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The statics-dynamics correspondence in spin glasses relate nonequilibrium results on large samples (the
experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical
computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in
three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size
of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach,
we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To
do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
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The glass transition, the dramatic dynamic slowdown expe-
rienced by spin glasses, fragile molecular glasses, polymers,
colloids, etc., upon approaching their glass temperature Tg,
has long puzzled scientists [1]. The phenomenon has been
long suspected to be caused by the growth of a characteristic
length [2], an issue under current investigation [3–5].

Spin glasses enjoy a privileged status in this context, for a
number of reasons. First, their glass transition is a bona fide
phase transition at Tc = Tg [6–8]. Second, consider a rapid
quench from high temperature to the working temperature
T < Tc, where the system is left to equilibrate for a time
tw. The system remains perennially out of equilibrium. This
aging process [9] consists of the growth of glassy magnetic
domains (which reminds us of coarsening [10]). The size of
these domains ξ (tw) is experimentally accessible, and it can be
as large as 100 lattice spacings [11,12] (enormously larger than
any length scale identified on molecular liquids [4,5]). Third,
the growth of ξ (tw) has been well studied numerically [13–22].
In particular, the dedicated Janus computer [23] has allowed us
to cover tw ranging from picoseconds to 0.1 s [20,21]. Fourth,
a statics-dynamics correspondence is expected [24]: detailed
dictionaries have been built [25,26], relating equilibrium
results on finite systems (the typical setting for numerical
simulations) with nonequilibrium results on macroscopic (or
mesoscopic) samples.

The statics-dynamics equivalence is particularly exciting,
because it brings the much awaited possibility of detailed
comparisons between experimental results and theoretical
computations. In fact, experimental effort has been recently
devoted to the measurement of ξ (tw) with that end [11,12,27–
29]. Unfortunately, appealing as it is, the statics-dynamics
equivalence has not yet produced new insights (in fact, not
even the mutual consistency of different dictionaries [25,26]
has been shown).

Here we obtain a complete characterization of the critical
behavior of the three-dimensional Ising spin glass based
solely on the statics-dynamics equivalence. Our Monte Carlo
simulations follow the growth of ξ (tw) on lattices too large to
be equilibrated. In this way, we obtain the largest coherence
lengths ever obtained in a simulation (up to 25 lattice spacing).
Thus armed, we obtain fairly accurate estimates of the critical
exponents. Our results are completely consistent with the

best equilibrium computations on small lattices [30,31]. Our
analysis is obviously related to dynamic scaling [32], with an
important difference. We find it mandatory to eliminate time,
in favor of the coherence length ξ (tw). The reason, explained
below, is that the dynamic exponent z changes its physical
meaning at Tc. Last, but not least, we show in Appendix A
how to perform on conventional processors investigations
previously regarded as impossible without special computers.

The Hamiltonian for the D=3 Edwards-Anderson model
with nearest-neighbors interactions is

H = −
∑
〈x, y〉

Jx, y σx σ y. (1)

The spins σx = ±1 are placed on the nodes x of a cubic lattice
of linear size L = 256 and periodic boundary conditions.
The couplings Jx, y = ±1 are chosen randomly with 50%
probability, and are quenched variables. Each coupling choice
is named a sample. We denote by (· · ·) the average over
the couplings. Model (1) undergoes a spin-glass transition at
Tc = 1.1019(29) [31].

We study the direct quench, the simplest dynamic protocol.
At the starting time tw = 0, the system is in a random
configuration (i.e., T = ∞). We place it instantaneously at
the working temperature T and follow the evolution as tw
increases, Fig. 1. Our time unit is the Monte Carlo step (a full
lattice Metropolis sweep).1

Metropolis dynamics belongs to the universality class of
the physical evolution (it is an instance of the so-called model
A dynamics [33]), and is straightforward to implement [34].
However, our aim is to reach large L and tw. Rather than
resorting to special hardware [22,23,35–37], we employ
synchronous multispin coding on standard CPUs. In a naive
implementation random number generation is a major cost.
However, our minimal energy barrier is 4, rarely overcome

