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Theory of inelastic neutron scattering in a field-induced spin-nematic state
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We develop a theory of spin excitations in a field-induced spin-nematic state, and use it to show how a
spin-nematic order can be indentified using inelastic neutron scattering. We concentrate on two-dimensional
frustrated ferromagnets, for which a two-sublattice, bond-centered spin-nematic state is predicted to exist over
a wide range of parameters. First, to clarify the nature of spin-excitations, we introduce a soluble spin-1 model,
and use this to derive a continuum field theory, applicable to any two-sublattice spin-nematic state. We then
parameterize this field theory, using diagrammatic calculations for a realistic microscopic model of a spin—%
frustrated ferromagnet, and show how it can be used to make predictions for inelastic neutron scattering. As an
example, we show quantitative predictions for inelastic scattering of neutrons from BaCdVO(PO,),, a promising
candidate to realize a spin-nematic state at an achievable & ~ 4 T. We show that in this material it is realistic to
expect a ghostly Goldstone mode, signalling spin-nematic order, to be visible in experiment.
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I. INTRODUCTION

The spin-nematic state is a “hidden order” of spin degrees of
freedom, involving the ordering of spin-quadrupole moments,
in the absence of conventional spin-dipole order (cf. Fig. 1).
The spin-nematic state was first proposed several decades ago
[1-3], and the theoretical possibility of spin-nematic order is
now well established, especially for spin-% frustrated magnets
in applied magnetic field [4-20]. Nevertheless, to date, the spin
nematic has generally lived up to its epithet, and remained well
hidden from experimental observation.

The reason why spin-nematic order is difficult to observe
is that its order parameter, a quadrupole moment of spin,
does not break time-reversal symmetry [3]. This means that
spin nematics are invisible to common probes of magnetism:
they do not lead to magnetic Bragg peaks in elastic neutron
scattering, asymmetry in muon spin resonance (uSR), or
splitting of spectral lines in nuclear magnetic resonance
(NMR) experiments. In this paper, we continue the program
begun in [21-23] of exploring how the symmetries broken by
spin-nematic order manifest themselves in its excitations, and
how these excitations might be observed in experiment. To this
end we develop a general theory of inelastic neutron scattering
from a spin-nematic state in applied magnetic field.

The scenario we explore, summarized in Figs. 1 and 2, is
applicable to a wide range of materials. When a frustrated
magnet is polarized by applied magnetic field, interactions
between magnons can lead to the formation of a two-magnon
bound state. At lower values of magnetic field, this bound
state can condense, leading to spin-nematic order [4,5,24,26]
(Fig. 1). Since the spin-nematic order breaks spin-rotation
invariance in the plane perpendicular to the magnetic field,
it must possess a Goldstone mode. This has observable con-
sequences: the two-magnon bound state, invisible to neutrons
in the polarized phase, transforms upon condensation into a
ghostly, linearly dispersing Goldstone mode, which can be
resolved in inelastic neutron scattering (Fig. 2).

For concreteness, in this paper we concentrate on spin-
% frustrated ferromagnets on a square lattice, taking our
motivation from materials such as Pb,VO(PO,), [27-31]
and SrZnVO(POy), [29,30,32]. We pay particular attention
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to the quasi-two-dimensional (quasi-2D) frustrated magnet
BaCdVO(POy), [25,29], which has a saturation field of only
hsat =~ 4 T, and so is easily accessible to experiment. However,
with small modifications, the same methods and conclusions
can be generalized to other systems, such as coupled spin-half
chains [16-18,20].

The primary microscopic model we consider is the spin-%
“J1-J,” Heisenberg model

M52 =1 Si-S;+hY S-S;+hY & (1)

(i (ij)2
where (ij); counts first-neighbor bonds, and (ij), second-
neighbor bonds of a square lattice (see Fig. 1). Magnetic field
h defines the SZ axis for spin. This model is believed to describe
several distinct families of quasi-2D materials, including the
vandates Pb,VO(POy), [27-31], StZnVO(POy), [29,30,32],
and BaCdVO(POy,), [25,29].

The “J;-J,” model Hsz/ 2 [Eq. (1)] can be shown to
support a spin-nematic ground state for all ferromagnetic
Ji < 0 and antiferromagnetic J, > 0.408|J;| [24,26]. Spin-
nematic order is formed through the condensation of bound
pairs of magnons out of the saturated state at 1 = hggt [5], and
is generally believed to be stable for a small range of fields
approaching saturation, i.e., for 2 < hsgr. However, for a range
of parameters 0.408 < J,/|J;| < 0.7, the zero-field (h = 0)
ground state of H.?:JL/ 2
[5,9,33-35].

One-dimensional (1D) and quasi-1D frustrated ferromag-
nets have also been extensively studied in the search for the
spin-nematic state. Theoretically, it has been shown that J;-J;,
spin—% chains in applied magnetic field, with J; < 0 and
J> > 0, demonstrate dominant quadrupolar correlations for
a wide parameter range [4,7,8,10-15,36-38]. In the presence
of small interchain coupling, this can lead to a long-range-
ordered spin-nematic state at low temperature [16—18,20].
The spin-nematic state is stabilized by magnetic field, and is
most pronounced close to the saturation field. There have been
a number of calculations of dynamical properties of such a
spin-nematic state, with a view to providing experimental pre-
dictions [16-18,20,39,40]. The material LiCuVQy is thought to

[Eq. (1)] is also a spin-nematic state
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FIG. 1. (Color online) Two-sublattice, bond-centered  spin-
nematic state, of the type found in spin—% frustrated ferromagnets in
applied magnetic field. Spin fluctuations show quadrupolar character,
visible in the probability distribution for spin fluctuations on the
bonds of the lattice, here represented by a blue surface. Spin-nematic
order is known to occur close to saturation in the spin-% Ji-J»
model on a square lattice Hi:_JZ/ 2 [Eq. (1)], for ferromagnetic
Ji and antiferromagnetic J, [5,9,24]. This model is believed to
describe a number of quasi-two-dimensional magnets, including
BaCdVO(PO,), [25].

approximately realize this model, and may show spin-nematic
order close to saturation [16,41,42]. However, high-field NMR
measurements have not yet detected evidence for such a state,
and have shown that, if it does exist, it is limited to a very
narrow field range [22,42].

The spin-nematic state that appears in spin-% models such

S=1/2
as HJ1>J2

an individual spin-% cannot have a quadrupole moment, a

[Eq. (1)] is known as a bond nematic. While

pair of neighboring spin-%’s can form a triplet, and thus
develop a quadrupole moment living on the bond [3]. If
conventional dipole magnetism is suppressed, for example
due to high frustration, quadrupolar or higher-order multipolar
correlations can be revealed. In Hf:}z/ 2 [Eq. (1)] the triplets
organize themselves into a bond-centered antiferroquadrupolar
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(AFQ) order [5,9,33-35]. The way in which this occurs is
most easily understood at high values of magnetic field, in the
saturated state, where triplets are preformed. Here, magnons
form bound states, which condense to give spin-nematic order
as the magnetic field is lowered [5]. In such a state the
spin-dipole moment (S) = 0, while the rank-2, symmetric,
traceless tensor,

Qi = ¢St + 505 — 258, -8, )

with o, B = X,V,z, has entries with nonzero expectation value
[3].

At h =0, one possible approach to understanding the
excitation spectrum of the spin-nematic state in Hj1.Jo [Eq. (1)]
is to work directly with the microscopic model, construct
a lattice gauge theory, and then solve this within a large-N
expansion scheme [33-35]. This approach has the advantage
that, in principle, it can access all of the different excitations
of the spin-nematic state. However, the solution of the lattice
gauge theory is extremely involved, which complicates the
interpretation of experiments [35].

A second possibility, explained in detail in Refs. [21,23], is
to construct a continuum theory for the long-wavelength exci-
tations of two-sublattice AFQ order. This approach has the ad-
vantage of bringing the universal properties of the spin-nematic
state to the fore, and of making clear predictions for inelastic
neutron scattering. However, being grounded in the symmetry
of the order parameter, it cannot hope to describe the micro-
scopic details of the underlying spin—% model at high energies.

In this paper, we combine the continuum theory approach
with a microscopic study of Hyig2 [Eq. (1)]. We use
diagrammatic calculations to determine the magnetic
dispersion spectrum of one-magnon and two-magnon
excitations at and just below hggt. This allows the continuum
theory to be parametrized using J; and J,, and therefore
quantitative predictions to be made for inelastic neutron
scattering experiments.

(b)
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FIG. 2. (Color online) Predictions for inelastic neutron scattering from a powder sample of a material exhibiting bond-centered spin-nematic
order in applied magnetic field, of the type shown in Fig. 1. (a) Inelastic scattering at small |q|, for magnetic field approaching the saturation
value heat. The existence of a spin-nematic state is heralded by a ghostly, linearly dispersing Goldstone mode at low energy. (b) Inelastic
scattering at fixed |q| = 0.18 A1, showing the distribution of spectral weight as a function of frequency. The Goldstone mode has at its
maximum about 3% of the intensity of the spin-wave mode at higher energy. Predictions for the dynamical structure factor x%(q,w) were
obtained using the methods described in Sec. VI of this paper, for parameters relevant to BaCdVO(POy), [25], and powder averaged. Equivalent

results for a single-crystal sample are shown in Fig. 16.
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FIG. 3. (Color online) Detail of a bond-centered, two-sublattice
spin-nematic state in applied magnetic field. Green spheres represent
spin-% degrees of freedom at the vertices of a square lattice. The bond-
centered, nematic order parameter is represented by red cylinders, and
the associated distribution of spin fluctuations by a blue surface. A
second, bond-centered lattice is introduced and shown in yellow. In
this paper we consider both the site-centered spin—% Heisenberg model
HJSTL/ 2 [Eq. (1)], and a bond-centered spin-1 bilinear-biquadratic
(BBQ) model HSBZJQ [Eq. (4)]. Both exhibit the same form of spin-
nematic order, in applied magnetic field.

Inelastic neutron scattering measures the dynamical spin
correlation function, which is defined as

Imyx*’(q,w) = Im {i / ” d;eiwf(asg(t)asﬁq(m)} NG
0

where we have set gug = 1. Thus, the task of this paper
is to calculate this quantity, and we will do this for two
complementary models of field-induced, spin-nematic order
on the square lattice: Hy1.g2 [Eq. (1)] and a spin-1 model
that is a generalization of the bilinear-biquadratic (BBQ)
Hamiltonian [1,2]. We now briefly review the route taken.

In Sec. II, we introduce a spin- 1, BBQ model with a partially
polarized, two-sublattice, spin-nematic ground state. As shown
in Fig. 3, one way to view this is as an effective model
describing spin-1 degrees freedom living at the bond centers of
a spin—% square lattice. The lattice of bond centers also forms

a square lattice, with a reduced lattice constant b = a/~/2.
A major advantage of spin-1 models is that the excitation
spectrum can be calculated within flavor-wave theory [43—47].
This allows predictions for Imx “?(q,w) [Eq. (3)] to be made.
While the primary motivation for considering this model is
as a first step towards making predictions for spin-% systems,
spin-1 is also interesting in its own right [46,47], and if real
materials can be synthesized with large biquadratic interaction,
the results presented here would be relevant.

In Sec. III, we start from the spin-1 BBQ model studied
in Sec. II and use it to derive a continuum field theory.
We first demonstrate that, at long wavelength, this exactly
reproduces the flavor-wave results of Sec. II. The power of
the field theory is that it is a theory of the order-parameter
symmetry, and therefore describes the universal features of
a partially polarized, two-sublattice spin-nematic state. Thus,
we recast the theory in terms of a minimal set of hydrodynamic
parameters. This renders the theory free of any particular
microscopic model, and one can in principle parametrize
it from any microscopic model with a partially polarized,
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two-sublattice spin-nematic ground state or directly from
experiment.

In Sec. IV, we make a mapping between the effective spin-1
degrees of freedom on the bonds and spin-% degrees of freedom
on the sites. This will allow predictions to be made for spin-
% frustrated ferromagnets, based on the theory developed in
Secs. II and III.

In Sec. V, we consider Hsz/ 2 [Eq. (1)] from a microscopic
perspective close to the saturation field. We consider the
condensation of magnons out of the fully saturated state. For
a sizable parameter range, condensation of bound-magnon
pairs occurs at a higher magnetic field than the condensation
of single magnons, and therefore a spin-nematic state is
formed. Diagrammatic calculations allow the critical field to be
calculated, as well as the velocities and gaps of the excitation
modes in the spin-nematic state. These can then be used to
parametrize the continuum theory.

