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Subwavelength ultrasonic circulator based on spatiotemporal modulation
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Enabling efficient nonreciprocal acoustic devices is challenging, yet very desirable for a variety of applications,
including acoustic imaging, underwater communications, energy concentration and harvesting, signal processing,
and noise control. We discuss the theory and design of a fully linear compact acoustic circulator based on
spatiotemporal modulation of the effective acoustic index, providing a compact and practical way to realize large
sound circulation at any desired frequency. Our proposal enables tunable isolation levels of over 40 dB, with
insertion losses as low as 0.3 dB, in a noise-free, integrable, frequency scalable device whose total size does not
exceed λ/6.
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I. INTRODUCTION

In wave physics, reciprocity is a property directly related to
the fundamental symmetry of wave propagation, according to
which transmission between two points in space is independent
on the direction of propagation, and it directly stems from
the invariance of wave propagation upon time reversal. There
are applications in which one would like to break reciprocity
and obtain one-way wave transmission, for instance in order
to protect a source from unwanted load reflections. The
first reciprocity relations were introduced in 1856 by Von
Helmholtz [1], and further developed by Lord Rayleigh in
the particular case of acoustic waves [2]. However, practical
devices that can significantly break reciprocity have been for a
long time exclusively realized for electromagnetic waves using
magnetically biased ferrites based on the Faraday effect [3],
leading to the development of Faraday isolators, a technology
that is widely used in nowadays communication systems.
Because of the relatively weak interaction between elastic
waves and a dc magnetic field in magnetoacoustic crystals [4],
obtaining strong magnetically induced acoustic nonreciprocity
is quite challenging [5], and until recently no solution for large
acoustic signal isolation in a compact device existed.

The conditions under which Rayleigh reciprocity theorem
holds can be broken in three different ways: (i) breaking
linearity, (ii) biasing with a quantity that is odd under time
reversal, or (iii) breaking time invariance [6,7]. Large acoustic
isolation has been obtained using option (i) in a nonlinear
medium paired with a frequency selective mirror [8,9], or
with the help of nonlinear acoustic inclusions [10]; however,
all these nonlinear solutions typically introduce severe signal
distortions and only work for large acoustic intensities.
According to the Onsager-Casimir principle of microscopic
reversibility [11], linear isolation is possible if the system is
biased with an odd vector upon time reversal, just like the static
magnetic field in the case of the Faraday isolator [option (ii)].
Following this principle and using angular momentum as the
biasing vector, we have recently proposed large nonreciprocity
at audible frequencies in an acoustic circulator constructed
with a resonant ring cavity filled with an internal fluid in a
constant rotating motion [12]. A drawback of this method
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is the practical challenge to implement at higher frequencies
such mechanical motion, as the size of the resonator shrinks.
In addition, this method may not be directly applicable to other
types of mechanical waves, such as structural surface waves,
for which the possibility to break the reciprocal nature of their
propagation may lead to novel venues in energy manipulation,
concentration, and harvesting.

In this article we propose a practical route towards linear,
noise-free, ultrasonic acoustic isolation through an effective
rotation of a subwavelength ultrasound circulator obtained
via parametric modulation. Consider the geometry in Fig. 1
(top): three cylindrical acoustic cavities are connected to each
other via small channels, forming an acoustic resonator with
120◦ rotational symmetry. Three additional channels couple
this resonator to external waveguides, defining a three-port
network. We break reciprocity by applying suitable spatiotem-
poral modulation to the cavity volumes with modulation
frequency fm = ωm/(2π ). This modulation is applied in a
rotating fashion: the volume V0 of cavity 1 is modulated
by an amount �V1 = δV cos(ωmt), whereas the volumes of
cavities 2 and 3 are modulated at the same frequency fm

and strength δV , but with 2π/3 and 4π/3 phase delays,
i.e., �V2 = δV cos(ωmt − 2π/3) and �V3 = δV cos(ωmt −
4π/3), respectively. Because of this dynamic modulation, the
system is no longer time invariant, and time-reversal symmetry
is broken by the effective angular momentum imparted by the
modulation, violating the assumptions of Rayleigh reciprocity
theorem, and possibly leading to strong nonreciprocal effects.
An analogous functionality was achieved for radio waves in a
parametric lumped circuit in [13], and we now translate these
concepts to acoustic propagation.