1We have simulated the same 50 samples at T = 1.5 (tw � 223), T =
1.4 (tw � 225), T = 0.5,0.6,0.7,0.8 (tw � 226), T = 0.9,1.2,1.25.1.3
(tw � 228), and at T = 1.0,1.1,1.15 (tw � 229). For each sample we
simulate four independent systems (replicas), {σ (a)

x } a = 1, . . . ,4
[eight replicas at T = 1.1 ≈ Tc, and (to control the possibility of
thermalization effects) at T = 1.25].
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FIG. 1. (Color online) Left: Coherence length ξ12(tw) vs Monte
Carlo time, as computed for model (1) on lattices of size L = 256,
for several temperatures (Tc = 1.1019(29) [31]). One Monte Carlo
step corresponds to 1 ps in physical time [43]. For T � 1.3, we
reach equilibrium. Right: Dynamic exponent z(T ) computed in the
nonequilibrium regime ξ (tw) ∼ t1/z(T )

w . Joined red points stand for
T � Tc. Note the constant value z(T > Tc) ≈ 6 (blue circles). We
perform the fits for tw > 220 ≈ 106 Monte Carlo steps (but for T =
1.3 where 216 � tw � 220, in order to avoid thermalization). We also
show Janus data [21] (green circles) computed for longer times. We
only show the L = 80 Janus data at temperatures free from finite-size
artifacts.

at the temperatures of interest [for instance, exp(−4/Tc) ≈
0.026]. Hence, the Gillespie method [38,39] allows for major
savings (see Appendix A).2

We compute the coherence length from the correlation
function of the replica field qx(tw) ≡ σ

(a)
x (tw)σ (b)

x (tw):3

C4(r,tw) = L−3
∑

x

qx(tw)qx+r (tw). (2)

We restrict the displacement r to a lattice axis and com-
pute integrals Ik(tw) = ∫ ∞

0 dr rkC4(r,tw) . Then ξ1,2(tw) =
I2(tw)/I1(tw) [20,21]. In all cases, we find L > 10 ξ1,2(tw)
hence we regard our data as representative of the thermo-
dynamic limit [20].

Figure 1 shows a rather accurate algebraic growth
ξ (tw) ∼ t

1/z(T )
w [11,15].4 Yet there is some controversy. On

the one hand, low-temperature data suggest z(T � Tc) ≈
zcTc/T [11,15,20,21]. On the other hand, in Ref. [41] a tem-
perature varying protocol with T � Tc produced a numerical
value [zc = 5.85(9) for J = ±1 or zc = 6.00(19) for Gaus-

2Also, we employ Pthreads to simulate a single system in multicore
processors. Our best timings for L = 256 at Tc are: (a) An 8-core
Intel(R) Xeon(R) CPU E5-2690: an 8-threads simulation of a single
system at 50 ps/spin flip. (b) A single 16-core AMD Opteron
(TM) 6272 processor: a 16-threads simulation of a single system
at 62 ps/spin flip. For comparison, a single Janus FPGA runs two
L = 80 systems at 32 ps/spin flip each [20,23].

3Having four replicas at our disposal (eight replicas for T = 1.1,
1.25) we average over the 6 (28) possible pairings of replica indices.

4Other laws [40] are numerically indistinguishable from a power.

sian couplings] hardly consistent with the low-temperature
zc = 6.86(16) [20,21].

Our own data, Fig. 1 right, suggest an exponent z(T )
discontinuous at Tc. Of course this might be an effect of
our z(T ) being an effective exponent (due to our fitting time
window). But this is not a logical necessity.

Indeed, exponent z(T ) carries different meanings. For
T < Tc it describes (glassy) coarsening: the coherence length
grows forever as ξ (tw) ∼ t

1/z(T )
w . Yet z(T > Tc) is concerned

with equilibration. One has a characteristic time τ (T ) [when
ξ (τ,T ) reaches, say, 90% of the equilibrium ξeq] and then
τ (T ) ∝ [ξeq(T )]z

∗
. In fact, for the simplest nontrivial model

(the D = 2 Ising ferromagnet) the coarsening exponent is
zFM(T < T FM

c ) = 2 [10], while z∗
c,FM = 2.1667(5) [42] for

critical equilibration.
Clearly this delicate crossover will require further investi-

gation. Yet we have rationalized why a T � Tc protocol [41]
produces z(T > Tc) ≈ 6.

These complications reinforce our choice of basing finite-
time scaling on ξ1,2(tw), rather than on tw [32,44,45]. To do
so, we adapt Binder’s method [46] (in Appendix C we explore
another possibility [47] that turns out to be less accurate). Let
q(Bl,tw) = ∑

x∈Bl
qx(tw)/l3 be the average of the replica field

on a cubic box of side l. We compute qk(l,tw) = qk(Bl,tw), its
kth power averaged over samples, replica parings, as well as

over boxes Bl . Binder’s ratio U4(l,tw,T ) = q4(l,tw)/q2(l,tw)
2

is a dimensionless parameter likely to display universal
behavior (for instance, U4(l,tw,T ) → 3 when l � ξ (tw) due
to the central limit theorem, see also Ref. [48]).