In Sec. VI, we make predictions for inelastic neutron
scattering experiments for materials described by Hiﬂz/ 2
[Eq. (1)]. As a worked example, we consider the material
BaCdVO(PO,),, which is expected to have a spin-nematic
ground state close to saturation, and show quantitative ex-
perimental predictions. Finally, in Sec. VII we conclude by
showing that the detection of a ghostly Goldstone mode in
BaCdVO(POy),, a characteristic signature of spin-nematic
order, is experimentally feasible using current instruments.
In Appendix, we derive a nonlinear-sigma-model field theory
for the two-sublattice AFQ state at 2 = 0. This is comple-
mentary to the continuum theory presented in Sec. III, which
considerably simplifies at # = 0 if a set of high-energy modes
are eliminated by a Gaussian integral. This theory can then be
compared to previous work considering the spin-nematic state

of H5=}/? [Eq. ()] at h = 0[33-35].

II. A SPIN-1 MODEL FOR THE TWO-SUBLATTICE SPIN
NEMATIC IN APPLIED MAGNETIC FIELD

Here, we construct and solve a spin-1 bilinear-biquadratic
model in applied magnetic field on the square lattice that
supports the same type of spin-nematic state as is found
in Hijz/ 2 [Eq. (1)]. While this may be relevant to spin-1
systems, the primary motivation is as an effective model of
bond degrees of freedom in a spin—% bond-nematic state. We
make the assumption that the two-sublattice, spin-nematic
state reduces to triplets on nearest-neighbor bonds and, at
low energy, singlet degrees of freedom can be ignored. The
exchange parameters in the spin-1 model are chosen such thata
partially polarized, two-sublattice AFQ ground state is realized
for the full magnetic field range 0 < h < hgat.

We use flavor-wave theory [43-47] to determine the
evolution of the magnetic dispersion and the imaginary part of
the dynamic spin susceptibility as the magnetic field is varied.
Here, we present the results of linear flavor-wave theory (see
Fig.5). At h = 0 we have checked that the two-sublattice AFQ
ground state remains stable when interactions are included, but
the details will be presented elsewhere [48].
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A. Definition of the model

The model we introduce is a straightforward generalization
of the bilinear-biquadratic model introduced in Refs. [1,2].
Effective spin-1 degrees of freedom are placed at the bond
centers of a square lattice with lattice constant a. The bond
centers of the square lattice also form a square lattice, with
lattice constant b = a/ V2 (see Fig. 3).

The microscopic model is given by

=Y Jul(S; -8,)* +8; - S]—hZSZ
(Ejh

- Z{JIZ[(Si S +Si -S;1+ (S - S)%,
(ij)2

BBQ

“

where (ij); counts the first- and (ij), the second-neighbor
bonds on the bond-centered lattice (see Fig. 3) and S =
(8%,8Y,8%) is the usual spin-1 operator. We consider all
interactions J to be positive and /4 is the applied magnetic
field.

It is useful to rewrite HBBQ[ 1 [Eq. (4)] as

J
HgaalS.Ql= ) Z5(Qi-Q; +8i-8)) ~h ) S
{ijh i
J
- Z I:%(Qi Qi +Si-S))
J»n
+ _(Ql Q] Si . Sj)]a (5)
where
Xy (8%)% — (8Y)?
Q¥ H28% = (89 = (8]
Q=] ov |= §XSY + Y §* (6)
QyZ SYSZ + SZSy
QXZ SXSZ + SZSX

describes spin-quadrupole operators and a constant term has
been dropped.

This model has a hidden SU(3) symmetry for J,;, = 0 and
h =0, a fact which is more easily understood if HBBQ[S]
[Eq. (4)] is expressed in terms of a director vector d. This
follows from noting that the wave function of a spin-1 on a
site j can be written as [21,44,49-51]

;) = df|x) + d]|y) + d7lz), (7
where
1) =11 1) + 1) .
=l—, = -, = — 0 8
lx) =i 7 |¥) 7 lz) = —il0)  (8)

are linear superpositions of the usual spin-1 basis states. The
director vectoris definedbyd; = (d*,d}',df) and is normalized

by requiringd; d; = =1L Assuming the total wave function can
be site factorlzed allows HBBQ[S] [Eg. (4)] to be reexpressed
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as

BBQ[d]—JuZm d;> —Jn ) ld; -4,

(ij)2

—JZZZM d;|? —zhz (@d - d)ay).
(ij)2
©

The first and second terms of HBBQ [d] are SU(3) invariant, and
favor general two-sublattice states. However, the interaction
Jyp breaks the symmetry of the model down to SU(2) and
enforces two-sublattice AFQ order of the type shown in Fig. 3.
The magnetic field further reduces the symmetry to U(1) and,
above a critical field hgqt, favors a saturated paramagnetic state.
An alternative rewriting of HBBQ[S] [Eq. (4)] is in terms
of a vector e, which parametrizes the usual spin-1 basis states.
The wave function on a site j is written as
lej) = e}l1) +¢%10) + e} [T), (10)
and e; j= = (! ; ,e0 ;e 1), The wave function is normalized by
requiring e; - €; = 1 Agam assuming a site factorization of
the wave function 'HBBQ[S] [Eq. (4)] can be rewritten as

Hasalel = JHZ|e, &’ —JuZ|e, &’

_122E |ee —ee —i—ee1

(ij)2
03 (el = [€l])

Atlarge values of 4 is it clear that all sites will have e = (7,0,0),
corresponding to a saturated paramagnet.

The relationship between the e vectors and the operators S
and Q is given by

)

(5%) _L[(eléo_i_e()él +eoéi+eié<))
(8Y) —(6 &% — el + ¢! —ele?)
(5%) le'|? — le|?

(0 ele! +e'e!

0= | T L e —21e0p) |
Q%) i(ele' —e'dh)
(0% (ee—eoel—ee + ele?)
(0*%) ( e'd? — %' + ele! + el

(12)
where (S*) = (e|S¥|e).

B. Mean-field ground state

The mean-field ground state of HBBQ[S] [Eq. (4)] can
be derived by varying the e vectors in HBBQ[e] [Eq. (1D)].
Since the motivation for considering the model is to study the
partially polarized spin-nematic state, we do not present the
entire phase diagram, but instead determine a parameter range
in which this state is stable for the full fieldrange 0 < h < hgat.
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o9

h=0.5h,

FIG. 4. (Color online) Evoluiton of the two-sublattice, AFQ spin-nematic state in applied magnetic field. The distributions of spin
fluctuations, shown by blue surfaces, are calculated within the mean-field ground state described by Eq. (15). Magnetic field is applied
perpendicular to the 2D plane, and polarizes the magnetic moments. Full polarization is achieved at 1 = hgy. The nematic order parameter is
shown by red cylinders, and disappears at 1 = hgat. In the case of a spin-1 system, the polarized moments and the quadrupolar order parameter
exist at the vertices of the yellow lattice. In the case of a spin—% system, magnetic moments are associated with the vertices of the green lattice
(shown by green spheres). The nematic order parameter lives on the bonds, and one can define partially polarized spin dipoles on the bonds by
summing contributions from neighboring sites (see Sec. IV). Magnetic field values correspond to those in Figs. 5 and 7.

This is the case for Ji; = 1, Ji» > 0, J»» > 1, and from now
on we concentrate on this region in parameter space.

In the saturated paramagnet, the mean-field wave function
at every site is described by

e =i(1,0,0). (13)
Below the saturation magnetic field
hsat = 4(J11 + J2), (14)

the e vectors cant, forming a two-sublattice state. Labeling
these two sublattices A and B, the mean-field ground state can
be described by

er' =R(O)-e]", ef' =R(—6) e, (15)
with
cos Gy, 0 sing,
ROH)= 0o 1 0 [. (16)
—sinfg, 0 cos6,

The canting angle 6, is given by

h
cos 26, = —. (17)
sat
For h = hgat the canting angle is 6, = 0, while for 2 = 0 it is
0, = /4. The field evolution of the mean-field ground state
described by Eq. (15) is shown in Fig. 4.

C. Linear flavor-wave theory in the saturated paramagnet

Above a critical magnetic field hgg [Eq. (14)], the spins
align, forming a saturated paramagnet. The excitation spec-
trum for i > hsat can be calculated using linearized flavor-
wave theory [43-47]. From this the imaginary part of the
dynamical spin susceptibility can be determined.

The spin operators are written in terms of a pair of boson
creation and annihilation operators, labeled a and b, according
to

$2=1-2ala; — bb;,

= V21 —ala; —bib; b, +blap,  (18)

%]
+
Il

o
I

where §* = §% & i§Y. The operator b} creates an excitation

with ASJZ- =1, while a} creates an excitation with ASJZ =2.
It follows from Eqgs. (6) and (18) that

0¥ =a'V/1 —afa — bib+ /1 —ata — biba,

1
0% " = — (1 -3b'D),
V3

0% =i(@'V1 —ata—b'b — 1 —ala — bib a),
i
0% =—K1—afa—bibb
V2

— b1 —ata—btb+a'b—bla),
1
- —=(
V2
+b'V1—data—btb —a'b — bla). (19)

The dispersion of magnetic excitations can be calculated
within linear flavor-wave theory. This involves rewriting
Hg;&[S,Q] [Eg. (5)] in terms of the boson operators defined
in Egs. (18) and (19), and retaining only terms up to bilinear
order. The resulting dispersion relation has two branches

0% = 1 —ata—bbb

@, = =40 (1 - Rn") + 4501 - 1?)
—4Jn(1+ 1) +2h,
o, = =4 (1 =)+ 401 = 12) +h,  (20)

where
1 _ 1 2) _
Ve = i(cos kx +cosky), ¥ = coskycosky. 21
The imaginary part of the dynamical spin susceptibilty
Imy P (q,w) [Eq. (3)] can be calculated within the flavor-wave
approach, yielding

T
Imy*(q.0) = Imx"(q.0) = Z5(w - o),

Imy%(q,) = 0. (22)
The dominant feature is a band of one-magnon excitations in

the perpendicular channel, as shown in Figs. 5(a) and 5(b).
This is gapped at all wave vectors, and has uniform spectral
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() Imx*(q,w)

a) h=1.5hgy

(e) h=0.25h,
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(i) Im x**(q, w)

02 04 06 08 1.0
M r

(c) h=0.75h,

(d) h=0.5hgq

(€) h=0.25h,

FIG. 5. (Color online) Flavor-wave predictions for the imaginary part of the dynamic spin susceptibility of a spin-1, partially polarized,
two-sublattice, spin-nematic state in applied magnetic field. These follow from considering HSE&[S] [Eq. (4)] with J;; =1, J1, = 0.1, and
Jy = 2. The external magnetic field is gradually reduced from a) 1 = 1.5hs tof) & = 0. (i) The transverse susceptibility Imy *(q,®) [Eq. (29)].

b

Dashed red lines show wz.h at all h and wg, g, 1

for h < hga [see Egs. (20) and (27)]. The associated intensity is shown by the color scale

inset in panel (ii)a. (ii) The longitudinal susceptibility Imx*(q,®) [Eq. (29)]. Dashed red lines show w: ay.n Lsee Egs. (20) and (25)]. The
associated intensity is shown by the color scale inset in panel (ii)a. All predictions have been convoluted with a Gaussian to mimic experimental
resolution. The circuit '-X-M-T in the bond-centered Brillouin zone is shown in Fig. 6. An animated version of this figure is shown in the

Supplemental Material [52].

weight. There is also a band of two-magnon excitations in
the longitudinal channel with zero spectral weight. For h >
hsat this is gapped at all k, but exactly at & = hgyt the gap
closes at k = 0. This signifies the onset of spin-nematic long-
range order. The spin dipole remains parallel to the applied
magnetic field, and a director order parameter appears in the
plane perpendicular to % (see Fig. 3).

D. Linear flavor-wave theory in the partially
polarized spin nematic

The dispersion of magnetic excitations in the partially
polarized spin-nematic state, which occurs at 0 < h < hgat, is
now calculated using linear flavor-wave theory. This is done by
considering small fluctuations around the mean-field ground
state given in Eq. (15).
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The spin operators can be rewritten as

PHYSICAL REVIEW B 91, 174402 (2015)

X__L _ pikmTi _atg — pt T — aty — pt ikmer; o i i
St = [(cosB, —e sin@,)(v/1 —a'a —b'bb+b'\/1 —a'a—b'b)+ (cosb), + e sin6)(a'b + b'a)],

V2

i
Y-
i \/5

[(cos B + ™ sin6,)(v/1 — ata — btb b — bIV/1 — ata — bTh) + (cos 6, — ™™ sin@,)(bla —a'b)],  (23)

8% = c0s20,(1 — 2a'a — b'b) + ™% 5in26,(v'1 — ata — bib a + a'y/1 — ata — bib),

while the quadrupole operators are given by

x2—y?
Ql‘ =

1
0¥ " = —(1-3b'p),
i \/5

oY =ia"V1 —ata —btb — V1 —ata - btb a),

— ™ 5in 20, (1 — 2a'a — b'h) + c0s 26,(v/1 — ata — b'b a + a'y/1 — ata — b'h),

(24)

0% = —_[(cos Oy — ™ sin6,)(v/1 — ata — bib b — b1 — ala — b'b) + (cos b + ™™ sin ,)(a'b — bla)],

V2

1 . .
0¥ = —2[—(cos O + €™ 5in0,)(v/1 — afa — btb b+ bT\/1 — ata — btb) + (cos 6, — ™ sin6,)(a'b + bia)],

/2

where ky = (7,7) is the two-sublattice ordering vector (see
Fig. 6) and ¢’* ™ = 41 depending on whether i is within the
A or B sublattice.

