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The electron spin resonance doublet indicating the width of the two-spinon continuum in a spin- 1
2 triangular

lattice Heisenberg antiferromagnet Cs2CuCl4 was studied in high magnetic field. The doublet was found to
collapse in a magnetic field of one-half of the saturation field. The collapse of the doublet occurs via vanishing of
the high-frequency component in a qualitative agreement with the theoretical prediction for the S = 1

2 chain. The
field of the collapse is, however, much lower than expected for the S = 1

2 chain. This is proposed to be due to the
destruction of frustration of interchain exchange bonds in a magnetic field, which restores the 2D character of this
spin system. In the saturated phase the mode with the Larmor frequency and a much weaker mode downshifted
for 119 GHz are observed. The weak mode is of exchange origin; it demonstrates a positive frequency shift at
heating corresponding to the repulsion of magnons in the saturated phase.
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I. INTRODUCTION

The Heisenberg antiferromagnet on a triangular lattice is a
challenging object both for theoreticians and experimentalists,
because of chiral and noncollinear ordering, also because of
unusual phase transitions induced by magnetic field, which
reveal phases, stabilized by order-by-disorder mechanism.
Besides, the S = 1

2 representatives of this family of magnets
attract attention by possible spin-liquid behavior with an
absence of the magnetic ordering even at absolute zero. For
a description of these phenomena, see, e.g., review articles
[1,2]. Numerous experimental realizations of this model have
demonstrated that the search for unusual magnetism in these
systems was not in vain. One of the representatives of this
family is the spin S = 1

2 Heisenberg antiferromagnet on a
triangular lattice Cs2CuCl4. It was extensively studied because
of different manifestations of effects related to frustration
and quantum fluctuations. One of these effects is a delay
of the magnetic ordering from the Curie-Weiss temperature
TCW = 4 K till a much lower temperature TN = 0.6 K. This
compound exhibits exotic field-induced phase transitions [3],
which occur due to the disturbance of a fine balance of
weak interactions, while the dominant exchange interaction
is frustrated [4]. The strong delay of the ordering enables one
to study static and dynamic properties in a temperature range
TN < T < TCW, where a spin-liquid-like phase is formed. In
particular, a remarkable two-spinon continuum of excitations,
like that of the S = 1

2 antiferromagnetic chain, was found in
this quasi-2D spin structure [5,6].

The surprising observation of a 1D excitation spectrum in
the quasi-2D system is ascribed to the effective decoupling of
spin chains because of the frustration of the antiferromagnetic
exchange bonds J ′ at the lateral bonds of the triangular
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structure. This effective decoupling is confirmed by, e.g.,
numerical simulations [7] and an analytical approach [8].

Further interest in this system was stimulated by the
so-called “uniform” Dzyaloshinsky-Moriya interaction, which
is a feature of this compound. The uniform Dzyaloshinsky-
Moriya interaction causes classical spins to form a spiral
structure in contrast to a canted antiferromagnet in the case of
a conventional “staggered” Dzyaloshinsky-Moriya interaction
[9,10]. For an S = 1

2 antiferromagnetic chain, which has a
quantum-disordered ground state, the uniform Dzyaloshinsky-
Moriya interaction affects the spinon modes of excitations
and their spectrum in the low-energy range [11,12]. The
two-spinon continuum was predicted to be modified via a shift
in q space by a vector qDM = D

J
1
b
. Here J is the main exchange

integral in the spin chain and D is the vector parameter of the
uniform Dzyaloshinsky-Moriya interaction. As a result, in a
magnetic field H ‖ D, the line of the electron spin resonance
(ESR) should split into a doublet. The frequencies of the
doublet components are at the upper and lower boundaries of
the initial (i.e., unshifted) continuum at the wave vector qDM;
see Refs. [11,12]. At the same time, the ESR signal should
not split at the orthogonal orientation of the magnetic field.
In this case a gap of the ESR absorption in zero field should
open. The doublet is marking the width of the continuum and
appears due to the fractionalized character of excitations and
to a uniform Dzyaloshinsky-Moriya interaction.

The ESR doublet arising at H ‖ D and merging into a single
line at H ⊥ D was indeed observed experimentally in the spin-
liquid phase of Cs2CuCl4 in Refs. [13,14].