The analogy with finite size scaling impels us to change
variables: y = [T − Tc][ξ (tw,T )]1/ν and λ = l/ξ (tw,T ). Then,
barring subleading corrections to scaling, we expect

U4(l,tw,T ) = f (y,λ) + [ξ (tw)]−ωg(y,λ), (3)

where ν is the correlation-length critical exponent, ω is the
leading corrections to scaling exponent, and f and g are
dimensionless scaling functions. Note that the independent
variables in the left-hand side of Eq. (3) (l, tw, and T ) are
discrete. Yet the right-hand side variables (ξ, y, and λ) are
continuous. We solve this problem by means of polynomial
interpolations (see Appendix B). Errors are estimated with the
jackknife method [49], computed over the samples.

Figure 2 contains a qualitative discussion of Eq. (3). In
the inset we show data at y = 0 (i.e., T = 1.1, an excellent
approximation to Tc [31]). For large ξ (tw), U4 converges to
the scaling function f (0,λ). On the other hand, in Fig. 2
(main) we show that Eq. (3) actually describes a crossover
in temperature. Let us fix λ = 1 and T > Tc. Then y becomes
large and positive as ξ (tw,T ) grows. We see that U4 approach a
high-temperature limit (a λ-dependent renormalized coupling
constant [50]). At Tc we have the critical limit because y = 0
no matter how large ξ (tw) is. In the spin-glass phase, y becomes
large and negative. For large ξ we reach a low-temperature
limit, that has been much debated in the past [51,52].

In order to compute the critical exponents, we decided to
follow the fixed-height method [53,54]. For a fixed height h,
and fixed λ and ξ (tw,T ), we seek the temperature Th,λ,ξ such
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FIG. 2. (Color online) Binder’s ratio as a function of [ξ (tw,T )]−1,
computed for a fixed dimensionless box size λ = 1 and several
temperatures [recall that λ = l/ξ (tw)]. Inset: Critical Binder’s ratio
as a function of the dimensionless box size for several ξ (tw) (T =
1.1 ≈ Tc). As expected by plugging y = 0 in Eq. (3), the curve is
scale invariant when the small ξ corrections fade away.

that U4 = h. Equation (3) tells us that

Th,λ,ξ = Tc + Ah,λξ
−1/ν + Bh,λξ

−(ω+1/ν) · · · , (4)

where Ah,λ and Bh,λ are scaling amplitudes and the dots stand
for higher-order corrections to scaling. We compute Tc, ν, and
ω by performing joint fits to data for several λ and h, see Fig. 3
(unfortunately, the fit lacks any predictive power for exponent
ω, hence we shall borrow ω = 1.12(10) from [31]). In order
to perform these fits, we considered a fixed grid of coherence
lengths ξn = 2n/8.

A major problem when fitting to Eq. (4) is that of the
singular covariance matrix (we have many data points, but
only 50 independent samples). We solve it following [20,21]:
we fit taking into account only the diagonal part of the
covariance matrix. We perform a fit for each jackknife block,
and compute the final errors from the fluctuations of these fits.
We compute as well the diagonal goodness-of-fit indicator
χ2

diagonal (the sum of the squared deviations of data from fit, in
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FIG. 3. (Color online) Joint fit to Eq. (4) for λ = 0.75. The U4

spacing is 0.02. For all fits, the values of Tc, ν, and ω are held common.
Big data points were included in the fit. The horizontal dotted lines
correspond to Tc ± 	Tc from Eq. (5).

units of their statistical error). This fitting procedure was tested
in Ref. [21] and found to be reasonably stable for χ2

diagonal as
small as half the number of degrees of freedom.