Performing linear flavor-wave theory results in a magnetic
dispersion with two branches. The first has the excitation

spectrum
@y =/ Aks — By (25)
with

A =41 8in° 26;, — 4J11 (1 — ") cos? 26,
+4J1(1 — ) + 45 sin? 26,
— 4 (1 4+ 1) cos? 26, + 2h cos 26y,

sc lattice
-
N, Za 7\,
AN ZaN VAN
N N,
@i 7 N (b)
A N\ ~be lattice™,, % N
4 A M (5D
L 4 p.S D, 2 o \aa
/ .,
4 Py b bz
Ay ™.
< I Px X '>M
., Snow
\ 7 (5)
Ix S/
N /
“, sc bz X

FIG. 6. (Color online) Relationship between the site-centered
lattice of Hiﬂ 2/ 2 [Eg. (1)] and the bond-centered lattice of HS;&[SJ
[Eq. (4)] and associated Brillouin zones (BZ). (a) The site-centered
lattice, with lattice constant a, is shown in black and the bond-
centered lattice, with lattice constant b = a/~/2, in red. A coordinate
system (xy,Xy) is associated with the sc lattice and (ry,ry) with the
bond-centered lattice. (b) The site-centered BZ is shown in black
and the bc BZ in red. The associated coordinates are (px,py) and
(gx.qy)- High-symmetry points in the site-centered BZ are pr = (0,0),
px = (7t/a,0), and py = (r/a,m/a) and in the bond-centered BZ
qr = (0,0), qx = (7/b,0), and qu = (/b7 /D).

[
— (1) ;.2 2) 2.2
By = —4J11y  sin® 260, + 4Jpny, " sin” 26y, (26)

where ylil)

has

and yliz) are defined in Eq. (21). The second branch

wE_h = %(Ck,h - Ck+kM,h) + %\/(Ck,h + Ck+kM,h)2 - 4Dﬁ,h,

27
where
Cin = — 4Jy1 cos? 26), + 4J117/l£1) cos 29,
+4J12(1 = ) + 4J sin® 20, + h cos 26y,
Dk,h = — 4J22)/l£2) sin 29;,. (28)

It follows that the imaginary part of the dynamic spin
susceptibility is given by

Imy*(q,0) = Imx**(q,®) + Imx*Y(q,0)

b

=7 (ug, cos 6y — v, sin Qh)2 8(w — ®)

q
47 (uzqh sin@, — vf{,h cos 9;1)2 8(w — wg+qM),

Imy?(q,w) = 7 sin’ 26,

X (“3+qm,h + vg+¢1M,h)2(S (a) - w3+qm)’ (29)
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where
2 Ak,h 1
(uih) = T + )
242, - B,
2 Ag 1
) = e e @
24— B
—B
2“;11”12,;1 =——r
and
5 Cx.n + Ciixyi 1
(ups)” = - ) + 2’
2\/(Ck,;, + Ciciy.n)* — 4Dg
5 Cin + Cxiig. 1
(vE,h) = = > 2 D
2\/(Ck,h + Cxtry.n)? —4Di
—2D
Zug,hvlt(),h = =

\/(Ck,h + Cysrnn)? — 4Dl§,h

The imaginary part of the dynamical spin susceptibility
[Eq. (29)] is plotted in Fig. 5. An animated version of
Fig. 5 with continuously varying magnetic field is provided
as Supplemental Material [52].

For h > hey [Fig. 5(a)] the only visible feature is a
uniformly bright band of AS? = 1 excitations in the transverse
channel. The only other excitations of the saturated paramagnet
have AS? =2 and therefore do not contribute to the spin
susceptibility. Ath = hgat [Fig. 5(b)], the gap to these AS* = 2
excitations closes, signaling the onset of spin-nematic order.
For 0 < h < hgg it is no longer possible to assign an integer
value of ASZ to a particular excitation. In consequence, spin
and quadrupolar fluctations are mixed, except for at special
points in the Brillouin zone. Of particular interest is the nature
of the low-energy modes, and we consider each of these
separately.

The spin-nematic phase possesses a gapless Goldstone
mode, which can be seen at q = (0,0) in the longitudinal spin
susceptibility Imy#(q,w) [Eq. (29), Fig. 5(ii)(b—f)]. This is
due to spontaneous breaking of the U(1) symmetry of HSE& [S]
[Eq. (4)] in field by the spin-nematic state. The Goldstone
mode is associated with rotations of the quadrupoles in the
plane perpendicular to the field, and shows up at q = (7,7) in
the wgy » [Eq. (25)] branch of the dispersion. Close to q = (77,7)
the predominantly quadrupolar fluctuation induces a small
spin fluctuation. These spin fluctuations are parallel to the z
direction and in phase between the two sublattices, and hence
are seen at q = (0,0) in the spin susceptibility. Their magnitude
goes to zero approaching q = (0,0), which can be seen from
the fact that the spectral weight in the spin susceptibility
disappears linearly with |q| approaching q = (0,0).

The longitudinal spin susceptibility Imx#(q,w) [Eq. (29),
Fig. 5(ii)(b—f)], also has a gapped mode at q = (,77). This is
brightest at 4 = 0 and gradually fades as the field is increased
towards i = hggt. The mode can be thought of as a dynamical
spin-density wave, in which spin fluctuations occur parallel to
the field direction, but in antiphase between the two sublattices.
Intriguingly, a number of quasi-one-dimensional materials that

PHYSICAL REVIEW B 91, 174402 (2015)

are good candidates for realizing the spin-nematic state show
spin-density wave order over large field ranges [41]. It would
be interesting to see if at different values of the interaction
parameters this mode condensed.

The transverse spin susceptibility Imy*(q,w) [Eq. 29,
Fig. 5@1)(b—f)] has a single excitation branch at h = hgg.
As the field is reduced below h = hggt it splits into two,
corresponding to a)g_ » and a)g +qu.n [EQ- (27)]. Atagiven g there

is a bright feature at = a)g, ;» Which is predominantly due to a
transverse fluctuation of the partially polarized moment. There
is also a weaker feature at w = a)g aquh which is due to the
quadrupolar part of the fluctuation at q = q 4 qu inducing
a spin fluctuation at q. Quadrupolar fluctuations at q also
induce spin fluctuations at q, but, unless 7 = 0, these are
hidden by the transverse fluctuation of the polarized moment.
Ath = Othere is no polarized moment and all spin fluctuations
are induced from quadrupole rotations. At 2 = 0 there are
Goldstone mode excitations at q = (7,7) and q = (0,0) in
the transverse channel, making a total of three Goldstone
modes in the system. The spin-nematic state spontaneously
breaks the SU(2) symmetry of Hggd[S] [Eq. (4)], and the
Goldstone modes correspond to three-dimensional rotations
of the quadrupole order parameter (see Appendix).

III. CONTINUUM APPROACH TO THE SPIN-1,
TWO-SUBLATTICE SPIN NEMATIC IN APPLIED
MAGNETIC FIELD

Here, we develop a continuum approach to understanding
the fluctuations of the spin-nematic state. We derive a con-
tinuum model directly from the microscopic spin-1 model
HSE&[S] [Eq. (4)]. After linearizing the quantum fields, we
show that this exactly reproduces the flavor-wave results
presented in Sec. II at long wavelength. The advantage of
the continuum approach is that it is not tied to a microscopic
model, butis instead a theory of the order-parameter symmetry.
Thus, it can be parametrized from any microscopic model that
supports a two-sublattice spin-nematic state. In Sec. VI, we

will parametrize it from ’Hijz/ 2 [Eq. (D)].

A. Continuum theory

A continuum field theory can be derived directly from
Hggé[e] [Eq. (11)]. The spin states on a site are represented
using spin-coherent states, and the overcompleteness of the
spin-coherent state basis results in a geometrical phase term
in the action. Assuming that the system at least locally
realizes a two-sublattice, partially polarized, spin-nematic
state, Hgg&[e] [Eq. (11)] can be expanded in terms of
derivatives of a set of continuum fields, which are defined at
the center of square plaquettes. These fields are collected in the
complex vectors ea(r,7) and eg(r, T), which are the continuum
versions of e; [see Eq. (10)] on the A and B sublattices. The
derivation follows in spirit Ref. [21], in which a continuum
theory is formulated for a three-sublattice spin-nematic state
on the triangular lattice in the absence of magnetic field.

The action for the two-sublattice, partially polarized spin
nematic is given by

1
SooL= f dt dr Lasy, (32)
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where we set the lattice constant » = 1 and,

kin
LosL = EZSL LZSL

The kinetic term is given by
‘C2SL =iép - 0,ea +i€g - 0,ep,

and the Hamiltonian term can be written as

‘C?SL =4]11|0A . (’:_|3|2 — 2J22|2€)(Al)ex) ( X)))2|2
—20af2e) ) = (&)~ h(|el = |el)
—n(|eg'F — |e6'T)

+ > { = Jul(ea - €8)(3:€a - dres)

A=Xy
+ (e - €p)(3:€p - dyea)]
+ 2J12 [(0.ea - 0,€p) + (0rep - 0,€B)]

+ Jx» [Ze(Al)ef,})

(e )[2e el — (i)’

PHYSICAL REVIEW B 91, 174402 (2015)

+In[2egey) — (eg) 1[201e5 ey’ — ()]

_(0)\2 _(0)\2
(33) + Jzz[Zeé)e(B) (e ) ][23;\6(1)8 e(l) (8 eg))) ]}
(35)
It is understood that the constraints |ea|?> = 1 and |eg|® = 1

(34) have to be enforced.

When working at h =0, it is natural to divide the
fluctuations into two sets, with one set describing Goldstone
modes and other low-energy fluctuations, while a conjugate set
describes high-energy fluctuations. The action considerably
simplifies if the high-energy fluctuations are integrated out
[21] (see Appendix). However, for fields close to i = hggt, it
is no longer possible to partition the fluctuations in this way.
Conjugate pairs of fluctuations become degenerate at i = hggy,
and therefore there is no low-energy fluctuation to integrate
out.

B. Linearizing the continuum theory

In order to calculate the dispersion and dynamical suscepti-
bility within the continuum theory, it is first useful to linearize
Los1 [Eq. (33)]. This can be accomplished by writing ea(r, )

+ Jzz[ZEX)EX) — (é(pf)))z] [28 ‘(1)8,\6(1) (8Aé(AO))2] and eg(r, 7) in terms of eight scalar fields
J
= SLP+ud) (U D)+ (R )+ (v )]
A = iR(6)) - Y +iyd + Yl iyl ,
Ui+ iyd +ys iyl
=3P = ud) (W D)+ (v - )+ (v - vh)]
eg = iR(—0;) - Yl + iy —yb —iy? (36)
Ui +ivd — s —iyg

The 2 fields are associated with the a bosons in the flavor-wave theory and the /° fields with the b bosons (see Sec. I D).
The  fields are substituted into Log| [Eq. (33)] and terms up to quadratic order are retained. After Fourier transform using

1 .
V(r,t) = e / dw d*k €Ty (k,w), (37)
Sost [Eq- (AS)] can be rewritten as
in 1 1 f do d*k L(K,w) (38)
2SL 2 (27_[)3 ? ’
where
L(K&,w) = Z Uik,w) LiKk,w) ¥ (-k, — ). (39)
i=a,b
Here,
(ko) = [¥]k,o0), ¥k o), piko), k)], (40)
A~k,h + gk,h —iw 0 0
iw Axy — B 0 0
L2(k,w) = 4 o Pl _ , , (41)
0 Agyky.h + Brtky.h —iw
0 iw Axsxn — B
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and
Cion —iw Dk,h 0
Loko) =4 | ' Cen 0 —Dus |
Dy 0 Cxikyn  —iw
0 —Dk,h iw Ck+kM,h
with

Awp = 4J11(1 4 cos® 20;) — Jiy cos? 20, k* + 2J15 k> + 4J; sin? 26), + 2J; cos? 26, k2,

~ k2 k2
By = —4Jy (1 — Z) sin® 20, + 4J» (1 - ?) sin® 26),,

Airgyn = 4J11 8i02 26), + J1y cos? 26), k> + 2J15 k* + 4Ty sin® 26, 4 2Jx cos? 26;, k2,
. K\ ., K\ .,
Bk+kM.h = 4]]1 1-— Z sin 29h + 4]22 1-— E s 29;,,

~ k2
Ckn =4J1 (1 - Z) 08 20), + 2J12k> 4 475,

~ k2
Crtkyn = —4J11 (1 — Z) €08 20y, + 2J12k* 4 4J5,,

- k>
Dk,h = —4.]22 (1 — E) sin29h.