The aim of this work is to study the above doublet of the
fine structure of the spinon continuum in a high magnetic field,
including the transition to the saturated phase. This implies
ESR frequencies of the exchange range. A vanishing of the
doublet is expected in a high field, because of the suppressing
of quantum fluctuations. In particular, this should close the
width of the spinon continuum at saturation (see theory, e.g.,
in Ref. [15]). By use of the multifrequency ESR we indeed
detect the vanishing of the doublet. It occurs via the ceasing
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of the high-frequency component of the doublet. Besides, we
observe the transformation of the spinon ESR response into
two ESR modes in the saturated phase. One of these modes
originates from the magnon branch with a dispersion along the
c axis. This mode shows an effect of the frequency shift at the
increase of temperature, indicating a repulsion of magnons.

II. EXPERIMENT

Experiments were performed using a set of ESR spec-
trometers, operating with a superconducting 12 T magnet,
combined with a 3He cryo-insert, providing low temperature
down to 0.45 K. A small amount of powder of 2,2-diphenyl-1-
picrylhydrazyl (known as DPPH) was employed as a standard
g = 2.00 marker for the field. Backward wave oscillators
were microwave sources, covering the range 60–350 GHz.
The microwave units of two types were used for recording
the resonance absorption of microwaves. In the first unit
cylindrical multimode resonators were used as plug-in com-
ponents in a transmission microwave circuit. The second unit
is a narrowed waveguide with a diaphragm, also used in a
transmission mode. In the case of a properly tuned resonator
we observe the diminishing of the transmission, proportional
to the imaginary part of the susceptibility of the sample. The
ESR line of a conventional paramagnet recorded in this way
should have a Lorentzian shape. Unfortunately, for frequencies
above 200 GHz the spectrum of eigenfrequencies of the cavity
is too dense and proper tuning is difficult. The waveguide does
not require frequency tuning, but in this case the change of
transmission is a superposition of the real (χ ′) and imaginary
(χ ′′) parts of microwave susceptibility (see, e.g., Ref. [16]).

It should be noted that at the frequency above 140 GHz
the samples of a size of about 2 mm have a strongly distorted
(indented) ESR line because of parasitic field-dependent reso-
nances, which arise due to the large dynamic susceptibility χ ′
of the sample near the resonance field. The susceptibilities χ ′,
χ ′′ change strongly and not monotonically within an interval of
several linewidths �H on both sides of the resonance field H0.
For a typical paramagnet (see, e.g., Ref. [17]) the susceptibility
χ ′ is negative in an interval below the resonance field, then it
takes positive value, reaching a maximum at H − H0 � 1

2�H ,
and then gradually drops to zero. Thus, the large positive values
of χ ′ occur twice during a sweep of the field across the right
wing of the resonance curve. The large value of χ ′ may result
in electrodynamic resonances in the dielectric sample at field
values, when one-half of the electromagnetic wavelength is
comparable to the sample size or fractional value of the sample
size. In this way, for a high frequency, large sample, and high
susceptibility, several electrodynamic resonances may arise
in the field interval, where the real part of the susceptibility
is rising and the same resonances should again occur in the
field range, where the susceptibility is falling. In this case
the ESR line shape appears to be distorted by indenting via
parasitic resonances. To avoid this parasitic effect, one has to
use a method of transmission of plane electromagnetic waves
through the sample, having a thin plate shape [18]. Here the
electrodynamic resonances are fixed as interference patterns
of plane waves. Another way is to diminish the sample size
far below one-half of the length of the electromagnetic wave
within the sample. We used the samples of the size below

0.5 mm for recording strong ESR signals and samples with
the size of about 2 mm to detect the weak ESR line, which
arises above the saturation field. Besides, a test for parasitic
resonances may be performed in the paramagnetic phase at
T > 10 K, when the imaginary part of the ESR susceptibility
is surely a Lorentzian function of the magnetic field, and the
real part is also a known function of field; see, e.g., Ref. [17].
The manipulation with the sample size and the test by means
of the paramagnetic resonance enables one to avoid parasitic
electrodynamic resonances and to fix the intrinsic line shape
in the range below 250 GHz. At higher frequencies ESR
lines appeared indented; this resulted in a higher error of the
measurement of resonance field.

