations reports results for a lower order of the same
resummation technique, and it is used to gauge their stability. Note
that the results converge to temperatures similar to those in the square
lattice.
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FIG. 7. (Color online) Spin-1/2 Heisenberg model on the square
lattice. Same as Fig. 5 but for the spin-1/2 Heisenberg model.

To second order, after expanding Ĥ 2, we have

Z = 2N + β2

2
Tr

⎡
⎣ ∑

〈ij〉,〈kl〉
JijJklĤij Ĥkl

+ h2
∑
i,j

Ŝz
i Ŝ

z
j + h

∑
〈ij〉,k

Jij Ĥij Ŝ
z
k

⎤
⎦ . (9)

Let us treat the above terms one by one. In the first term,
for 〈ij 〉 �= 〈kl〉, the trace is identically zero, as shown above.
For the case in which, say, i �= l but j = k, we effectively
have a new Hamiltonian for three neighboring spins. It is
easy to verify explicitly that this trace also vanishes. The only
possibility left for a nonvanishing contribution is 〈ij 〉 = 〈kl〉.
The trace of the second term in the brackets is nonzero only for
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FIG. 8. (Color online) Spin-1/2 Heisenberg model on the honey-
comb lattice. Same as Fig. 6 but for the spin-1/2 Heisenberg model.

i = j . In the third term, again for k �= i or j , the trace is zero.
For, say, j = k, considering only the diagonal elements of the
matrix, Ŝz

i Ŝ
z
j Ŝ

z
j ∝ Ŝz

i , we see that the trace vanishes. Taking
these into account, and writing log Z to O(β2), we have

log Z

N
= log 2 + β2

2 × 2NN
Tr

⎡
⎣∑

〈ij〉
J 2

ij Ĥ
2
ij + Nh2

4

⎤
⎦ . (10)

For both the clean system and the system with bimodal
disorder, J 2

ij = J 2. We therefore obtain

log Z

N
= log 2 + β2

4

(
J 2 Tr2 Ĥ 2

2 + h2

2

)
+ O(β3), (11)

where Ĥ2 is the Hamiltonian for a two-site system, and the
subscript “2” on the trace indicates a trace over the Fock space
of a two-site system. The disorder average does not change
the above expression, and therefore to this order the clean
and the disordered systems behave identically. The energy, for
instance, is given to this order by E = −(∂ log Z/∂β)/N =
−βJ 2 Tr2(Ĥ 2

2 )/2, the specific heat is Cv = β2J 2 Tr2(Ĥ 2
2 )/2,

and the uniform susceptibility is χ = β/4.
In fact, it is straightforward to check that the partition

function in the clean and disordered systems remains the
same at O(β3), except for terms proportional to h2. In other
words, the energy, entropy, and specific heat are the same for
clean and disordered systems up to third order in β, but the
uniform susceptibility deviates. The following expression can
be derived along the lines of Eqs. (9)–(11) for the third-order
correction to the partition function:

log Z

N
= log 2 + β2

4

(
J 2 Tr2 Ĥ 2

2 + h2

2

)

− β3h2

12
Jij Tr2 Ĥij Ŝ

z
i Ŝ

z
j . (12)

There is no sum over i,j , which represent the two sites in a
two-site system. For the clean model, one just replaces Jij with
J in the above formula, while for the disordered model, the
disorder average produces two terms for ±J (which cancel
each other, implying that disorder extends the paramagnetic
behavior in the susceptibility to lower temperatures). One can
then see that for h = 0, all thermodynamic quantities studied
here, except the susceptibility, are identical in the clean and
disordered cases up to O(β3). One can further verify that this
changes at fourth order, where differences emerge between
clean and disordered systems. An example of a term that makes
a difference at fourth order is a square loop with four sites and
four bonds (see Fig. 2). Even in the Ising case, the Hamiltonian
H12H23H34H41 = 1/64 has a nonzero trace with a product of
four different Jij .

We should stress that, in all models studied here in the
presence of disorder, we find that there is a significant amount
of residual entropy (when comparing with the clean systems)
at the lowest temperatures we are able to access with NLCEs.
This is a clear indication of the lack of order at those
temperatures. The behavior of the entropy, coupled with a
saturation of the energy observed at the lowest temperatures
accessible to us, confirms that there are many energy levels
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close to each other at low energies. This is the hallmark of
frustration.

A. Ising model

Figures 3 and 4 show the energy (a), entropy (b), specific
heat (c), and uniform susceptibility (d) for the disordered
spin-1/2 Ising model on the square and honeycomb lattice,
respectively. For the square lattice, we also plot the exact
results for E, S, and Cv for the clean model [17,52]. Several
approximate analytic estimates exist for the susceptibility, but
there is no closed-form expression for all temperatures.