These are just the small-k expansions of Egs. (26) and (28).
Diagonalization of Sggl_ [Eq. (38)] is accomplished using the unitary matrices

id(k,w) ik o) 0 0
U, —it(k,w) 73(K,w) 0 0
0 0 2k 4+ ky,w) 2k + ky,w)
0 0 —if(k + ky,w) 73k + ky,0)
and
i°kw) iikow) i@k +kuyo)  it°K+ ko)
1| -°ko) —-iko) @k +kyo) Pk + ky,w)
Up = —
V2 | iiPkw) —itPkw) itP(k+kuw) —iidP(k +ku,o)
iPkw) —°kw) —°k+kuw) i@k +ky,o)
with
(ko) = —— B gegewy = L 1o Ben
V2 e B, V2 e+ B,
and
" 1 —C“'”‘Z“*kM'” + " 1 —Ck'h‘ik*kM*” +
ikw)=— |1+ , v(k,w)zﬁ 1-—

\/E Cy o —C 2 ~
(M + w) + D,
In consequence, one finds

Lko)= Y V(ko)[Gkao)]" ¥k — o),

i=a,b
with
V' (—k, — ) = Ul - W (—k, — ).
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Here, the diagonal Green’s function matrices are given by

PHYSICAL REVIEW B 91, 174402 (2015)

(G2 (K,w)] ™! 0 0 0
| . 0 (Gt (k,w)] ! 0 0
[G¥(k,w)]”" =4U; - L(k,w)- Uy =4
0 0 [G3 (k + ky,w)] ! 0
0 0 0 (G (k + kv, )]~
(50)
with
[G** (k)] = Ay & /B, + o? (51)
and,
(G (k + ky,w)] ™! 0 0 0
. 0 [GF(k + km, )]} 0 0
[GP(k,w)] ™" =4U] - L°(k,w) - Up = 4 ( )
0 0 [GP~(k,w)] ! 0
0 0 0 [GP*(k,w)] ™!
(52)
with
b+ —1 1 . ~ 1 A ~ 2 ~ ~ N2 2
[G (ko) = E(Ck,h + Cxqagn,n) £ 5\/(Ck,h — Ciiky.n)” — 40(Cx p — Criiy.n) + 4Dy, +4w°. (53)

It is useful to calculate the imaginary part of the Green’s
functions given in Egs. (51) and (53). One finds

ImG®t(k,w) = 0,
(54)
ImG* (k,0) = 182, 8(0 — @F ),

where

- xR (55)

only positive frequency contributions have been retained, and

(I)la(l,h = A|2<,h - El%,h' (56)

Similarly,
ImG*"(k,w) =0,
ImG® (k,0) = g2, 8(w — @y,), 67
where
812,11 _ _ Ck,h~+ Crkuh _ (58)
\/(Ck,h + Ciixun)® —4D3,
and

1 . -
@E,h = E(Ck,h — Ciyky.h)

1 = ~ -
+ 5/ Cuon + Cucnpn? = 4D, (59)

Itis clear that &y, [Eq. (56)] and &)E’ » [Eq. (59)] are equivalent
at long wavelength to the flavor-wave dispersion relations wﬁ n

[Eq. (25)] and of , [Eq. 27)].

(
C. Dynamical spin susceptibility

The imaginary part of the dynamical spin susceptibility can
be calculated within the linearized theory. Using Egs. (12) and
(36), the spin fields can be written as

SX(r,1) = —+/2(cos 6, — sin 0;,)(1//? + 1//?),
Sh(r,1) = v/2(cos 6 + sin 6,) (Y2 + ¥2),

SA(r,1) = cos 26;, + 2sin 20, (Y + ¥/5), )
SE(r,1) = —v/2(cos ), + sin ) (¥° — ¥2),

SE(r.t) = V2(cos ), — sin ;) (v5 — ¥P),

S3(xr,1) = cos 26, — 2sin 26, (Y — ¥3).

Using the results of Sec. III B, as well as the definition of the
spin susceptibility given in Eq. (3), one finds

Imyt(q,0) =Imy**(q,0) + Imx ¥ (q,®)

=m[(@°(q + qu.©) cos b,
— 3°(q + qu.©) sin6,)"1gg 8 (o — )
+ n[(ﬁb(q,a)) cos 6,
b .27 b b
— i1°(q, ) sin 6,)°1¢g 8 (0 — D1 g4 )
Imx*(q,0) =7 sin’ 26, [7%(q + qu.@) + 7(q + qu.o)I’

X 8araqu 8w — 5):+¢1M)’ (61)

where either q &~ 0 or q =~ qu. The summed dynamical spin
susceptibility is plotted in Fig. 7. It can be seen that, at
long wavelength, this is exactly equivalent to Fig. 5, which
depicts the flavor-wave prediction for the imaginary part of
the dynamical spin susceptibility [Eq. (29)]. Alternatively, this
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1) Im XJ‘ (q,w)
(a) h=1.5h,

(d) h=0.5h,,,

(e) h=0.25h,,

q
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(i) Tmx(q,w)

.(a) B

(c) h=0.75hgy

q

X

q

FIG. 7. (Color online) Continuum theory predictions for the imaginary part of the dynamic spin susceptibility of a spin-1, partially polarized,
two-sublattice, spin-nematic state in applied magnetic field. The action Sggl_ [Eq. (38)] is parametrized using J;; = 1, Ji = 0.1, and J5, = 2.
The external magnetic field is gradually reduced from a) i = 1.5hgy to f) h = 0. (i) The transverse susceptibility Imx *(q,w) [Eq. (61)]. Dashed

red lines show @P° , at all & and &P

q,h q+am.h
~a
show &g g, 1

for h < hggt [see Eq. (59)]. (ii) The longitudinal susceptibility Imx #*(q,w) [Eq. (61)]. Dashed red lines
[see Eq. (56)]. All predictions have been convoluted with a Gaussian to mimic experimental resolution. The circuit I'-X-M-T" in

the bond-centered Brillouin zone is shown in Fig. 6. The same linear, normalized color intensity scale is used as in Fig. 5.

equivalence is clear from directly comparing Egs. (29) and
(61).

D. Hydrodynamic parametrization
We now parametrize the linearized field theory SggL
[Eq. (38)] in terms of hydrodynamic parameters. This frees the

theory from any particular microscopic model, and thus allows

it to be applied to any partially polarized, two-sublattice AFQ
state. We concentrate in particular on the case h X hgat.

The action Sggl_ [Eqg. (38)] contains all symmetry-allowed
terms for a two-sublattice, partially polarized AFQ state on
the square lattice at a linear level. This is not the case for
the nonlinear action Spgi [Eq. (AS5)], which describes the
long-wavelength fluctuations of the spin-nematic state found in
Hgg&[S] [Eq. (4)]. For a general two-sublattice spin-nematic
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state, it may be necessary to include other relevant terms in the
nonlinear action. However, the only effect these will have on
the linear theory is to change the hydrodynamic parameters.

In consequence, it is possible to write a general, hy-
drodynamically parametrized, linearized Lagrangian for a
two-sublattice, partially polarized AFQ state

2
Q,z Q,z
Xn a)kh(

Liya(k,0) = — 0% (k,0)

— W )

+ — S (k,w)|*

0 SZ( ® — o)

Xn

1 -
+ g7 [P ko)
w — a)k’h

1
+ 5 P k). (62)
w — a)k h

This describes four modes, and these have all been mapped
onto k ~ 0. The dispersion relations of the four modes are
given by

o2 =l 3

2
v?) K + o,

sat
2 S,z 2 2
O —\/ AL+ (vpl) K
Xy, T Axy,n 2 Xy, 2k2
Wxp = ( h ) + (vhsau ) ’

o =V (A7) + ).

/1 sat

(63)

For the hydrodynamic parameters that depend strongly on field
we write

(v3%)? = (1 — h/ hsa) W22,

h
XY, Xy,
AT = Ahw”a, (64)
A0 = p,

while the others are only expected to change weakly with
varying magnetic field close to & = hgat. The hydrodynamic
parameters can be taken from any microscopic model sup-
porting a partially polarized, two-sublattice AFQ state. Table I
shows the parametrization from HBBQ[S] [Eq. (D)].

The a)l? ¥ [Eq. (63)] mode is gapless and associated with
breaking U(1) symmetry. This is the Goldstone mode and
describes rotations of the quadrupolar order parameter in the
plane perpendicular to the applied field. For & < hgat the
mode has a linear dispersion in the vicinity of k = 0. As
h — hgat from below, (th’Z)2 — 0 and therefore at h = hggat
the mode has a quadratic dispersion, as expected for a saturated
paramagnet.

The a)E,f [Eq. (63)] mode is associated with spin fluctu-
ations parallel to the magnetic field. These can be thought
of as a dynamic spin density wave. The mode is gapped and
both the gap A ~ A % and the velocity vh ~ v,izt are
only weakly ﬁeld dependent close to h = hggt, and thus we
approximate them with their values at 1 = hgay.

The wﬁ?';l” [Eq. (63)] mode is associated with spin fluctua-
tions transverse to the field direction and antiparallel on the two
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TABLE I. Relationship between the hydrodynamic parameters
appearing in the continuum field theory Ehyd(k ) [Eq. (62)], and the
parameters of the microscopic model HB [S] [Eq. (4)].

Spin-1 model
HasalS] [Eq. (4)]
64]11(.]22 sin2 26;, + J“ COS2 29;,)
]6(]11 — Jzz)z COS2 29h
h 16(]11 + J22)2 C052 29h
v2?)? 8(J11 + Jn)(Ji1 + 2012 + 2J) sin® 26,

16J12(J11 + J22) + 8(J11 — Jn)(J11 — 2J22)
+8 cos? 20,[2J12(J11 — Ja2)
—(3J11 — J)(J11 —2J1)]

Hydrodynamic

(”;y’”)z 16(J, — Ji)(Ji2 + Jop) sin® 26,
+8J11(J2a — Ji1) cos? 26,
()’ 16(J11 + Jaa)(J12 + J2) sin® 26
—8J11(J11 + Jx) cos® 26,
Oh (Ji1 +2(J12 + In))/3
x(=Ji1 +6J12 — Jop + (4J11 + TJp) cos 46y)
XhQ'Z [4(Jn + J)]™!
s 47,17
o 2(J11 + 2012 + 2J5) sin® 26,

sublattices. The gap Azy’ﬂ is linearly dependent on the field
[see Eq. (64)], but the velocity v;:y’” ~ UZZ; is approximately
field independent.

The wl)iy}’lo [Eq. (63)] mode is associated with spin fluctua-
tions transverse to the field direction and parallel on the two
sublattices. The gap A:y’o is linearly dependent on the field
[see Eq. (64)], but the velocity v;,(y’o ~ vZZa?
field independent.

In order to calculate the imaginary part of the dynamic spin
susceptibility, it is first necessary to determine expressions for
the spin moments. To do this, we use Hgg&[S] [Eq. 4)] as a
guide, and reexpress the spin fields appearing in Eq. (60) in
terms of the fields and hydrodynamic parameters appearing in
Liyd(k,w) [Eq. (62)], making use of the results presented in
Sec. III B. It follows that

38X(q,w) =

is approximately

— sin@), WY (—q, — w)
+ cos Oy UV0(—q, — w),
8S*(qm + q,0) = cos 6, V7 (—q, — w)

—sing, ¥V0(—q, — w),

|
SV Drq2yt B9 (—q, - w),

—sin 26, ¥5%(—q, — ), (65)

38%(q,w) = —

88*(qu + q.0) =

where q ~ 0. The imaginary part of the dynamical spin
susceptibility is thus given by

Imype(q,0) = ImxX(q,w) + Imx (q, )

)

Ogi )]

=m[cos’ 0y §(0 — w

+ sin® 6 8(w —
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Imype(qum + q.@) = Imxx(qu + q.®) + Imx2y

)

(v + q,®)
= n[coszeh Slw—ow

+ sin? o 8(60 — wxy'o)],

q.h
Q,z, 2
™ py%q
ImygE(a) = 2 g 2-8(0 — o),
wq,h
. 1
ImyZ(qm + q,0) = 27 sin® 26, m&(a) - a)i’f), (66)
n Pg.h

where q =~ 0. We have anticipated the mapping made in
Sec. IV and introduced the subscript bc which stands for bond
centered.