For observations of the doublet in the high-frequency range
we used the temperature of about 0.5 K, because the resolution
of the doublet is most clearly seen at most low temperature. As
shown in Ref. [14], the ordering at a close temperature TN =
0.62 K does not prevent the observation of the spinon doublet at
frequencies above the exchange value J/� � 80 GHz, because
the change of the doublet to an antiferromagnetic resonance
spectrum was found only below 40 GHz. This conservation of
a spin-liquid spectrum at high energy range, and a change
to spin-wave modes at low energy with cooling through
TN , is typical for low-dimensional systems with a delayed
ordering occurring far below Curie-Weiss temperature (see,
e.g., Refs. [19,20]). We align the magnetic field along the a

axis, because at this orientation the doublet is well seen and
the spin structure evolves gradually to saturation without phase
transitions even in the ordered phase.

The control of the temperature of the microwave unit in
the temperature range 0.5–4 K was performed by use of a
heater placed on the microwave unit and/or by regulation of
3He pumping. The temperature was measured by a RuO2

thermometer placed on a microwave unit. To avoid the
overheating of the sample by microwaves we used test records
of ESR lines at different levels of microwave power, as
described in Ref. [14].

We used the crystals of Cs2CuCl4 from the same batch as
in Refs. [13,14,21]. The samples were oriented with respect to
the external field with an accuracy of 3◦.

III. EXPERIMENTAL RESULTS

The evolution of the ESR line shape with changing
frequency at H ‖ a is shown in Fig. 1 for T = 0.5 K. Here the
ESR records taken for a sample with the weight 1.8 mg in the
resonator unit in the range 70–150 GHz are shown. The record
taken at 245 GHz (upper curve in Fig. 1) is for the sample of the
weight 5.0 mg in a waveguide unit. We see that the low-field
(i.e., high-frequency) component of the doublet loses intensity
with the increase of the magnetic field. For frequencies above
140 GHz the doublet disappears completely, and only a
single ESR line with the paramagnetic resonance frequency
f0 = gaμBμ0H/(2π�), ga = 2.20 is observed almost till the
saturation field 8.44 T (this value is given after Ref. [3]). At the
further increase of the magnetic field we continue to observe
a strong ESR line with the frequency f0. Besides, we see a
much weaker ESR line in the magnetic field above 8 T (mode
B); see upper curve in Fig. 1. The ratio of integral intensity of
the weaker mode B to the intensity of the f0 mode is about
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FIG. 1. Examples of ESR lines of Cs2CuCl4 at H ‖ a, T = 0.5 K
at different frequencies. The zoom for the area within a circle is 6-fold
for vertical scale and 3-fold for horizontal scale.

0.015. The 245 GHz curve presents an example of the parasitic
indention of the intensive resonance, as described in Sec. II.
Thus, the sample used for this record appeared to be oversized
for the high microwave susceptibility of the f0 mode, but has
an optimal size for recording a weak mode B.

Figure 2 demonstrates records of 142 GHz ESR at several
temperatures. These records, performed by a resonator unit in

FIG. 2. (Color online) 142 GHz ESR records at H ‖ a in
Cs2CuCl4 at several temperatures.

FIG. 3. (Color online) Upper panel: Shift of the resonance fre-
quencies of doublet components A and A′ relative to paramagnetic
resonance. Crossed circles are 35 GHz data [14] for the spin-liquid
phase at T = 1.0 K. Other symbols correspond to T = 0.5 K. Solid
line presents calculation of the continuum boundaries at the wave
vector qD following Ref. [15]. Lower panel: Ratio of amplitudes of
the doublet components uA′/uA vs resonance field of A component.
Dashed lines in both panels are guides to the eyes.

the middle part of the frequency range for a 6.0 mg sample,
present both intensive and weak modes for the same sample
without parasitic distortions. The temperature evolution of the
intensive line shows vanishing of the doublet component A′
in the almost collapsed doublet at increasing temperature. The
weak line appearing above the saturation field also disappears
at heating.

The transformation of the doublet into a single ESR line
with the increase of the magnetic field is illustrated in Fig. 3;
here the field dependence of the shift of the resonance fields
of doublet components with respect to ESR field of Larmor
precession with the frequency f0 is shown in the upper
panel. Data presented here are taken in the frequency range
60–200 GHz at T = 0.5 K. The lower panel shows the
ratio of amplitude of the upper component uA′ to the lower
component amplitude uA. The collapse of the doublet occurs
in the magnetic field of 4.0 T, which constitutes approximately
0.5Hsat . The overview of the frequency-field dependencies of
all modes at T = 0.5 K is presented in Fig. 4.