II. THEORY

A. Lumped circuit model equivalent

The behavior of the proposed device can be predicted in
the low frequency limit by considering its lumped circuit
model equivalent. In this limit we can assume that the acoustic
pressure is constant within each of the three cavities, with
pressure amplitudes p1, p2, and p3. The three cavities can
be modeled as parallel acoustic capacitors [Fig. 1 (bottom)],
since they store potential acoustic energy and accumulate a net
amount of pressure pi , or acoustic voltage in the equivalent
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FIG. 1. (Color online) Geometry of the proposed three-port net-
work. Top: Three acoustic cavities connected via small channels
and coupled to three waveguides. The volumes V of the cavities
are weakly modulated in a rotating fashion, with amplitude δV and
frequency ωm. Bottom: Equivalent lumped circuit model in the long
wavelength limit. The modulation of the physical volume of the cavity
translates into a modulation of their acoustic compliance, represented
here by variable shunt capacitors.

circuit, with respect to the static pressure p0 represented by the
ground in the circuit model. The difference in pressure stored
by two adjacent cavities creates a force that acts on the mass of
the fluid filling the small channel coupling them. Therefore, the
elements connecting the three capacitors at nodes p1, p2, and
p3 behave as acoustic inductors of value L. The coupling to the
external ports is also assumed to be of inertial, or inductive,
nature, which is again represented by inductors connecting
the nodes p1, p2, and p3 to ports 1, 2, and 3. To take into
account the modulation in the equivalent circuit of Fig. 1,
we recall that the expression for the acoustic capacitance C0

of a cavity in the long wavelength limit is given by C0 =
V0β0 [14], where V0 is the unbiased cavity volume and β0 is
the compressibility of the acoustic medium filling it, taken here
to be silicon rubber RTV-602, with density ρ0 = 990 kg/m3

and compressibility β0 = 9.824 × 10−10 Pa−1 [15]. Assuming
that the volume modulation is obtained using actuators that
compress the acoustic medium filling the cavities, and that
the material is deformed elastically, the compressibility β0

is untouched by the modulation, and therefore the actuators
directly modulate the acoustic capacitance with modulation
depth δC/C0 = δV/V0. This is represented in the equivalent
circuit by variable capacitors.

B. Temporal coupled-mode theory

In order to model the device and solve the scattering prob-
lem for a signal incident at one of the ports, we use temporal

FIG. 2. (Color online) Lumped element model of the resonator
alone.

coupled-mode theory, which is essentially perturbation theory
applied in the time domain. This theory is justified here
as we assume weak modulation depth and low modulation
frequency throughout the paper. The first step is to consider the
resonant properties of the unbiased structure, before applying
perturbation theory to include the effect of the modulation.

Let us consider the unbiased resonator by itself, represented
in Fig. 2. The capacitors have constant values C1 = C2 =
C3 = V0β0 and we do not consider at this point the coupling
to ports 1, 2, and 3, i.e., there are no radiative losses. We start
by applying Kirchhoff’s laws to the circuit, obtaining

d2p1

dt2
= 1

LC0
(p2 + p3 − 2p1),

d2p2

dt2
= 1

LC0
(p3 + p1 − 2p2), (1)

d2p3

dt2
= 1

LC0
(p1 + p2 − 2p3).

Next, we represent the acoustic state of the resonator by the
three component vector

|ψ〉 =
⎛
⎝p1

p2

p3

⎞
⎠ , (2)

whose time evolution is obtained directly from (1) as

d2

dt2
|ψ〉 = M0|ψ〉. (3)

In (3) we have introduced the Hermitian time evolution
operator

M0 = 1

LC0

⎛
⎝−2 1 1

1 −2 1
1 1 −2

⎞
⎠ . (4)

We can transform (3) into the frequency domain eigenvalue
problem

M0|ψ〉 = −ω2|ψ〉, (5)
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whose solutions are the three eigenmodes of the unbi-
ased structure. The first one, with eigenvalue ω = 0 and
eigenvector

|0〉 = 1√
3

⎛
⎝1

1
1

⎞
⎠ , (6)

is the dc mode, which expresses the capability of the cavity to
store a uniform static pressure (at dc the capacitors are replaced
by open circuits and the inductors by shorts, obtaining a node
that is unconnected to the ground, whose voltage is arbitrary).
The second and third modes, |+〉 and |−〉, are counter-rotating

degenerate modes associated with the lumped resonance of the
structure at ω± = √

3/LC0,

|+〉 = 1√
3

⎛
⎜⎝

1

ei 2π
3

ei 4π
3

⎞
⎟⎠ , (7)

|−〉 = 1√
3

⎛
⎜⎝

1

e−i 2π
3

e−i 4π
3

⎞
⎟⎠ . (8)