IV. MAPPING FROM SPIN-1 SITE-BASED NEMATIC
TO SPIN-1/2 BOND NEMATIC

We now show how the imaginary part of the long-
wavelength, dynamical spin susceptibility can be calculated
in a bond-nematic phase, focusing on the two-sublattice state
realized in H3 /% [Eq. (1)] for J; <0, J/|/i| > 0.4, and
h & hgat (see Fig. 1). In such a state, the order parameter is
bond centered, but the physical spins, the fluctuations of which
are measured in inelastic neutron scattering experiments, live
on the sites of the square lattice.

At low energy, one can view the bond-nematic state in
terms of an effective spin-1 degree of freedom that lives on the
bonds [5]. Fluctuations of these spin-1 degrees of freedom are
described by Lnya(k,w) [Eq. (62)] and, in terms of the original
spin-% degrees of freedom, correspond to changing the mix of
triplet states on a bond. However, inelastic neutron scattering
measures the fluctuations of the site-centered spin-%, and it is
therefore necessary to determine the mapping that needs to be
applied toImy (q,w) [Eq. (66)] in order to make experimentally
relevant predictions.

We consider two lattices, the original square lattice of the
spin-% degrees of freedom, with lattice constant a, and a bond-

centered lattice with lattice constant b = a/+/2 (see Fig. 3).
While in the rest of the paper the lattice constants have been
absorbed into the definition of the wave vector, rendering it
dimensionless, for clarity in this section the lattice constants
are explicitly included in the calculations. In the site-centered
lattice we label the real-space coordinates by the vector x, and
in the bond-centered lattice by r. In reciprocal space, we use
p and q. The relations between these coordinates are

1
\/_ Z—E(rx_ry) (67)

1
Xx=—(i’x+l’y), Xy
2
and
= 1( +qy) = 1( ) (63)
I’x—ﬁf]x qdy), Dy = ﬁCIx qy),

which can be seen from Fig. 6.

We assume that the spin at a site S5¢ (sc stands for site
centered) can be written as the sum of the quasi-spin, SP°
degrees of freedom on the four neighboring bond centers,
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which leads to
sc __ ¢bc bc bc bc
S =St S e Sy + 8, (69)

where ex = (a,0) and ey = (0,a). Taking the Fourier transform
results in

sc qx+qy | 2mmw
Sp_Xq:5<px— % + a)

- 2 b b
x| py+ Ll ") cos 27 cos B2 See,
V2 a 4

2 2
(70)
where m and n are integers. This allows the imaginary part
of the dynamical spin susceptibility to be calculated in the
site-centered coordinate system as

o

Imy g (p,w)

= {cos2 |:—(Px —4py)a:| cos2 [—(Px -;Py)ai| Imx{,’é‘(p,w)

+ sin’ |:(I7x — Py j|sin2 [(px + py)a ]Imxgc"(pm +p,w)},

4 4
(71)

where (px + py)*/2 + (px — py)*/2 = p* has been used, p ~
0 and Imy ¥ is given in Eq. (66).

The result of mapping the spin-1 dynamical susceptibility
predictions shown in Fig. 7 onto the site-centered lattice using
Eq. (71) is shown in Fig. 8. It can be seen that the mapping
from the bond-centered to site-centered lattice results in all
the low-energy modes appearing at the I' point, which is
expected since the two-sublattice AFQ state does not break
the translational symmetry of the site-centered lattice. For
q =~ 0, one has cosz[(qX —gyla/4] = 1, cosz[(qX + qy)a/4] ~
1, sin?[(gx — gy)a/4] ~ 0, and sin®[(gx + gy)a/4] ~ 0 and
therefore the contribution from Imy/7(q,w) dominates over
the contribution from ImyS’(qm + q,®). In consequence,

when making experimental predictions in Sec. VI, we con-

centrate on the modes a)l?’hz and wﬁ?’;lo [Eqg. (63)] since these

will determine the dominant experimental signatures.

V. MICROSCOPIC THEORY OF A SPIN-% BOND NEMATIC

In order to make quantitative experimental predictions
for materials, it is necessary to determine the hydrodynamic
parameters appearing in Lnya(k,w) [Eq. (62)]. Here, we
consider ’Hijz/ 2 [Eq. (1)] and microscopically calculate the
hydrodynamic parameters in the vicinity of h = hgg. In
Sec. VI these will be fed into Lnyq(k,w) [Eq. (62)], allowing
quantitative predictions to be made for inelastic neutron
scattering experiments.

All magnets have a saturation magnetic field, above which
the spins are aligned parallel to the field direction. For
systems with an antiferromagnetic ground state at 7 = 0, the
simplest way to connect the zero-field and high-field states
is via a canting of the ordered moment towards the field
direction. As field is reduced from above saturation, there is
a phase transition from the fully polarized state to the canted
antiferromagnet at the saturation field. This can be understood
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FIG. 8. (Color online) Predictions for the dynamic spin susceptibility of a spin-1, partially polarized, two-sublattice, spin-nematic state in
applied magnetic field (Fig. 7) mapped onto the site-centered lattice. The relationship between the bond- and site-centered lattices is shown in
Fig. 6, and the mapping of the dynamical susceptibility is performed using Eq. (71). The external magnetic field is gradually reduced from a)

h = 1.5hgg to f) h = 0. (i) The transverse susceptibility ImxSJ;:(q,w) [Eq. (71)]. Dashed red lines show &

b ~b
q.h and wq+q|\/|,h

[see Eq. (59)]. (ii) The

longitudinal susceptibility Imx **(q,®) [Eq. (71)]. Dashed red lines show d):, » and &)3 ay.n L5€€ Eq. (56)]. All predictions have been convoluted
with a Gaussian to mimic experimental resolution. The circuit I'-X-M-TI" in the site-centered Brillouin zone is shown in Fig. 6. The same linear,

normalized color intensity scale is used as in Fig. 5.

in terms of the condensation of magnons out of the fully
saturated “vacuum” state [53,54].

In frustrated magnets, the condensation of single magnons
may not be the first instability of the fully saturated state
as magnetic field is lowered. One possibility is that the one-
magnon instability is preceded by a two-magnon instability,
in which bound pairs of magnons condense [5]. If this occurs,

then this corresponds to a quadrupolar ordering of the spin
degrees of freedom just below the saturation magnetic field,
and hence the creation of a spin-nematic state. We show in the
follwoing that this is the case for HJSjZ/ 2
range of parameters.

In the saturated paramagnet it is useful to use the hard-core

boson representation, in which spin operators are replaced

[Eq. (1)] over a wide
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according to

Si=—124ala, St=a ., S =a. (72
Thus, Hiﬂz/ 2 [Eq. (1)] can be rewritten as
HS-)2 = lo(q) — u(h)abag
q
1
i
+ N Z anlt+qak,7qakakr, (73)
kK
where
o(q) = €(q) — €min, H(h) = he1 — h,
het = €(0) — €min, Vg = 2(e(q) + U), (74)
U — oo is the onsite repulsion and
€(q) = Ji(cos gx + cos gy) + 2.J5 cos gx cos gy. (75)

In the parameter range —2 < J;/J, < 2 with J; > 0, €min =
€(Q+) = —2J;, where Q, = (,r,0) and Q_ = (0,7). The
saturation field for one-magnon condensation is thus given
by

he1 =2J1 +4J;. (76)

For u(h) < 0(h > h¢t), the system is fully polarized unless
the one-magnon instability is preceded by another instability.
We denote the fully saturated state by |€2), where a;|2) = 0.
Since the interaction term in Eq. (73) is normal ordered, there
is no self-energy term in the one-magnon dispersion relation,
and it is exactly given by

o = k) — uh). (77)
Expanding w(Kk) near the minima Q. leads to
2 k%
ok ky +7) = =5 + =5+ 0K, (78)
2m; 2m,
where
1
m=——o my = ———, (79)
—J1+ 2] Ji+20,
and
k2 k>
ok +7.ky) = — + =5 +O0&kY.  (80)
2my, 2m;

In the fully saturated state, it is very simple to calculate the
imaginary part of the dynamical spin susceptibility. It is exactly
given by

Imxgzy(@,k) = Imx (w,k) + Imx2n(w,k)

sat
= (- o).

zz

ImyZ(w.k) = 0. 81)

This describes a sharp band of one-magnon excitations, with
equal weight at all wave vectors.

We next consider the condensation of bound pairs of
magnons out of the fully saturated state. The two-particle
Green’s function can be calculated exactly using the ladder
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K/2+p K2+p" K/2+p K2+p” K/2+p’
L(A Kip,p)= 4 + (A Kip,p)y| &
K/2-p K2-p© K/i2-p K2-p" K2-p

FIG. 9. Diagrammatic calculation of two-magnon binding energy

for H~?1=J12/ 2 [Eq. (1)]. The exact scattering amplitude I'(A,K; p,p’)

[Eq. (82)] is calculated from a ladder diagram. K is the center-of-mass
momenta and A the binding energy of magnon pairs.

diagram shown in Fig. 9. The scattering amplitude is given by
[19,24,53-55]

I'(AK;p,p)
=Vp+Vpp
1 dzp” (ALK p.p") [ Vy—pr + Vop—pr]

2] e w2 +p)) + wK/2 — p)+A —i0+
(82)

where A and K are, respectively, the binding energy and the
center-of-mass momentum of the bound state. This integral
equation is exactly soluble [53,54].

Divergence of I'(A,K;p,p’) [Eq. (82)] implies the exis-
tence of a stable bound state below the two-magnon contin-
uum [19,56]. The K-dependent binding energy is denoted
as Ap(K). The wave function of the bound state can be
determined from the residue of the divergence of I'(A ,K; p,p’)
[Eq. (82)], and this is considered in more detail below. When
lowering magnetic field, if the bound-magnon gap closes
before the one-magnon gap, then the bound state condenses
and the spin-nematic state appears. The critical field for
two-magnon condensation is given by

th = hc1 + Am/2, (83)

where A,, is the maximum value of the binding energy. For
0.4 < |J1/J2| < 5 there is a stable bound state at K = (0,0),
and this is the leading instability on lowering magnetic field
(see Fig. 10). The binding energy, A,, = Ag(K = (0,0)), as a
function of J,/|J;| is shown in Fig. 11.

In the fully polarized phase with & > h¢p, the bound-
magnon dispersion relation is given by

2

I pa(h) + O(K™),

(84)

o = Am — Ap(K) — pa(h) ~

where
ma(h) = 2(hez — h). (85)

This dispersion wf{}:" [Eq. (84)] is shown in Fig. 12 in relation
to the two-magnon continuum.

Slightly below the saturation field, for small w,(h) > 0,
one can view the system as a dilute gas of bound magnons. We
consider an effective Hamiltonian

K)? .
Her= Y {% - Mz(h)} bybx

IK|<A
re ;
v O Piirabk,bKibK, oo (86)
K;.Kz.q
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FIG. 10. (Color online) First instability of the fully polarized
state on lowering magnetic field. The critical field for one-magnon
condensation [/¢1, Eq. (76)] is shown as a red, dashed line and the
critical field for condensation of bound-magnon pairs [hcp, Eq. (83)]
as a blue line. For 0.4 < |J;/J,| the two-magnon instability precedes
the one-magnon instability (ke > hg1).

where the bound-state creation operator is

b;r( = Z XK(p)aIT(/z_H,aIT(/z_p, 87)
p

I'® is the renormalized interaction between the low-energy
bound magnons [24], A is a momentum cutoff, and the ellipsis
represents higher-order interaction terms that can be neglected
in the dilute limit. The effective free energy of the condensed
phase is given by

E 1
~ = TPp] — (e, (88)

N 4
where (bg_o) = /p2¢'%. Minimizing this free energy results
in

_ 2pa(h)

=" (89)

A/l

0.0 . . . . .
0.4 0.6 0.8 1.0 1.2 14

/||

FIG. 11. (Color online) The two-magnon binding energy in the
fully saturated state of Hi:_} 2/ 2 [Eq. (1)]. The binding energy A,, =
Ag[K = (0,0)], is calculated from I'(A,K; p,p’) [Eq. (82), Fig. 9].
It determines the saturation field for two-magnon condensation
heo = het + Ay /2. For A, > 0 (see Fig. 10), heo > hey and the
two-magnon condensate occurs at higher field than the one-magnon

condensate.
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FIG. 12. (Color online) Two-magnon dispersion of Hiﬂz/ 2

[Eq. (1)] at saturation. The two-magnon continuum, defined by
o(K/2+p) + o(K/2 —p)+ A,, is shown as a blue region. The
dispersion of the two-magnon bound state wlz(_,;" [Eq. (84)] is shown
as a white dashed line for the region of K in which it lies below the
two-magnon continuum. (a) Shows the full extent of the continuum,
while (b) shows a detailed view of the low-energy spectrum. The
exchange parameters are taken as J; = —3.6 K and J, = 3.2 K and
the field as & = h¢o [Eq. (83)].