The weaker mode B, arising above the saturation field,
was observed also at H ‖ b in Ref. [21]. We study here the
temperature dependence of this mode. The orientation of the
field H ‖ b is selected because the theory [21] has maximal
accuracy at this direction of the field. The resonance lines of
mode B taken at different temperatures are shown in Fig. 5. One
can see that the resonance field is shifted towards lower field
at the increase of temperature. The corresponding temperature
dependencies of the shift of the resonance field with respect to
the resonance field HB0 (measured at T = 0.5 K) and of the
linewidth are shown in Fig. 6.

IV. DISCUSSION

In crystals of Cs2CuCl4 magnetic ions Cu2+ (S = 1
2 ) are

displayed in layers with a distorted triangular lattice; see Fig. 7.
The 2D model Hamiltonian contains the following terms (see,
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FIG. 4. (Color online) Frequency-field diagram of ESR response
in Cs2CuCl4 with magnetic field along the a axis (T = 0.5 K).
Data presented by symbols �, ♦, � are taken by use of the
waveguide unit, �, ©, � by resonator unit. The solid line presents the
Larmor frequency f0 (see text). Dashed line is the Larmor frequency
downshifted for 119 GHz.

e.g., Ref. [4]):

Ĥ = J
∑
〈i,j〉

Si · Sj + J ′ ∑
〈i,j ′〉

Si · Sj ′ +
∑
〈i,k〉

Dik · Si × Sk; (1)

FIG. 5. (Color online) Temperature evolution of line B at the
frequency 197 GHz and H ‖ b. Solid lines are Lorenz fits for
experimental curves.

FIG. 6. (Color online) Upper panel: Temperature-induced shift
of the resonance fields of line B at the frequency 197 GHz, H ‖ b.
The reference field μ0HB0 = 11 T is the ESR field for mode B at
T = 0.5 K. Solid line presents the theoretical calculation according
to relation (3). Lower panel: Temperature dependence of the integral
intensity (triangles) and linewidth (squares) of mode B at 197 GHz.
Dashed lines are guides to the eyes.

here J is the exchange integral for spins neighboring along the
b direction, and J ′ is the zigzag interchain coupling, as shown
in Fig. 7. Vectors Dik are parameters of the Dzyaloshinsky-
Moriya interaction. There are six different Dzyaloshinsky-
Moriya vectors (D1,2 and D′

1−4) compatible with the symmetry
of Cs2CuCl4 [4]. These vectors are shown schematically in
Fig. 7 in the middle of each exchange bond. Vectors D1,2

have nonzero a and c components of absolute values Da

and Dc and are oriented as shown in Fig. 7. Vectors D′
1−4

have nonzero components along all three crystallographic
axes with absolute values D′

a,b,c. The main exchange integrals
J,J ′ and the interplane exchange constant J ′′ were derived
from the neutron scattering experiments in the saturated phase
[22]: J = 4.34(6) K, J ′ = 1.48(6) K, J ′′ = 0.22(3) K. Close
values J = 4.7(2) K and J ′ = 1.42(7) K were derived from
the saturation field value [3] and electron spin resonance
(ESR) in the saturated phase [21]. Several parameters of
Dzyaloshinsky-Moriya interactions were extracted from ex-
periments: inelastic neutron scattering [22] gives D′

a = 0.24
K, low-temperature ESR [13,14] results in Da = 0.23 ± 0.05
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FIG. 7. (Color online) Sketch of the exchange paths of Cs2CuCl4

within a bc layer. Large circles mark Cu ions. J and J ′ are exchange
integrals for two kinds of bonds. D1,2 and D′

1−4 are Dzyaloshinsky-
Moriya vectors according to Ref. [4]. Out-of-plane components of
vectors are marked by points and crosses. Translations δ1,2 are periods
for exchange bond structure.

K, Dc = 0.34 ± 0.05 K, and high-temperature ESR linewidth
[23] gives Da = 0.33 K, Dc = 0.36 K.

As mentioned in Sec. I, a feature of this compound is the
uniform Dzyaloshinsky-Moriya interaction between the spins,
neighboring along the b direction: vectors D1,2 are equal
in magnitude and direction for all bonds within a chain, in
contrast to vectors D′

1−4 on diagonal bonds, which compose a
staggered structure of a conventional Dzyaloshinsky-Moriya
interaction.