Next, we apply perturbation theory to the unbiased res-
onator. We assume that the values of the capacitors C1, C2,
and C3 are modulated by the amounts �C1, �C2, and �C3 in
a rotating fashion, following

C1 = C0 + �C1 = C0 + δC cos (ωmt) ,

C2 = C0 + �C2 = C0 + δC cos (ωmt − 2π/3) ,

C3 = C0 + �C3 = C0 + δC cos (ωmt − 4π/3) ,

(9)

where ωm and δC = β0δV are, respectively, the modulation frequency and modulation depth. We further assume that the
modulation is practically realizable, i.e., it is sufficiently weak and slow, δC � C0 and ωm � ω±. Under these assumptions,
Eq. (3) is replaced by

d2

dt2
|ψ〉 = (M0 + δM) |ψ〉 , (10)

with

δM = − δC

2C0

ω2
±

3

⎛
⎝ −2(eiωmt + e−iωmt ) eiωmt + e−iωmt eiωmt + e−iωmt

ei(ωmt−2π/3) + ei(ωmt−2π/3) −2(ei(ωmt−2π/3) + ei(ωmt−2π/3)) ei(ωmt−2π/3) + ei(ωmt−2π/3)

ei(ωmt−4π/3) + e−i(ωmt−4π/3) ei(ωmt−4π/3) + e−i(ωmt−4π/3) −2(ei(ωmt−4π/3) + e−i(ωmt−4π/3))

⎞
⎠ . (11)

Applying perturbation theory, we expand at any instant t

the acoustic state |ψ(t)〉 in the biased cavity into the basis
of eigenvectors of the unbiased time-evolution matrix M0,
obtaining

|ψ(t)〉 = a0(t) |0〉 + a+(t) |+〉 + a−(t) |−〉 =
∑

i

ai(t) |i〉,
(12)

where ai(t) denotes the time-dependent amplitude of the mode
|i〉. Plugging this expansion into (10), and considering the fact
that the eigenmodes of M0 have been normalized with respect
to the scalar product

〈ψa|ψb〉 = p∗
a,1pb,1 + p∗

a,2pb,2 + p∗
a,3pb,3, (13)

we obtain the following differential equations for the mode
amplitudes:

d2

dt2
a0 = 〈0|δM|0〉a0 + 〈0|δM|+〉a+ + 〈0|δM|−〉a−,

d2

dt2
a+ = −ω2

+a+ + 〈+|δM|0〉a0 + 〈+|δM|+〉a+ (14)

+〈+|δM|−〉a−,

d2

dt2
a− = −ω2

−a− + 〈−|δM|0〉a0 + 〈−|δM|+〉a+

+ 〈−|δM|−〉a−.

The matrix elements 〈i|δM|j 〉 can be evaluated using (11)
together with Eqs. (6)–(8) for the normalized eigenstates of
M0. We find that the modulation induces no coupling from the
dc mode into the counter-rotating modes,

〈+| δM |0〉 = 〈−| δM |0〉 = 0, (15)

and that the diagonal matrix elements are null,

〈0| δM |0〉 = 〈+| δM |+〉 = 〈−| δM |−〉 = 0. (16)

However, the other matrix elements are nonzero and are
calculated as

〈0| δM |+〉 = 〈+| δM |−〉 = δC

2C0
ω2

±eiωmt , (17)

〈0| δM |−〉 = 〈−| δM |+〉 = δC

2C0
ω2

±e−iωmt . (18)

Next, we make the assumption that the acoustic device is
designed such that the values of L and C0 satisfy the following
condition:

ω± =
√

3

LC0
� 0, (19)

that is, the lumped resonance frequency of the structure is
far from dc. If we assume that we excite the structure at
a frequency ω close to ω±, and considering that ωm � ω±,

174306-3



ROMAIN FLEURY, DIMITRIOS L. SOUNAS, AND ANDREA ALÙ PHYSICAL REVIEW B 91, 174306 (2015)

we conclude that coupling of energy between the counter-
rotating modes and the dc mode is very inefficient (secular
approximation). Under these conditions, the coupled-mode
equations (14) simplify to

d2

dt2
a+ = −ω2

±a+ + χeiωmta−,

(20)
d2

dt2
a− = −ω2

±a− + χe−iωmta+,

where χ = ω2
±δC/(2C0).