Next, we consider the Goldstone mode of the spin-nematic
state in the dilute limit at zero temperature. Taking the cutoff
A — o0, the effective action is given by

. Vb 2
Seff = / dx I:%b(x)*atb(x) — b(X)3,b(x)" — %
, I 4
+ na(h)|b(x)|” — le(X)I :| , (90)

where b(x) = + [ d*Kbge™ ™. Substituting

b(x) = v/ p2 + 8pa(x) ™ o1

into Sett [Eq. (86)] and integrating out the high-energy mode
8, results in

(Vo). 92)

1 P2
_ 2_~ 2 _
Setr = / A’ = [OF — S0
Hence, the disperison of the Goldstone mode at small K within
the dilute limit is given by [57]

r@p,K? w2 (h)
2—m __ —
CL)K,h _\/ 2m(2) —\/m(z) |K| (93)

In 2D, the parameter I'® tends to zero approaching the
saturation field. However, even a very small interlayer coupling
will cut off this approach to zero, and I'® remains finite at h =
heo.! A good way to estimate I'® for a given material is from

'Here, we make a comment on the dimensionality. For a small inter-
layer coupling J,, IT'® = O[J/(|InJ, /J,| +..)] = Oas J, — 0.
In 2D, the suppression of I'® implies a steep magnetization curve
just below the saturation field. In quasi-2D materials, the logarithmic
divergence is cut off by a small J,, and even with J, /|J;| ~ 1072
one finds In J, /|J;| ~ O(1). Hence, in any real material I'® will be
finite.

174402-17



ANDREW SMERALD, HIROAKI T. UEDA, AND NIC SHANNON

M reyy =
1.0t
0.8}
0.6}
0.4¢
0.2t

0.0 : : : - H/ ||
0.0 0.5 1.0 1.5 2.0

FIG. 13. (Color online) Magnetization of the spin-nematic state
found in HJSfJ 2/ 2 [Eq. (1)] just below the saturation field as a function
of magnetic field h. M(h) [Eq. (94)] is plotted at several values of
the effective interaction I'®. Comparison of dM(h)/0h at h — heg
[Eq. (95)] with experimental data can be used to estimate I'® for a
given material.

the gradient of the experimental magnetization curve close to
saturation. One finds theoretically for the magnetization

N 2 16(heo — h)
M(h ~ hsat) = + Xl:(s,z) =l-—Fg— ¥
and therefore
oM 16
- = —. 95
O ljopy  T? 2

Magnetization curves for several values of I'"® are shown in
Fig. 13.

Finally, we will consider the bound-state wave function
xk(P) [Eq. (87)] and demonstrate that this describes the
same two-sublattice bond-nematic state considered in Secs. II
and III. From taking the residue of the divergent scattering
amplitude T'(A,K; p,p’) [Eq. (82)], one finds

COS Py — COS Py
20(p) + An

where the minimum of w(p) [Eq. (74)] is zero. The wave
function is normalized by requiring Zp [xo(P)|? = 1, where
the summation over p is taken in half of the Brillouin zone as
p and —p gives the same bound state. This wave function has
d-wave symmetry since interchange of the coordinates x and
y leads to xo(p) = — xo(p) while K =0 — 0.

The bound-magnon condensed phase is described by the
coherent state [16]

xk=0(P) = xo(p) x , (96)

INem) = C} exp <¢ > m(p)aj,aip> ), 7
P

where C; = Ipy/1 — [¢xo(p)|> and ¢ = /pre'®. In this
phase, we consider the expectation value of the bond operator

0 (m=S5 §,= (Ql 4r Q{¥+r) Ql l4r
2_ 2
= Ol — Qe 98)
f ; - x-y? x _ oW
where Q;;" isdefinedinEq. (2)and Q;; * = 1/2(Q; — 0;/)

is defined in analogy with Eq. (6) for the spin-1 theory. Two-
sublattice AFQ order of the type considered throughout this
paper corresponds to a nonzero expectation value (Q~(r)) on
nearest-neighbor bonds, with a change of sign between vertical
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and horizontal bonds. Calculating the expectation value of this
bond operator with respect to the condensed phase |Nem)
[Eq. (97)] gives

(O (®))nem = (S, S]?.r)nem = Z(apa—p>nem exp(ip - r)
P

$xo(P) .
= LT g PP
=¢ Z Xo(@)exp(ip 1)+ 0@%).  (99)
P

The permutation r = (ry,r,) = (ry,r,) shows the d-wave
symmetry of this bond operator

(Qii(rx»”y»nem =—(Q0 "

which, on nearest-neighbor bonds, exactly corresponds to the
two-sublattice AFQ phase shown in Figs. 1 and 3.

Next, we consider the asymptotic behavior of (Q ™7 (r))nem
[Eq. (99)] for the low-density case ¢ < 1. For large r, the
oscillation of the wave function is fast, and the dominant
integrand comes from p close to (0,0), (0,7), and (7,0).
Considering r = (r,0) for simplicity, one can show, for » > 1,

— exp(—r/&o)
\0)nem X co—————,
(@ (r0) = e

where &y ~ 1/ 2m(11)A is a measure of the size of the bound
state and c¢; is a constant. The larger the value of the binding
energy A, (see Fig. 11), the more localized the bound state.

As an example, we take J>/|J;| = 0.9 and show that the
nearest-neighbor bonds give the dominant contribution to
(Q~~(r)) [Eq. (99)]. One finds

(Q77(2,0))nem/(Q " (1,0))nem = 0.15,
(Q__(3,O)>nem/<Q__(1,O)>nem =0.33,

(Q__(4,0)>nem/<Q__(I,O»nem = 0‘10,
(Q77(0,0))nem = (@ (1, D)nem =0

to first order in ¢. In Sec. II, we have in effect considered
the nearest-neighbor order parameter (Q~(1,0))nem, and the
above analysis shows that this approximation becomes better
the larger the value of A,,. In the limit where A,, — oo the
wave function xk—o(p) [Eq. (96)] is only nonzero on nearest-
neighbor bonds to first order in ¢, and we write

2
Ynn(P) =4/ N(COS Px — COS py).

In consequence, the only nonzero bond-operator expectation
values are

<Q77(1,0)>nem = _(Qii(ovl))nem = ¢

While the mapping to the spin-1 model (Sec. II) needs a
nearest-neighbor bond order, this is not the case for the
continuum theory (Sec. III). The sole requirement is K <«
1/&p, and therefore the continuum theory is valid even for
small A,,.

In summary, we have considered in this section the ground
state and low-energy excitation spectrum of HS 1/ 2 [Eq. (1)]
for magnetic fields close to saturation. At the saturation

(100)

(ry,rx»nem»

(101)

(102)

(103)

(104)
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field hgat = h.2, bound-magnon pairs condense to form a
spin-nematic state. In the limit that the density of bound pairs
is dilute, the excitation spectrum can be calculated from the
microscopic model. This allows the hydrodynamic parameters
appearing in Lhyq(k,w) [Eq. (62)] to be determined, and we
show an explicit example of this in the following section.

VI. PREDICTIONS FOR INELASTIC NEUTRON
SCATTERING EXPERIMENTS IN A SPIN-%
BOND NEMATIC

Spin-nematic order does not break time-reversal symmetry,
and therefore does not produce an internal magnetic field.
This makes the spin-nematic state essentially invisible to most
common probes of magnetism, such as elastic scattering of
neutrons, Knight shift of the NMR spectra, and the asymmetry
of oscillations in uSR spectra [3]. However, excitations of
the quadrupolar order parameter mix a spin-dipole component
into the wave function, and this can, in principle, be detected
by dynamic probes of magnetism.

Here, we make predictions that demonstrate how a spin-
nematic state could be identified via inelastic scattering of neu-
trons. We consider in particular the class of materials that are

well described by Hsz/ 2 [Eq. (1)]. For definiteness, we show
predictions relevant to BaCdVO(POy),, where fits to magnetic
susceptibility give the exchange parameters J; = —3.6 K and
Jo = 3.2 K [25]. We take a square lattice with lattice constant
a =4.5 A. The saturation field of BaCdVO(PO,), has been
measured to be hggt & 4.2 T, which is easily achievable in a
neutron scattering experiment.

In order to make quantitative predictions for experiment,
it is necessary to determine the hydrodynamic parameters
appearing in Imx ¥ (p,w) [Eq. (71)]. All momentum transfers

are now relabeled as q since this is commonly used. We

. . . xy,0
concentrate on the one-magnon mode with dispersion a)th

[Eq. (63)] and the two-magnon mode with dispersion wg’hz
[Eg. (63)], as these will be the most experimentally visible.

Comparing a)fi’hz [Eq. (63)] to a)(zl__h’” [Egs. (84) and (93)]

and using the coefficient of Seggt [Eq. (92)] to set pho’z, one
finds for the two-magnon mode

1
Gllsat = m’
(vQ,Z)Z _ wa(h) _ 2hgat 1 — i

h m® m® heat ) (105)
Qz _ u2(h) _ 2hsat _ L

Pi = TOm® = TOn® A
ox_ A _ 1
Pt TN

where hgat = hco. For the one-magnon mode one can compare
i [Eq. (63)] to oy ;" [Eq. (77)] to find

xy,0
Ah - h’

( xy,0)2 _ _Jl +2J2

o 5 (106)
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(a) h=1.23h,

(b) h=hsat

q

FIG. 14. (Color online) Predictions for inelastic neutron scatter-
ing from a system described by Hiﬂ 2/ 2 [Eq. (1)] above the saturation
field hsat = heo [Eq. (83)]. The imaginary part of the dynamic spin
susceptibility Imyg,(w,q) [Eq. (81)] is calculated exactly using the
parameters J; = —3.6 K and J, = 3.2 K, which are believed to
describe BaCdVO(POy), [25]. The one-magnon dispersion a)(llfh’”
[Eq. (77)] is shown by a red dashed line and the dispersion of the
two-magnon bound state a)czl;f” [Eq. (84)] by a white dashed line.
(a) At h = 1.23hgq the dispefsion of the two-magnon bound state is
gapped for all q. (b) At 7 = hgy the gap to the two-magnon bound
state closes at q = (0,0) while one-magnon excitations remain gapped
for all q. The circuit I'-X-M-T" in the site-centered Brillouin zone is
shown in Fig. 6. The same linear, normalized color intensity scale is

used as in Fig. 5.

For J,/|J1| = 3.2/3.6 =~ 0.89, one can use the results of Sec. V
to show,

h A

156, =M —0.196,

[J1] [J1]

h

ﬁ =1.65, m@|J| =1.27. (107)
1

Furthermore, from fitting the experimentally measured mag-
netization curve for BaCdVO(POy,), [25] with M(h =~ hgat)
[Eqg. (94)], one can estimate

@

T~ (108)
[J1]

For h > hgg it is possible to exactly calculate both
ImyZi(w,q) [see Eq. (81)] and the two-magnon dispersion
relation a)(zl_hm [Eq. (84)]. In Fig. 14, we show predictions
for inelastic neutron scattering at & = 1.23hggt and h = hggt.
The only signal is a sharp and uniformly intense band
of one-magnon excitations. Also shown in Fig. 14 is the
two-magnon dispersion, which is gapped for & > hgy, and
softens at q = 0 for & = hgat, but is invisible to inelastic
neutron scattering experiments. In Fig. 15, these predictions
are integrated over 47 of solid angle in order to mimic inelastic
neutron scattering from a powder sample. For & < hgat we
calculate predictions for inelastic neutron scattering using
Eq. (71). These predictions are shown in Fig. 16 at a range
of magnetic field values and in the vicinity of q = 0.
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FIG. 15. (Color online) Predictions for angle-integrated inelastic
neutron scattering experiments on a spin-% frustrated ferromagnet
with incipient spin-nematic order, at the saturation field & = hgat.
The imaginary part of the dynamic spin susceptibility [Eq. (81)] has
been integrated over 47 solid angle in order to mimic a powder
sample. The Hamiltonian considered is Hiﬂz/ 2 [Eq. (1)], and the
parameters J; = —3.6 K and J, = 3.2 K are believed to describe
BaCdVO(PO,), [25]. The white dashed line shows the dispersion of
the two-magnon continuum a)‘zlj,m [Eq. (84)], which becomes gapless
at the saturation magnetic field 7 = hgy. At this value of magnetic
field, spectral weight resides in the one-magnon excitation, which is
gapped for all momentum transfers q. The same linear, normalized
color intensity scale is used as in Fig. 5.

As the field is reduced below h = hsy intensity appears
in the Goldstone mode excitation wS’hZ [Eq. (63)], for q # 0.
For small q and fixed h, the intensity of this mode grows
linearly with q, as can be seen from Eq. (71). For fixed, small
q and small hgyt — & the intensity grows as «/hsat — h. The
velocity of this mode goes as th'z & v/hsat — h [Eq. (105)],
and therefore the dispersion becomes steeper as the field is
reduced.