The spinon continuum and the related ESR doublet ob-
served in Cs2CuCl4 are consequences of quantum fluctuations
in a spin system, which remains paramagnetic (spin-liquid)
at temperatures far below the Curie-Weiss temperature. Mag-
netization should suppress zero-point fluctuations and, hence,
the doublet should be transformed in a single ESR line with
the Larmor frequency, at least in the saturated phase. The
application (see the Appendix) of the theory of a Heisenberg
S = 1

2 antiferromagnetic chain [15] predicts a collapse of
the spinon continuum width (and, hence, of the considered
doublet) at the saturation field; see solid line in the upper panel
of Fig. 3. The exchange integral J and Dzyaloshinsky-Moriya
parameter Da of Cs2CuCl4 was used for this calculation. Note
that the saturation field 6.3 T calculated in 1D model is lower
than the real value of 8.44 T.

Our observations confirm that the collapse of the doublet
really occurs. However, the doublet does not survive till the
saturation field, but collapses in the field of about 0.5Hsat.
This discrepancy between the observed behavior of the spinon
doublet and the theory of a spin chain may be attributed, prob-
ably, to the ceasing of the frustration of the exchange coupling
between chains in Cs2CuCl4 in a magnetic field. Indeed, the
frustration of interchange coupling takes place in zero field,
when the antiferromagnetic correlation of neighboring spins
within the chain prevails [7]. The antiferromagnetic correlation
changes to a ferromagnetic one in a strong magnetic field; thus,
the interaction between the chains should be restored and 1D
consideration becomes inapplicable to Cs2CuCl4 in a strong
field.

The vanishing of the upper component of the doublet is
qualitatively consistent with the theoretical investigation of
the spectral density of the two-spinon continuum of the 1D
S = 1

2 Heisenberg antiferromagnet in a magnetic field [24].
In this theoretical study the intensity at the upper boundary

of the spinon continuum of the transverse spin oscillations is
shown to drop in the process of magnetization (see Fig. 3 of
Ref. [24]).

The experiment in the field, exceeding the saturation point
μ0H

a
sat = 8.44 T, shows the downshift 119 ± 2 GHz of the

frequency of the weak mode B with respect to the Larmor
frequency of mode A. The appearance of a downshifted mode
is in a good correspondence with the theory of the spin-wave
excitations of the saturated phase, given in the Supplemental
Material of Ref. [21]. This consideration implies a spin-wave
theory used for a fully polarized phase of Cs2CuCl4 for which
the ground state is exactly known and the excitation spectrum
may be strictly calculated. This theory predicts approximately
the same ESR frequencies for the field both perpendicular and
tilted to vector D:

2π�fESR = ga,b,cμBμ0Ha,b,c − 4J ′ + O(D/J )2. (2)

The same shift 119 GHz was observed for the mode B for
another orientation of the magnetic field H ‖ b in Ref. [21].
Thus, the theoretical prediction on the approximately isotropic
character of the shift of mode B corresponds well to the theory.
It should be noted that the mode B, observed here by the
ESR method, i.e., at the Brillouin zone center, is the same
excitation as observed by inelastic neutron scattering [22] at
the boundary of the “exchange” Brillouin zone (kc = 2π/c).
Indeed, in Ref. [22] the Brillouin zone was considered in
the exchange approximation with periods δ1,2. However, the
structure composed by vectors D′ has a doubled period in the c

direction in comparison with the exchange structure; see Fig. 7.
The period doubling results in the folding of the Brillouin zone.
Thus, excitations, positioned at the boundary of the zone in the
exchange approximation, appear in the center of the zone (see
Fig. 1 in Ref. [21]). The weak but nonzero ESR intensity
of this mode is attributed, thus, to the Dzyaloshinsky-Moriya
interaction and would be zero in the exchange approximation
(see theory in Ref. [21]).

The negative shift of the resonance field of mode B,
observed at heating, means the enlarging of the eigenfrequency
of magnons at excitation of additional magnons. This may
be treated as a consequence of a repulsive interaction of
magnons. The repulsion of magnons is natural for fully
polarized antiferromagnetic system, because in a polarized
antiferromagnet two flipped spins show a mutual repulsion.
The mode B practically disappears above 2 K. This is also
natural as the dispersion in the kc direction is provided by
the exchange J ′ = 1.45 K. This dispersion determines the
frequency of the ESR mode B. Thus, the temperature, higher
than J ′, should smear this resonance mode, as seen in the
experiment.