C. Scattering parameters

To evaluate the scattering properties of the device, we now
add coupling to the external ports, with decay rate γ , which is
assumed to be constant over the frequency range of interest,
and identical for both counter-rotating modes. This assumption
is valid as long as the quality factor of the structure is large
enough, which is the case here since the coupling channels
to the ports are very narrow. We further note S+

i the incident
signal at port i, and S−

i the outgoing one, and introduce the
notation

�± = ω± + iγ . (21)

Owing to energy conservation, 120◦ symmetry, and the
time-reversal properties of the structure, Eq. (20) is modified
to yield the full coupled-mode equations including decay and
coupling to the ports:

d2

dt2
a+ = −�2

±a+ + χeiωmta−

− 2iω±

√
2γ

3
(S+

1 + e−i 2π
3 S+

2 + e−i 4π
3 S+

3 ),

d2

dt2
a− = −�2

±a− + χe−iωmta+

− 2iω±

√
2γ

3
(S+

1 + ei 2π
3 S+

2 + ei 4π
3 S+

3 ). (22)

The outgoing signals are given by

S−
1 = −S+

1 +
√

2γ

3
(a+ + a−),

S−
2 = −S+

2 +
√

2γ

3
(a+ei 2π

3 + a−e−i 2π
3 ),

S−
3 = −S+

3 +
√

2γ

3
(a+ei 4π

3 + a−e−i 4π
3 ). (23)

Let us assume that the structure is excited by a monochro-
matic signal at frequency ω, incident only from port 1. By
plugging S+

1 = e−iωt and S+
2 = S+

3 = 0 in Eq. (22), we obtain
the differential system

d2

dt2
a+ = −�2

±a+ + χeiωmta− − 2iω±

√
2γ

3
e−iωt ,

(24)
d2

dt2
a− = −�2

±a− + χe−iωmta+ − 2iω±

√
2γ

3
e−iωt .

We see that the incident signal couples directly to both
|+〉 and |−〉 modes, which will therefore necessarily inherit
a frequency component at ω. Inspecting Eq. (24) further, it
is evident that the time-dependent coupling term between
the mode amplitudes will force the |+〉 mode to have a
frequency component at ω − ωm, whereas the |−〉 mode will
have a component at ω + ωm. We therefore make the following
assumption for the solution:

a+ = α0
+e−iωt + α−

+e−i(ω−ωm)t ,
(25)

a− = α0
−e−iωt + α+

−e−i(ω+ωm)t ,

where the coefficients α
j

i are assumed to be time independent.
After plugging (25) into (24), and some straightforward alge-
bra, we obtain the following linear system for the coefficients
α

j

i :

⎛
⎜⎜⎝

�2
± − ω2 0 0 −χ

0 �2
± − ω2 −χ 0

0 −χ �2
± − (ω − ωm)2 0

−χ 0 0 �2
± − (ω + ωm)2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α0
+

α0
−

α−
+

α+
−

⎞
⎟⎟⎠ =

⎛
⎜⎝

√
2γ /3√
2γ /3
0
0

⎞
⎟⎠ . (26)

From the solution of (26), we obtain the components α0
+

and α0
− of the |+〉 and |−〉 modes at ω:

α0
+ = −2iω±

√
2γ

3

�2
± − (ω + ωm)2

(ω2 − �2±)[(ω + ωm)2 − �2±] − χ2
,

(27)

α0
− = −2iω±

√
2γ

3

�2
± − (ω − ωm)2

(ω2 − �2±)[(ω − ωm)2 − �2±] − χ2
.

(28)

We also get the components α−
+ and α+

− , of the |+〉 and |−〉
modes, respectively at ω − ωm and ω + ωm:

α−
+ = −2iω±

√
2γ

3

χ

(ω2 − �2±)[(ω − ωm)2 − �2±] − χ2
,

(29)

α+
− = −2iω±

√
2γ

3

χ

(ω2 − �2±)[(ω + ωm)2 − �2±] − χ2
.