The one-magnon excitation has a gap Azy’o = h that slowly
reduces with lowering field. To a first approximation, the
velocity is constant, and the intensity in this mode is uniform
over q and does not vary with 4. The relative intensity of the
two modes can be estimated from

laz(@.h) _ p°q

Ixy.0(q,h) a)QOZ ’

(109)

where Iq ; is the intensity of the Goldstone mode and Iyy o the
intensity of the gapped one-magnon mode.

In Fig. 2, we show predictions for inelastic neutron
scattering from a powder sample, calculated by taking the
predictions shown in Fig. 16 and averaging over 47 of solid
angle. We show predictions for 7 = 0.8hgqt. Also shown is a
constant-q cut at q = 0.18 A~!, showing the relative intensity
of the two modes. At these values of q and %, the peak intensity
in the Goldstone mode is about 3% of the peak intensity in the
one-magnon mode.

There will also be a small contribution to the inelastic
scattering from the two-magnon continuum (see Fig. 12). This
is spread over a large region of q and w space, and at leading
order the intensity grows as hgat — & as the field is reduced.
Thus, the contribution to the scattering will be considerably
smaller than from the Goldstone mode excitation, which is
sharp and has an intensity growing as «/hsat — /1, and can be
safely ignored.

While the predictions shown in Figs. 14, 16, and 2 are
specific to BaCdVO(PQOy),, a very similar analysis can be

made for any compound described by Hf:}z/ 2 [Eq. (1)]. In

PHYSICAL REVIEW B 91, 174402 (2015)

(i) Tmx*™(q,w)
06 (a) hzhsat

® Imx*(q,w)

F2.5x107"
6.3x1072
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FIG. 16. (Color online) Predictions for inelastic neutron scatter-
ing from a single-crystal sample of a spin-% frustrated ferromagnet ex-
hibiting two-sublattice, bond-centered spin-nematic order in applied
magnetic field. (a)—(d) Predictions at small q, for magnetic field i
ranging from the saturation value higa; to b = 0.7hgqt. (i) The majority
of spectral weight resides in a gapped spin-wave mode, visible in the
transverse part of the dynamical susceptibility x ~(q,). (ii) The onset
of spin-nematic order for & < hgy is heralded by the emergence of
a ghostly, linearly dispersing Goldstone mode in the longitudinal
susceptibility x*(q,). Predictions for x“(q,w) were calculated for

a material described by the spin-% Ji-J> model Hi=J12/ 2 [Eq. (1)],
as described in Sec. VI of this paper, for parameters J; = —3.6 K

and J, = 3.2 Krelevant to BaCdVO(PQO,); [25]. All predictions have
been convoluted with a Gaussian of standard deviation 0.006 meV
to mimic experimental resolution. Equivalent results for a powder
sample are shown in Fig. 2.

fact, Lnyd(q,®) [Eq. (62)] can be applied to any system
with a partially polarized, two-sublattice spin-nematic order
parameter.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have explored how inelastic neutron
scattering can be used to probe for the existence of a
spin-nematic state in applied magnetic field. Following the
philosophy detailed in Refs. [21-23], we suggest that a good
way to recognize this state experimentally is via the excitation
spectrum since the ground state is essentially invisible to
common probes of magnetism. To this end, we have developed
a general theory of the magnetic excitations of a two-sublattice,
bond-centered spin-nematic state in applied magnetic field. We
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parametrize this theory from the microscopic model believed
to describe the spin—% frustrated-ferromagnet BaCdVO(POy),
[25], a promising candidate for spin-nematic order, and
make predictions for inelastic scattering of neutrons from
this material. We also introduce an effective spin-1 model
supporting the same form of spin-nematic order, and use it to
explore the evolution of magnetic excitations for a wide range
of magnetic field. The main experimental predictions of this
paper are summarized in Figs. 2 and 16.

The starting point was to first derive a phenomenological
theory of a two-sublattice, partially polarized spin-nematic
state. This involved constructing a spin-1 bilinear-biquadratic
model [ngé[S], Eq. (4)] with both the desired symmetries
and a spin-nematic ground state. We note that if spin-1 com-
pounds with large biquadratic coupling can be synthesized, this
model may become experimentally relevant in its own right.
Alternatively, it could be realized in molecular condensates
of cold atoms. In this paper, the spin-1 model served as a
guide to the derivation of a continuum field theory description
of the long-wavelength excitations of the spin-nematic state
[Lhyd(q,®), Eq. (62)]. We found four low-energy modes,
including a Goldstone mode associated with the breaking
of U(1) symmetry and predominantly describing quadrupole
fluctuations of the order parameter, and three gapped modes
describing mixed spin and quadrupole fluctuations.

One of the most experimentally promising places to
search for the spin-nematic state is in square lattice, spin-%

frustrated ferromagnets described by Hiz_jz/ 2 [Eq. (1)]. Close
to saturation, the spin-nematic state is expected to be realized
for a large range of J,/J; values. In spin-% nematic states, the
quadrupolar order parameter lives on the bonds of the lattice
and not on the sites. The continuum theory thus describes
effective bond-centered spin fluctuations, and in order to
accurately describe experiments, it was necessary to make a
mapping onto the site-centered lattice. After this procedure it
became clear that the experimental response is dominated by
only two modes, the Goldstone mode and a gapped mode that
can be identified with single-magnon condensation out of the
fully saturated state.

The continuum theory contains a number of hydrodynamic
parameters that have to be calculated from microscopic
considerations. In order to do this, we considered Hsz/ 2
[Eq. (1)] close to the saturation magnetic field, and used
exact diagrammatic calculations to determine the saturation
magnetic field, assuming condensation of first single magnons
and then bound-magnon pairs. For a wide range of J,/J;
values, the bound-magnon pairs condense at higher field than
single-magnon excitations, forming a spin-nematic state. Us-
ing similar diagrammatic calculations, the continuum theory
was fully parametrized.

This allowed us to make predictions for inelastic
neutron scattering experiments, focusing on the material
BaCdVO(POy),. In Figs. 2 and 16 we show predictions for
small momentum transfers q and fields & < hgyt, where the
dominant feature in the spectrum is the gapped one-magnon
excitation band. However, we showed that there is also spectral
weight in the Goldstone mode excitation and this grows with
increasing q and decreasing h. Experimental detection of this
excitation would be strong evidence for the existence of a
spin-nematic state.
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The predictions we make for BaCdVO(PQOy,), are quantita-
tive, and this allows one to determine whether it is realistic to
expect to see the Goldstone mode experimentally. The satu-
ration field has been measured as hgat =~ 4.2 T, and therefore
the full field range 0 < h < hgat can be accessed in inelastic
neutron scattering experiments. Assuming this material is well

described by Hiﬂz/ 2 [Eq. (1)], one would expect a phase
transition at intermediate field between the spin-nematic state
(higher field) and a canted antiferromagnet (lower field).
Since the frustration parameter J>/|Ji| = 0.9 is relatively
close to the highly frustrated point J,/|J;| & 0.5, one would
expect that the spin-nematic state would be the ground state
over a sizable field range. The lower the magnetic field in
which the spin nematic can be measured, the more intense
the scattering from the Goldstone mode. Taking a relatively
conservative value of 4 = 0.8hgyt (see Fig. 2), one can see that
an energy resolution of better than about 0.1 meV is needed
at a momentum transfer of about 0.15-0.2 A", achievable
values in neutron scattering experiments. The intensity of
the Goldstone mode at these values of field and momentum
transfer is expected to be about 3% of the one-magnon
excitation. This is comparable to measuring an ordered
moment of about 0.2, and this is possible experimentally.
Finally, we would like to emphasize the generality of these
results for understanding spin-nematic phases, and end with
the hope that the ghostly Goldstone mode will be revealed
through the machine of inelastic neutron scattering.
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APPENDIX: CONTINUUM THEORY OF THE
TWO-SUBLATTICE ANTIFERROQUADRUPOLAR
STATEAT h =0

At h = 0 the continuum field theory developed in Sec. III
for the two-sublattice antiferroquadrupolar (AFQ) spin-
nematic state can be considerably simplified. This allows
comparison to lattice gauge theory calculations used to
understand the 2 = 0 spin-nematic state in Hsz/ 2 [Eq. (D]
[33-35].

One simplification arises from the increased symmetry at
h = 0. In the case h # 0 the symmetry of Sy [Eq. (A5)]
is U(1), and breaking this symmetry via the formation of an
AFQ state results in a single Goldstone mode, as shown in
Figs. 7(b)-7(e). For h = 0, the symmetry of the action is
increased to SU(2). As a result, there are three Goldstone
mode excitations, as can be seen in Fig. 7(f). There is a
degenerate pair of Goldstone modes associated with rotations
of the quadrupolar order parameter out of the ordering plane
[Fig. 7()f], and a third associated with rotations within the
ordering plane [Fig. 7(ii))f]. There is also a gapped mode
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FIG. 17. (Color online) Two-sublattice antiferroquadrupolar
(AFQ) spin-nematic state on the site- and bond-centered lattices
at h =0. Green spheres represent spin—% degrees of freedom
at the vertices of a square lattice (site-centered lattice). The
bond-centered, nematic order parameter is represented by red
cylinders, and the associated distribution of spin fluctuations by a
blue surface. A bond-centered lattice is introduced and shown in
yellow. Long-wavelength fluctuations of the order parameter are

described by Snism[U] [Eq. (A13)].

that can be interpreted as a dynamical spin-density-wave
excitation.

A second simplification arises from a natural division
at h =0 of conjugate pairs of fields into those associated
with high- and low-energy fluctuations. This is not the case
as h — hgg. At h =0, fields associated with high-energy
fluctuations can be eliminated by a Gaussian integral. The
resulting continuum theory is based on an SU(3) generalization
of the nonlinear sigma model (nlom). A similar treatment
of the three-sublattice AFQ state on the triangular lattice
was presented in Refs. [21,23], and the development in this
Appendix closely follows these references.

In order to demonstrate the validity of the approach, we
first derive the continuum theory from a simple spin-1 model

BBC)[S] [Eq. (4)]. This is useful since one can check that the
resulting action reproduces the results of flavor-wave theory
(see Sec. II) at long wavelength. Using the results of Sec. IV,
the continuum model can be mapped onto the site-centered
lattice. Thus, we can describe the low- energy fluctuations of
the spin-nematic state found to exist in HS - 1/ 2 [Eq. (D]

Previous approaches to understandmg the spin-nematic
state at h = 0 in HS 1/ 2 [Eq. (1)] reformulate the problem in
terms of a lattice gauge theory, and solve this using a large-N
mean-field approach [33-35]. This gives, in principle, all the
excitations of the spin-nematic state. As such, it is interesting
to compare the 4 = 0 field theory derived in this Appendix
with the lattice gauge theory calculations.

1. Deriving the action

Before embarking on the calculation, we briefly summarize
the mains steps, following the same logic as in Refs. [21,23].
First, we note that in HBBQ[S] [Eq. (4)] there is an SU(3)-
symmetric point at Jy = 0. When deriving a continuum
theory, we consider small, but nonzero Jy, and make an
expansion around the high-symmetry point.

The starting point of the calculation is the simplest subunit
of the lattice, the square plaquette shown in Fig. 17. The
spin-1 degrees of freedom on this plaquette are described
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using d vectors [Eq. (7)], and the energy is given by HBBQ[d]
[Eq. (9)]. The d vectors obey a length constraint d - d = 1
and the phase is set using d*> = d>. Energy is minimized
on a plaquette by selecting real d vectors, with orthogonal
alignment between first neighbors and parallel alignment
between second neighbors. A set of matrices can be defined
that act on the four d vectors, and allow any configuration to be
reached. When these act on a ground-state configuration of the
plaquette of d vectors, some of the matrices leave the energy
invariant, others lead to an energy increase proportional to J»;,
while still more lead to an energy increase proportional to Jj,
J12 or a combination of the two. The first two sets of matrices
will become the low-energy modes in the continuum theory,
while the third set are considered high-energy modes and are
eliminated by a Gaussian integral.

The square plaquette defines a basic unit from which to
build a square lattice, and continuum fields are defined at the
center of plaquettes. Assuming that the system has at least
local two-sublattice AFQ order, the plaquettes can be stitched
together and an action derived in terms of the continuum fields.
This action also includes a dynamical term, arising from the
quantum mechanical overlap of nearby director configurations.