The nonlinear spin-wave calculations within the J -J ′
Heisenberg model in the saturated phase [25] give the
following expression for the temperature-dependent energy
shift at the wave vector k = (0,2π/

√
3), corresponding to the

frequency of ESR mode B:

δε = 1

N
8J ′ ∑

k

1 − cos kx

2 cos
√

3ky

2

exp
(

ε(k)
kBT

) − 1
. (3)

Here the wave vector is measured in units of reciprocal
periods of the 2D lattice with the translations δ1,2 in Fig. 7.
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The magnon spectrum ε(k) is described in the exchange
approximation by the relation (4) of Ref. [21]:

εk = gμBH + J cos(kx)

+ 2J ′ cos
(

1
2kx

)
cos

(
1
2

√
3ky

) − J − 2J ′. (4)

The result of the calculation after relation (3) is shown
in the upper panel of Fig. 6. This calculation is made for
μ0H = 11 T and exchange parameters J and J ′ for Cs2CuCl4
from Ref. [21]. The result of the experiment corresponds well
to the theory both in the sign and the value of the shift.

V. CONCLUSION

The evolution of the electron spin resonance spectrum in
the frequency range above the exchange frequency J/(2π�)
was studied in the S = 1

2 antiferromagnet on the distorted
triangular lattice Cs2CuCl4. The doublet of resonance lines,
marking the boundaries of the spinon continuum, was found
to collapse in the field of about one-half of the saturation field.
The collapse proceeds via vanishing of the upper frequency
component of the doublet. This scenario of the collapse of the
doublet agrees qualitatively with the evolution of the spinon
continuum of spin S = 1

2 Heisenberg antiferromagnetic chain
[15,24]. Above the saturation field, a much weaker mode,
downshifted for 119 GHz from the Larmor frequency, is
observed. This shift and the weak intensity of this mode corre-
spond well to the theoretical consideration of spin waves in the
saturated phase. The temperature dependence of the resonance
field of the weaker mode indicates the repulsive interaction of
magnons in the saturated antiferromagnet and is well explained
within the spin-wave formalism with anharmonic terms.
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APPENDIX A: ESR FREQUENCIES OF THE SPIN CHAIN
IN HIGH FIELDS

Under the action of the applied magnetic field, continua
of spin fluctuations of different polarization become different.
The spectra of continua of transverse spin fluctuations S+− and
S−+ are responsible for ESR absorption [26]. The upper and
lower boundaries of these continua for the S = 1

2 Heisenberg
antiferromagnetic chain in the presence of a magnetic field
are calculated by Müller et al. These data are summarized in
Table II of Ref. [15]. As described in Sec. I, to calculate the
upper and lower boundary frequencies at q = 0 for a spin chain
with the uniform Dzyaloshinsky-Moriya interaction we use the
results of Ref. [15], taking the boundary frequencies at q =
qDM for the boundaries with nonvanishing spectral weight. In
this way we obtain the following frequency-field dependencies
for spin-resonance absorption at H ‖ D:

2π�f1 = JR(h) sin
(qDM

2

)
cos

(qDM

2
− πm(h)

)
− Jh,

(A1)

2π�f2 = JR(h) sin
(π

2
− qDM

2

)
cos

(π

2
− qDM

2
− πm(h)

)
,

(A2)

2π�f3 = JR(h) sin
(π

2
+ qDM

2

)
cos

(π

2
+ qDM

2
− πm(h)

)
.

(A3)

Here h = gμBμ0H/J is the reduced field (hsat = 2),
R(h) = π + h(1 − π

2 ) is the field-dependent renormalization
prefactor, and m(h) is the reduced magnetization given by [15]

m(h) = 1

π
arcsin

(
1

1 − π/2 + π/h

)
. (A4)

Domains of these functions in q and H are chosen to
avoid negative values of frequencies. Using Eqs. (A1)–(A4)
we get the ESR frequencies shown in Fig. 3 for the S = 1

2 spin
chain with uniform Dzyaloshinsky-Moriya interaction in the
so-called “Müller ansatz” approximation: mode f1 is given by
the lower boundary of the S−+ continuum and f2,3 are given
by the lower boundary of the S+− continuum. In the case of
low field h � 1 these equations transform into corresponding
relations of Refs. [11,13]. Modes f2 and f3 correspond to A′
and A in Fig. 3, and mode f1 is relevant only for small magnetic
fields which are out of range of the present study.
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