Figures 3(a) and 4(a) show that, as mentioned before, a
generic feature in the presence of disorder is that the energy
tends to plateau at the lowest temperatures accessible to us. In
that regime, the entropy is significantly higher than in the clean
systems [Figs. 3(b) and 4(b)]. Distinct to the Ising models, the
sharp divergence in the specific heat in the clean case [see
Figs. 3(c) and 4(c)], which indicates the phase transition, is
replaced by what appears to be a smooth peak in the presence
of disorder. The maximum of that peak appears at temperatures
lower than the critical temperature in the clean case. At higher
temperatures, Eq. (11) yields results that agree for E, Cv , and S

down to T ≈ 1. We note that NLCE results for the disordered
model are well converged down to T ≈ 0.2–0.3, while the
NLCE results for the clean model converge to temperatures
that are close to Tc, and they agree with the analytic results in
the disordered phase.

Results for the uniform susceptibility in Figs. 3(d) and 4(d)
show that this quantity behaves very differently in the clean
and disordered systems. In the disordered case, it exhibits
a 1/T behavior at all temperatures, both on the square
and honeycomb lattice. An order-by-order linked cluster
expansion reveals that the only nonvanishing contribution
to the susceptibility in the disordered case comes from the
single-site system, and it is trivially proportional to 1/T . All
higher-order contributions vanish. We show this for the first
few orders of the NLCE on the square lattice. Below are the
expressions for the disorder-averaged log Z for the clusters
with one, two, and three sites shown in Fig. 2.

log Z(1) = log
(
e− βh

2 + e
βh

2
)
,

log Z(2) = 1
2

[
log

(
2e− βJ

4 + e
β(J+4h)

4 + e
β(J−4h)

4
) + β → −β

]
,

log Z(3) = 1
2 log

(
e

βh

2 + e
3βh

2 + e
β(J+h)

2 + e
β(J−h)

2 + β → −β
)

+ 1
4

[
log

(
2e

βh

2 + 2e
−βh

2 + e
−β(J+3h)

2 + e
−β(J−3h)

2

+ e
β(J+h)

2 + e
β(J−h)

2
) + β → −β

]
. (13)

The uniform susceptibility can be obtained from χ =
β−1(∂2 log Z)/(∂h)2 evaluated at h = 0. For the above three
orders, we obtain

χ (1) = β

4
, χ (2) = 2β

4
, χ (3) = 3β

4
. (14)

Already, one can see that no new contributions appear at the
higher orders. To confirm this, we calculate the weights of the
three clusters (see Ref. [44] for details about multiplicities,

etc.):

W (1)
χ = χ (1) = β

4
,

W (2)
χ = χ (2) − 2W (1)

χ = 0,

W (3)
χ = χ (3) − 2W (2)

χ − 3W (1)
χ = 0.

(15)

Indeed, only the single-site cluster contributes. One can check
this at higher orders, and for the honeycomb lattice as well.
This is not the case for the XY and Heisenberg models
discussed below.

Earlier studies for the Ising model with bimodal disorder
on the square lattice found a low-temperature scaling of
the specific heat (i.e., the exponent α in a power-law fit of
the low-temperature specific heat, Cv∼T −α) that is different
from the model with continuous disorder [4]. At even lower
temperatures, a crossover in the scaling behavior of Cv has
been reported [7]. Unfortunately, our results do not converge
at low enough temperatures to observe such power laws.
However, for T > 0.3, our results are consistent with those
in other studies [4,7] (since we consider Sz = ±1/2, our
temperatures are lower by a factor of 4 from those studies,
which took Sz = ±1).

B. XY model

Figures 5 and 6 show results for the spin-1/2 XY model
on the square and honeycomb lattice, respectively. The results
for all quantities are well converged down to about T ≈ 0.1–
0.2. Figures 5(a) and 5(b) and 6(a) and 6(b) show that the
behavior of energy and the entropy is qualitatively similar
to that observed in the Ising model. However, the results for
the XY model in the presence of disorder converge at lower
temperature than those for the Ising model. For the XY model,
the specific heat in the presence of disorder exhibits a peak that
is well resolved by our NLCE [Figs. 5(c) and 6(c)]. We note that
the energy, entropy, and specific heat follow the second-order
result in Eq. (11) for T > 2 in the square lattice and T > 0.7
in the honeycomb lattice.