One choice for the ground state of a plaquette is given by

=(1,0,0), d¥ =(0,1,0), (A1)

where A and B label the two sublattices (see Fig. 17). Including
fluctuations, and assuming the plaquette is close to a ground-
state configuration, the d vectors can be approximated by

L= (32— (B)/2 - (13)°/2
12 —il? ,
ivﬁ
17 + il
— (32— (B /2 (W)’ /2

4
lvg

A~ U(¢)

ds ~U(9) | 1 (A2)

Here,

(A3)

4
U(¢) = exp [i inqx]
i=1

is a unitary matrix describing low-energy fluctuations in terms
of a set of parameters ¢ = (¢1,p2,¢3,¢4) and

0
=i 0 Of, %2=10 0 0])-
0O 0 O —i 0 O
0 0 0
Aam=10 0 —i], am=]|1 (A4)
0 i O 0 0 O

are the relevant subset of SU(3) generators. The parameters
I3, I3, vi, and v§ describe small cantings of the plaquette
configuration away from the low-energy subspace, and have
been included in Eq. (A2) at quadratic order.

Plaquettes are stitched together to form a lattice by promot-
ing the parameters ¢, [7, I3, vz, and v to fields, and these are
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defined at the centers of the plaquettes. These fields are allowed
to fluctuate in time and space, and the continuum limit is taken
under the assumption that the plaquette configurations only
vary significantly over long length scales.

The action is given by

PHYSICAL REVIEW B 91, 174402 (2015)

and
Lnlﬂm = (H)plag: (A7)

where (H)plaq refers to the Hamiltonian on a single plaquette.
After substituting in Eq. (A2) for the d vectors, expanding to

quadratic order in the high-energy canting fields, making a

1 : radient expansion around the plaquette centers and rewritin
Shlom = — / drdzr[ﬁﬁ'lgm + Emgm] (AS) & P pad g
4 ny(r,t)  ngr,t) ngr,7)
where U(r,t) = | ny(r7)  ni(rr) ni@n) |, (A8)
] i . na(r,t) ngr,r) ng(r,7)
Liom = 2da - 3:da + 2dg - 3.dg (A6) (e arrives at
|
LA = 2fpd,na + 20 d; N + HZ(Aad; N — NAD, Tig) — 4ilZ(fiad,ng + Npd, fig) 4 2ivE (figd; Na + NG d; Na)
+2i vé(le d;N¢ + ngo;iig) (A9)
and

Lotom =3201[(12) + (B)*] + 3200 (83)” + 1610 (v3)” + (v3)°] — 4722 (n}0% + n3n3)
+ ) (4Jn10adms|* + 2[(3:ma) + (3:0a) + (3,m8) + (3:A8)’]
A=XY
(A10)

+ 4J12[|nal* + |3,np]* — [Aadinal* — [Agd;ng|*1).

The fields np and ng inherit the length and phase constraints of the d vectors and are further constrained to be orthogonal
N - ng = 0. The auxiliary field nc = na x ng is introduced as a convenient piece of bookkeeping, and is not an independent
degree of freedom.

The high-energy, canting fields can be eliminated by a Gaussian integral, giving

1 i
I“ = — Nad;Ng — NAQd;NR), [F = ————— (a0, N + Npd,NR),
1 167, ———(0ad;ng — Npd; M), [5 16(111+J22)( AO:NB + Npd Np)
; .
;= Nco;na + ngd np), vi = ngd.nc + ngd. nc). All
Vp = 16J22(C A+ngdnp), vg= 16122( Bd.nc + ngd;Nc) (A1D)

It follows that the action is
o 1 [r 2. ) s _ [P )
Shiom[na,np, N, Ng] ~ 7 dt | d°r{2npd;np + 20gd.ng — F(nAaan — npd.Ng)
0 11

1
+ -
8(J11 + J22)

1 1
(Mad,np + npd, fig)” + (Acd, np + ngd na)” + (fgd, nc + ngd, nc)>
16.]22 J22

+ Y 4JnInadimsl’ + 2/0(3:ma) + (3;84) + (3;1m8)° + (3108)’]
A=X,y

— 4.]22 (nifli + IlzBI_lé)

+ 4J12[|3,mal* + |3ng|* — [Aadinal* — |ﬁBaAnB|2]}. (A12)

This action can be rewritten by reintroducing the matrix U(r,t) [Eq. (A8)] as

/ dt/dz {8Tr[P Ut 9,01 — xS%(a5?)? [2 Z|[UT }

+Tr[AQ - (Ut 3,U+ U 3,0)(U"- 8, U+ UT - 8,0)] — x5 *([U" - 3, U]y — [U' - 8,U]1»)°

Snlam [U

+ Y T[AS- U3 U+ U 3,0 (U 3,U + UT- 3,0)] - o5 *([U" - 3, ULy — [UT- aAU]mZ}, (A13)
A=Xy

174402-23



ANDREW SMERALD, HIROAKI T. UEDA, AND NIC SHANNON

where
1 0 0
P=|0 1 of,

0 0 0
X0 0

AS =] 0 XOQ’Z 0 )

0 0 2xY —x3*

odE 0 0

AC=| 0 p@* 0 (A14)

0 0 Zp(?xy — ,000’z

This formulation makes clear the SU(2) symmetry of the order
parameter. In Spiom[U] [Eq. (A13)] we have introduced a set
of hydrodynamic parameters. The relationship between these
and the exchange parameters of Hgg&[S] [Eq. (4)] is shown
in Table II. These can be compared to the hydrodynamic
parameters presented in Table I. Using the relation v*> = p/x,
one can see that these are equivalent at & = 0, except for
the velocity (v5%)?, which differs by a factor proportional
to J3, which is considered a small parameter in this
Appendix.

2. Linearizing the action

It is useful to linearize Spi,m[U] to further bring out
the physical content of the action. At linear order one can
approximate

1 o1 +igs —¢»
U, )~ | —¢1 + i 1 o3 |, (A15)
033 —¢3 1

TABLE II. Dictionary for translating between the parame-
ters of the continuum field theory for two-sublattice AFQ or-
der Snhiom[U] [Eq. (A13)], and the microscopic model Hgg&[S]
(Eq. (4)].

Sniom[U] [Eq. (A13)] HalS [Eq. (4)]

X(?’Z [4(J11 + J)] ™!
X% (41"

X0 (87217

Jon 2(J1 + 2J12 + 2J2)
pos’z 2(J11 + 2J12 — 2J2)
o0 2(J11 + J2)
Ay 8v/Ti1 T
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and, therefore,

~ 1 P 2 Q,z 2
Snlam[¢] ~ E dt | d°r Xo (0:¢01)
0

+ > o0 @00 + Ay P (3:44)°

r=xy

b3 o007 + (A7) 0}

=Xy

+ 10 13 02)* + (3:3)*]

+ 2 ng[(3x¢z)2+(8x¢3)2]}. (A16)

r=xy

From this, one can calculate the dispersion relations of the four
modes as

Q,z
Q, P
oy = | ~g7Kl,
\ Xo
S S,2\2 /)S’Z
o = | (A07) + “gz KI%, (A17)
N Xo

Jored

Xy __ 0

a)k,() - Xy |k|1
Xo

where wQ’O is twofold degenerate in the two-sublattice Bril-
louin zone. This describes three Goldstone modes a’l?lo and
wgg and one gapped mode wy g

The Goldstone mode wg’oz corresponds to real rotations of
the d vectors in the ordering plane. This in turn results in
rotations of the quadrupolar order parameter in the ordering
plane. The pair of Goldstone modes described by a)l)iyo
corresponds to real rotations of the d vectors out of the ordering
plane. This results in rotations of the quadrupolar order
parameter out of the ordering plane. The gapped mode wsg
corresponds to an imaginary rotation of the d vectors in the
ordering plane. This results in spin fluctuations perpendicular
to the ordering plane, which are out of phase on the two
sublattices and can be thought of as a dynamical spin-density
wave.

3. Imaginary part of the dynamical spin susceptibility

Inelastic neutron scattering measures the imaginary part
of the dynamical spin susceptibility Imx“?(q,») [Eq. (3)].
This can be calculated from the linearized action Spiom[¢]
[Eq. (A16)].

In order to do this, it is first necessary to determine how
the spin moments are related to the quantum fields. This
can be achieved by dividing the d vectors into a real and
imaginary part d = u + iv, and noticing that S = 2u x v. To
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FIG. 18. (Color online) Predictions for the imaginary part of the dynamical spin susceptibility for a two-sublattice, spin-1 antiferroquadrupo-
lar (AFQ) state in the absence of magnetic field. Ianlam and ImyZZ ., [Eq. (A20)] are calculated from Sn|(rm[¢] [Eq (A16)]. Hydrodynamic
parameters are taken from Table I with J,; = 1, J1, = 1, and Jy; = 0.5. Dashed red lines show w,?o , q 0, and a)q o. All predictions have been
convoluted with a Gaussian to mimic experimental resolution. The circuit I'-X-M-T" in the bond-centered Brillouin zone is shown in Fig. 6.

The same linear, normalized color intensity scale is used as in Fig. 5.

lowest order in each of the spin components one can show [21,23]

224 + 2X3 D19:2 + XS E D201 + XS X D hr s a

SA = 2X3y8t¢2 ’
204 — xS 201
_2X())(yat¢3
S = | —2030s + 2x0" 610,03 — xS D301 — Xo X i h30, s (A18)
24 — X8,
[
It follows that and
Imx;,m(@m + q.0) = ImxX% - (qu + q.»)
1.9 = IS5 0.0 + T (0.0) I + 40
Xy
=Xy © ,05(“) - wq,O)’ = nx(); y 08 (0 — a)qyo)
ImyZ . (q.0) = _on 8w — oy (A19) 27 ,
em o (@ —wg5) Iy, (qu + Q@) = —S,wa,zs(w —033), (A20)
0 q.,0

[mx**(q, w)

Imx*(q,w)

8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
q q

FIG. 19. (Color online) Predictions for the imaginary part of
the dynamical spin susceptibility for a two-sublattice, spin—% an-
tiferroquadrupolar (AFQ) state in the absence of magnetic field.
The mapping described in Sec. IV is used to transform Imy
and ImyZ ., [Eq. (A20)] into the site-centered Brillouin zone. An
arbitrary set of hydrodynamic parameters have been chosen as
W& =48, (W) = 12, (v5*)? = 16, and (AS?)? = 32. Dashed
red lines show a)l?(), w:yo, and wf() All predictions have been
convoluted with a Gaussian of FWHM = xxx to mimic experimental
resolution. The same linear, normalized color intensity scale is used
as in Fig. 5. The results in this figure can be compared directly with
the predictions of the lattice gauge theory given in Refs. [33-35].

where q ~ 0. This is shown in Fig. 18, and can be compared to
Fig. 7 f, where the physics can be seen to be qualitatively the
same, despite the different values chosen for the parameters
Ji1, Ji2, and Jy. In order to study the bond-nematic phase

found in Hs 1/ 2 [Eq. (1)], the mapping described in Sec. IV
can be used The field theory thus describes the dynamic spin
susceptibility close to q = 0, and this is shown in Fig. 19.

4. Comparison with lattice gauge theory

Finally, it is interesting to compare the continuum model
developed in this Appendix with previous work studying
the 2 = 0 spin-nematic region of Hijz/ 2 [Eq. (1)] [33-35].
In Ref. [33], a matrix-formed action for the gapless modes
is written [Eq. (46) of this reference]. Comparing this to
Eq. (A13), one can see that these actions have the same
low-energy form if the generator A4 [Eq. (A4)] is ignored.
The relationship between the hydrodynamic parameters of
Eq. (A13) and Ref. [33] is given by

Q,z X' Q,z
Xl =2c Xy =ca pgt = 2cs,

py =ci+ci, c3=ca (A21)
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Comparison can also be made to Ref. [35] in which
the imaginary part of the dynamical spin susceptibility is
calculated via a 1/N expansion scheme. At small q, the
field theory developed in this Appendix agrees well with
this 1/N expansion scheme, which can be see by comparing
Fig. 19 with Figs. 9 and 10 of Ref. [35]. In both cases,
there are three Goldstone modes at q = 0, a degenerate pair
(at low energy) that appear in Imy* and a third in the
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longitudinal channel Imy 2. In Ref. [35], there also appear
a number of gapped modes close to q = 0 without significant
spectral weight, but it is not completely clear if one of
these is equivalent to the dynamical spin-density wave that
appears in Spym[U] [Eq. (A13)]. Finally, Ref. [35] finds
a spinon continuum at high energies, and this cannot be
captured by the low-energy continuum theory presented in this
Appendix.
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[Eq. (29)] components are shown together. The same parameter
set Ji; =1, Jp=0.1, and Jp, =2 is used as in Fig. 5.
Magnetic field is varied from an initial value of & = 1.5hgy
to a final value of 7 = 0. Dashed red lines show ., , and
oy, atall b and o],y for h < heat [see Egs. (20), (25), and
(27)]. All predictions have been convoluted with a Gaussian
to mimic experimental resolution. The circuit I'-X-M-T in the
bond-centered Brillouin zone is shown in Fig. 6.
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