(30)
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From the mode amplitudes, we can evaluate the outgoing
signals S−

i using (23). Because they are expressed as linear
combinations of the mode amplitudes, these signals contain
the excitation frequency ω, as well as its two intermodulation
products ω ± ωm. Therefore, after dividing S−

i by the incident
signal S+

1 = e−iωt , we extract three different sets of scattering
parameters: the set of Sω

ij describing scattering of an incident
wave at ω into outgoing waves at the same frequency ω,

Sω
11 = −1 +

√
2γ

3
(α0

+ + α0
−),

Sω
21 =

√
2γ

3
(α0

+ei 2π
3 + α0

−e−i 2π
3 ), (31)

Sω
31 =

√
2γ

3
(α0

+ei 4π
3 + α0

−e−i 4π
3 ),

and the sets S
ω±ωm

ij , which describe the scattering of a wave at
ω into outgoing waves at frequencies ω ± ωm,

S
ω+ωm

11 =
√

2γ

3
α+

−,

S
ω+ωm

21 =
√

2γ

3
α+

−e−i 2π
3 , (32)

S
ω+ωm

31 =
√

2γ

3
α+

−e−i 4π
3 ,

S
ω−ωm

11 =
√

2γ

3
α−

+,

S
ω−ωm

21 =
√

2γ

3
α−

+ei 2π
3 , (33)

S
ω−ωm

31 =
√

2γ

3
α−

+ei 4π
3 .

Equations (31)–(33), together with Eqs. (27)–(30), describe
fully the frequency and modulation dependency of the scatter-
ing of the system. Sω describes the scattering of input signals
at ω into output signals at ω, and it is the quantity of interest
to predict the isolation performance. The other two matrices
Sω±ωm describe the conversion of a portion of the input energy
at ω into undesired parasitic output signals at ω ± ωm, which
we ideally want to keep at very low levels.

III. RESULTS

A. Key performance metrics

The performance of the device can be evaluated using
four relevant metrics: (i) the isolation IS = 20 log |Sω

31/S
ω
13|

of the device, which describes its ability to let an acoustic
signal flow from port 1 to 3, but not vice versa. A larger
isolation requires a stronger nonreciprocal response; (ii) the
forward insertion loss IL = −20 log |Sω

31|, which quantifies
the signal loss introduced by the device in transmission;
(iii) the reflection coefficient R = 20 log |Sω

11|; and (iv) the
intermodulation strength of the parasitic signals at ω ± ωm,
P = 20 log |Sω−ωm

31 |. Ideally, the proposed device should pro-
vide large isolation, low insertion loss, low reflection, and low
parasitic signals.

FIG. 3. (Color online) Effect of the modulation depth δC/C and
modulation frequency fm on the metrics of the circulator at its
resonance frequency ωr . Top left panel: Isolation. Top right panel:
Insertion loss. Bottom left panel: Reflection coefficient. Bottom right
panel: Strength of the intermodulation products. Points A and B are
two design points considered in the text.

Figure 3 shows contour plots for these quantities, calculated
at the resonance frequency ω± of the unbiased resonator,
for a range of reasonable values for fm ∈ [0,1500] Hz and
δC/C0 ∈ [0,0.15]. We assumed cavities 3 mm thick with a
diameter of 1 cm, cylindrical internal coupling channels with
diameter of 2 mm and 1 mm length, and cylindrical external
coupling channels with diameter of 0.5 mm and 1 mm length.
The external square waveguides are 3 mm by 3 mm. According
to full-wave eigenfrequency simulations, this resonator is
characterized by f± = 18628 Hz and γ = 2π 76.75 s−1. The
top left panel shows the value of IS, showing that there is a
specific balance between the choice of modulation frequency
fm and depth δC/C0 to achieve isolation up to 50 dB. Too
slow modulation, with frequencies below 50 Hz, yields high
isolation only for unrealistically large values of δC/C0, for
which our perturbation theory may not even properly hold.
By increasing fm to around 100 Hz, however, it is possible to
reach point B in the figure, for which δC/C0 has its minimum
value δC/C0 = 2.5%, while IS = 50 dB is still maximal. By
further increasing fm, the required modulation depth slightly
increases, and we reach point A in the plot (δC/C0 = 5%,
fm = 1200 Hz), for which the value of IS has decreased a bit,
down to 40 dB. These two points are of interest for isolation
purposes and, to determine the best design, we need to look at
the other metrics under the same conditions. For this purpose,
we look next at the reflection, shown in the bottom left panel.
In order to get low reflections from the device, one needs to
operate in the blue region. Interestingly, this blue region and the
red region of high IS of the top left panel seem to get closer and
closer as fm increases, which indicates that point A is a better
choice in terms of impedance matching, with R = −40 dB,
as opposed to R = −10 dB for point B. A look to the
insertion loss and parasitic signals contour plots, respectively,
the top right and bottom right panels, confirms the overall
ideal operation at point A, for which IL = 0.3 dB and P =
−20 dB, to be compared with IL = 3 dB and P = −12 dB
for point B. This study highlights the importance of tailoring
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both modulation depth and frequency, and the tendency of
faster modulations to lead to better matching, lower insertion
loss, and parasitic signals. Note that the considered values for
the modulation frequency are more than an order of magnitude
below the working frequency, which makes this design very
attractive since many actuating solutions are available at such
low frequencies, as we will further discuss in Sec. IV.