Interestingly, Figs. 5(d) and 6(d) show that in the XY model,
the uniform (z) susceptibility in the presence of disorder
exhibits a plateau for low temperatures. This is qualitatively
different from the behavior observed for the Ising model. The
fact that the response to an external magnetic field in the z

direction is independent of temperature for low temperatures
shows that increasing temperature does not increase the
disorder in the spin correlations in the z direction.

We should add that the classical XY model has been studied
in the presence of Gaussian-random dilution [53] and bimodal
dilution [54] of ferromagnetic bonds. In these works, the BKT
transition was seen to slowly disappear as the dilution was
increased. Here we have only considered the fully disordered
case, i.e., an equal distribution of ferro- and antiferromagnetic
bonds, so we do not expect that any remnants of the BKT phase
are present in our calculations.

C. Heisenberg model

Figures 7 and 8 show results for the spin-1/2 Heisenberg
model on the square and honeycomb lattice, respectively. In
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Figs. 7(a) and 8(a), one can see that the plateau in the energy
at low temperatures is the clearest of all models studied in this
work. The onset of this plateau occurs at T ≈ 0.2 for both
models. Remarkably, in the honeycomb geometry, the energy
in the presence of disorder converges down to T ≈ 0.02.
The entropy [Figs. 7(b) and 8(b)] behaves similarly to the
entropy in the XY model, but it also converges to very low
temperatures (T ≈ 0.03 to 0.04) in the honeycomb geometry.
As for the XY model, the specific heat exhibits a clear peak
in the presence of disorder. The temperature at which the
maximum of that peak occurs is very close (but slightly
larger) to that in the clean model.

In contrast to the XY model, the uniform susceptibility
in the presence of disorder increases rapidly with decreasing
temperature at the lowest temperatures accessible to us. The
susceptibility therefore behaves qualitatively similar to the
Ising model. It is worth emphasizing that our results for all
observables in the honeycomb lattice appear to converge at
temperatures significantly below T = 0.1, and quite close to
T = 0.01 for the energy, entropy, and uniform susceptibility.

Our calculations for the Heisenberg model reach lower
temperatures and access regimes beyond what has been
possible with quantum Monte Carlo simulations. For example,
Ref. [55] studied the case of diluting an antiferromagnetic
model with ferromagnetic bonds of varying concentration.
The results presented there did not reach the equal probability
J = ±1 case discussed here because of the sign problem. For
lower concentrations of ferromagnetic bonds (below 30%), the
calculations were still limited to temperatures above T ≈ 0.3.

V. SUMMARY

We have used numerical linked cluster expansions to study
the thermodynamic properties of spin models with bimodal
(±J ) bond disorder. The results reported are in the thermody-
namic limit at temperatures for which they are well converged.

We have unveiled various interesting effects of disorder in
spin-1/2 Ising, XY , and Heisenberg models. For all models,
we find that disorder leads to a saturation of the energy at
the lowest temperatures accessible to us, in a regime where the
entropy is higher than in clean systems. This makes it apparent
that there are many low-lying energy states. For the disordered
classical Ising model, on both the square and the honeycomb
lattice, the divergence of the specific heat in the clean case is
replaced by a peak, and the uniform susceptibility follows an
inverse temperature law for all temperatures in the presence
of disorder. This was explicitly verified order by order. In the
Heisenberg model, we also find that the susceptibility increases
with decreasing temperature for all temperatures accessible to
us in the presence of disorder. In the XY model, on the other
hand, we find that the susceptibility exhibits a plateau at low
temperatures. On both the XY and Heisenberg models, our
NLCE calculations were able to resolve a peak in the specific
heat.
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[21] J. A. Blackman, J. R. Gonçalves, and J. Poulter, Phys. Rev. E

58, 1502 (1998).
[22] A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404

(2001).
[23] I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys. Rev. B

63, 104422 (2001).
[24] C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425

(2004).
[25] J. Lukic, A. Galluccio, E. Marinari, O. C. Martin, and G. Rinaldi,

Phys. Rev. Lett. 92, 117202 (2004).
[26] H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71, 134404 (2005).
[27] W. Atisattapong and J. Poulter, New J. Phys. 11, 063039 (2009).
[28] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[29] A. Altland and B. Simons, Condensed Matter Field Theory

(Cambridge University Press, Cambridge, 2006).
[30] V. L. Berezinskiı̌, Sov. Phys. JETP 34, 610 (1972).
[31] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[32] K. Harada and N. Kawashima, J. Phys. Soc. Jpn. 67, 2768 (1998).
[33] J. Carrasquilla and M. Rigol, Phys. Rev. A 86, 043629 (2012).
[34] V. L. Berezinskiı̌, Sov. Phys. JETP 32, 493 (1971).
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