B. A numerical experiment

To confirm the predictions of our analytical model, we
performed full-wave simulations of the optimal device using a
finite element method and a custom-made frequency domain
solver. To model the structure in a full-wave fashion, we need
to implement numerically the modulation δC/C0 of the cavity
capacitance

C0 = V0β0, (34)

where V0 is the volume of any cavity and β0 is the com-
pressibility of the acoustic medium that is filling it (here
silicon rubber). From Eq. (34) we see that in order to realize
the capacitance modulation, we can keep the bulk modulus
constant and change the cavity volume. This is the most
convenient way to obtain modulation in practice, and it is what
we propose here as an experimental solution. By physically
compressing the cavity, we would change its volume, but
not the bulk modulus (as long as linearity holds, i.e., for
small displacements for which Hook’s law remains valid),
and the change in density would not affect the capacitance,
which obviously does not depend on such an inertial quantity.
However, this practical way of modulating the capacitance is
not the easiest implementation in finite-element simulations,
as it involves a dynamically changing geometry and a moving
mesh. Instead, we see that we can induce exactly the same
effect on the capacitance by keeping the volume constant but
modulating the compressibility according to

δC

C0
= δβ

β0
. (35)

This is what is implemented in our custom-made finite element
solver, and it is strictly equivalent to the practical case of a
volume variation with β0 constant. To implement our code, we
start from the general acoustic equations

∇p(r,t) = − d

dt
[ρ0u(r,t)],

(36)

∇ · u(r,t) = − d

dt
[β(r,t)p(r,t)],

where p(r,t) is the acoustic pressure, u(r,t) is the particle
velocity, ρ0 is the time independent density of the medium,
and

β(r,t) = β0(r) + δβ(r) cos[ωmt − ϕ(r)] (37)

is the dynamically modulated compressibility of the structure.
By taking the divergence of the top equation in (36), and using
the bottom equation, we get the wave equation

�p(r,t) = ρ0
d2

dt2
[β(r,t)p(r,t)], (38)

which is the starting point of our numerical model. Next, since
the modulation is periodic in time, we can use Floquet-Bloch
theorem and write

p(r,t) = f (r,t)eiωt , (39)

where the function f is periodic in time with period equal to
the modulation period,

f

(
r,t + 2π

ωm

)
= f (r,t). (40)

After a Fourier transform, we have the following expansion
for the acoustic pressure:

p(r,t) =
∑

n

fn(r)ei(ω+nωm)t , (41)

i.e., the solution of (38) is in general a superposition of a field
at ω and an infinite number of harmonics at ω ± nωm. By
plugging (41) into (38) we transform the initial differential
equation with time-dependent coefficient (38) into an infinite
linear set of coupled time-independent differential equations,
one for each harmonic. We obtain, after some algebra, for an
arbitrary harmonic of order n,

�fn(r) + ρ0β(r)(ω + nωm)2fn(r)

= − 1
2ρ0δβ0(r)(ω + nωm)2[fn−1(r)e−iϕ(r) + fn+1(r)eiϕ(r)].

(42)

If the modulation frequency is small, it is reasonable to
truncate this infinite system to n = {−1,0,1}. Then we obtain
three coupled differential equations:

�f0(r) + ρ0β(r)ω2f0(r)

= − 1
2ρ0δβ0(r)ω2[f1(r)e−iϕ(r) + f1(r)eiϕ(r)],

�f−1(r) + ρ0β(r)(ω − ωm)2f−1(r)

= − 1
2ρ0δβ0(r)(ω − ωm)2f0(r)eiϕ(r), (43)

�f1(r) + ρ0β(r)(ω + ωm)2f1(r)

= − 1
2ρ0δβ0(r)(ω + ωm)2f0(r)e−iϕ(r).

Equations (43) are put in weak form and solved simulta-
neously in our frequency domain solver. We use scattering
boundary conditions at the ports that also include the incident
field. The result of our simulation is the field profiles at
ω and ω ± ωm at any excitation frequency ω, from which
we can determine all the scattering parameters and compare
the results to the ones of the couple-mode theory analysis
[Eqs. (31)–(33)].

Figure 4 shows a comparison between the scattering
parameters Sω obtained using our coupled mode analytical
model and the ones obtained directly from our numerical
solver. The agreement between the two methods is excellent.
At the resonance frequency f± = 18 628 Hz, both methods
predict an isolation IS = 40 dB, excellent matching (R =
−40 dB), small intermodulation products (P = −20 dB), and
low insertion loss, comparable to the best commercially avail-
able radio-frequency circulators (IL = 0.3 dB). We stress that
this is obtained for acoustic waves, without requiring any
magnetic bias, and in a fully linear, parametric (noise-free)
device. The only difference between the curves in the figure
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FIG. 4. (Color online) Scattering parameters of the device, for
modulation at point A in Fig. 2, versus signal frequency. The
analytical results obtained from coupled-mode theory (top) are in
excellent agreement with full-wave simulations based on the finite
element method (bottom).

is the small asymmetry of the full-wave curves around the
design frequency, with slightly higher transmission values at
low frequencies, an effect attributed to the presence of the
common mode of the resonator at zero frequency, which we
have neglected in our analytical calculations.

Figure 5 shows the acoustic pressure field at the resonance
frequency, obtained from our numerical simulations, compar-
ing the nonmodulated case [Fig. 5(a)] with the modulated one
[Fig. 5(b)], again assuming operation at point A in Fig. 3(a). We
assume an ultrasound signal to be incident from port 1: In the

FIG. 5. (Color online) Acoustic pressure field for excitation from
port 1. When the modulation is turned off (a), the acoustic signal
is evenly split between the output ports 2 and 3. When the
spatiotemporal modulation with tailored strength and frequency is
turned on (b), it induces strong nonreciprocity by completely routing
the acoustic signal to port 3, enabling ultrasonic circulation.

case of the unbiased resonator, the wave splits evenly between
the two output ports, with 4/9 of the power transmitted to
waveguide 2, 4/9 to waveguide 3, and 1/9 reflected back, due
to the 120◦ rotation symmetry. Due to the reciprocal nature
of the unbiased resonator, such a splitting also occurs when
the device is excited from port 2 or 3, yielding a symmetric
scattering matrix. When the modulation is switched on with
the right frequency and depth, the device routes essentially
all the impinging power to the port at the left of the input,
inducing clockwise nonreciprocal circulation of ultrasound
signals, with very small reflection and insertion loss. From
port 1, the power goes exclusively to port 3, from port 3 it
goes to port 2, and from 2 to port 1, with a handedness that is
opposite to the one of the modulation. The coupling between
substates |+〉 and |−〉, induced by the modulation, generates
an intracavity acoustic state that possesses a null of acoustic
pressure in cavity 2, preventing any leakage of acoustic energy
into the corresponding port. By loading one of the ports with
a matched load, it is also possible to turn the circulator into a
unique two-port ultrasound isolator.

IV. DISCUSSION

An important feature of our device is that high levels of
isolation are obtained for a signal at 18.5 kHz employing a
modulation at a much lower frequency, i.e., 1.2 kHz. According
to Fig. 2, even lower modulation frequencies are possible,
trading off a bit of insertion loss. For the geometry discussed
here, a total displacement of 150 μm is required to obtain the
targeted volume variation of 5%, which is easily achievable at
1200 Hz using conventional actuators. In this frequency range,
for instance, piezoelectric ceramics can provide the necessary
compression. Considering that the acoustic properties of
materials can be modulated much more effectively than the
electromagnetic ones (the acoustic index modulation can reach
tens of percents in magnetoacoustic crystals [16]), the pro-
posed approach to acoustic nonreciprocity appears particularly
attractive for sound and ultrasound applications. In addition,
this solution opens exciting opportunities for high-power
applications when translated back to the electromagnetic
domain, for which conventional magnetic-based circulators
cannot be applied, and the electronic modulation considered
in recent papers [13,17] would fail.

Our design enables compact and large nonreciprocity with
low modulation frequencies and depth, by using a resonant
system to boost the interaction between the external acoustic
wave and the modulated medium. Therefore, as shown by our
coupled-mode theory analysis, the higher the quality factor
Q, the lower the required modulation depth and frequency for
a given performance. In the presence of absorption losses,
the Q factor is decreased with respect to the ideal case
considered here: on top of radiation losses, we now also
have dissipation losses. However, the isolation level of the
device can be maintained either by increasing the modulation
depth and frequency, or by decreasing the radiation losses
by engineering the coupling to the outside waveguides. The
level of isolation, which is due to the presence of a destructive
interference in front of the output port, does not depend on
the presence of losses; however, the modulation requirements
to obtain this destructive interference do depend on it.
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Nevertheless, we would like to underline that the RTV-602
silicon rubber material assumed here is almost lossless from
dc to 1 MHz [15], and we have checked that the results of the
full-wave simulations are unaffected by the presence of the
small imaginary part in the acoustic index of the medium.

We would like to highlight important differences between
this work and Ref. [13], in which a radio-frequency electro-
magnetic circulator based on a parametrically modulated res-
onant cavity is reported. In particular, the resonant properties
of the acoustic structure considered here are rather different,
due to the difference in wave-matter interactions in acoustic
resonators. The electromagnetic resonator presented in [13]
is obtained by coupling three resonators together, obtaining
three different modes by hybridization. Two of them are
degenerate and counterpropagating, and are used to create
the nonreciprocal effect, while the other one is a pulsing
common mode, which can be suppressed by increasing the
coupling between the resonant circuits to a very large value (the
resonators are indeed connected with short circuits). We then
operate near the resonance frequency of the three resonators.
In acoustics, it is not possible to create short circuits without
affecting irreparably the resonators themselves, and therefore
the resonating structure must be completely different. In fact,
here the device is operated well below the resonance frequency
of the three cavities, which are coupled to each other only
weakly. We are working with a lumped resonance mode of
the entire loop, and the pulsing mode is forced by nature to
resonate at 0 Hz. We use this to our advantage by setting the
lumped resonance frequency of the cavity to be far from dc and
minimize the effect of the dc mode. In both the electromagnetic
and acoustic cases, the design constraints and the associated
solutions are directly dictated by the physical nature of the
system, which is evidently very different. Therefore, the
analytical and numerical modeling of the device are in turn
different, as evident by comparing the coupled-mode equations
used here with the ones in [13].

While the proposed device does require an external bias,
we stress that, from the acoustical standpoint, its functionality
is totally passive and the incident acoustic energy is conserved
through scattering, i.e., no power is extracted from or absorbed
by the modulation. This implies that no energy needs to be
provided to the modulation network for the effect to arise,
other than the parasitic energy dissipated in the practical
implementation of the modulation. In addition, although it

supports frequency generation due to time dependency, our
system is fully linear and does not violate the superposition
principle, as a nonlinear device would, which is largely
interesting to avoid signal distortions. With a size below
2.5 cm, our device is as small as λ/6, which makes it a
compact and integrable, noise-free solution for ultrasonic
circulation and isolation. It can be tuned in real time to
modify the value of isolation, insertion loss, reflection, and
even handedness, by simply modifying the modulation depth,
frequency, or phase of the modulation signals. Finally, we
stress that the proposed concept is very general, and it may
be implemented for other types of mechanical waves and
in many frequency ranges, from audible sound to thermal
phonon frequencies. A broad range of applications can benefit
from the concept, spanning acoustic imaging and sonar
systems, underwater acoustic communications, vibrational
energy concentration and harvesting, signal processing, noise
control, heat management via thermal phonon engineering, or
telecommunications where our strategy may be used to build
isolated delay lines based on surface acoustic waves (SAW) or
other types of nonreciprocal SAW devices.

V. CONCLUSIONS

We have put forward a general concept to achieve isolation
and circulation of acoustic signals, relying on rotation imparted
by spatiotemporal modulation of the acoustical properties of
a composite lumped resonator. We have shown that isolation
levels as high as 40 dB can be obtained with an insertion
loss as low as 0.3 dB, in a matched ultrasonic device
operating at 18.5 kHz, and modulated only by a 5% amplitude
at the frequency of 1200 Hz. This work may enable the
realization of efficient acoustic or mechanical circulators
with industrial applications in transducer technology, acoustic
imaging, energy concentration, thermal management, acoustic
communication systems, and noise control.
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