We included in our fit results for λ = 0.75, 1, 1.25, and
1.5. A crucial issue is selecting ξmin, the minimal ξ considered
in the fit. A tradeoff should be found. The larger is ξmin, the
smaller are the systematic errors, but the larger becomes the
statistical uncertainty. We find a stable fit for ξmin � 29/4 ≈
4.75 (χ2

diagonal/d.o.f. = 583/665 if ξmin = 29/4). However, as
we enlarge ξmin we find that χ2

diagonal/d.o.f. decreases mono-
tonically while the statistical error increases. We decided
to stop at the ξmin such that χ2

diagonal/d.o.f. ≈ 0.5 because
errors start increasing wildly at that point. This corresponds
to ξmin = 223/8 ≈ 7.33 (χ2

diagonal/d.o.f. = 229/482). The final
result for our fit to Eq. (4) is

Tc = 1.115(15), ν = 2.2(3). (5)

For comparison, recall the equilibrium results Tc =
1.1019(29), ν = 2.56(4), and ω = 1.12(10) [31]. Varying ω

within the bounds of [31] produces negligible changes in
the results in Eq. (5). It is also interesting to see what
happens fixing ν and ω in the fit to the central values of [31]
(ξmin � 223/8, χ2

diagonal/d.o.f. = 241/483):

Tc = 1.102(8), (6)

in excellent agreement with the equilibrium result.
The anomalous dimension η can be computed by working

directly at T = 1.1 ≈ Tc. We select two times t (1)
w and t (2)

w
such that ξ (t (1)

w ,Tc) = ξ and ξ (t (2)
w ,Tc) = 2ξ . Then the ratio of

integrals is

I2
(
t (2)
w ,Tc

)/
I2

(
t (1)
w ,Tc

) = 22−η + CI/ξ
ω + · · · . (7)

The problem with Eq. (7) is that the amplitude for scaling
corrections CI seems vanishing (within errors), so one could
be afraid that we overestimate the error. Anyhow, for ξmin =
27/4 ≈ 3.36 we obtain η = −0.380(7) and χ2

diagonal/d.o.f. =
10.4/14, to be compared with η = −0.3900(36) [31] (for
larger ξmin fits are stable but χ2

diagonal/d.o.f. drops well below
0.5). Changing ω within the bounds of [31] produces a
negligible change. We estimate that the error induced in η

by the uncertainty in Tc [31] is comparable with the statistical
error obtained at T = 1.1.

Incidentally, one may use the ratio of integrals
I2(t (2)

w ,T )/I2(t (1)
w ,T ) as a (very noisy) substitute of the Binder’s

cumulant in Eqs. (3) and (4) (see Appendix C). In fact, one
may view the temperature crossover in Eq. (3) as a crossover
for the C4(r,tw) correlation function (2). Indeed, for all the T

and tw in this work, the functional form [48]

C4(r,tw) ∼ e−[r/ξ (tw)]b /rθ (8)

satisfactorily fits our data. For small y [i.e., at Tc or for
small ξ (tw)] data follows Eq. (8) with critical parameters.
However, as the coherence length grows, these parameters
are not adequate neither for the paramagnetic phase (at or near
equilibrium, see Fig. 4), nor for the spin-glass phase [20,21].

In this work we have employed statics-dynamics equiva-
lence [26] to obtain some new physical results. In particular, we
have shown how one can study the spin-glass transition in the
dynamic regime relevant to most experiments: nonequilibrium
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FIG. 4. (Color online) Temperature-dependent dynamic cross-
over in the spatial correlation function C4(r,tw) (2). We show C4

vs the dimensionless r/ξ (tw), both at Tc and deep in the paramagnetic
phase (T = 1.3). For small coherence length ξ (tw) ≈ 2.7, data for
both temperatures can be fit to Eq. (8) with critical parameters
b ≈ 1.46 (this work) and θ ≈ D − 2 + η = 0.610(4) [31], see the
continuous lines in the plot. The same parameters work for data
at Tc and ξ (tw) ≈ 20. However, for such a large coherence length,
data at T = 1.3 are better fitted with the three-dimensional free-field
(Gaussian) parameters (b = 1,θ = 1).

data on systems much larger than the coherence length. Once
we trade waiting time by coherence length, standard finite-size
scaling methods [46] are very successful at describing the
temperature-dependent dynamic crossover (a real phase tran-
sition with temperature takes place only for infinite coherence
length). It is then possible that the finite-size crossover found
in equilibrium [55] is the driving force behind the appar-
ent universality violations found experimentally [12,56–59].
However, an alternative explanation, logically possible but
rather dramatic, is that universality does not hold in spin
glasses [60,61].

Regarded as a numerical method to compute critical
exponents, we note that our thermodynamic limit approach
is less accurate than finite-size methods [31,53,62], which is
hardly a surprise.

We conclude by mentioning the two major difficulties (in
our opinion) for an analogous experimental study. On the
one hand, one needs to reach spatial resolution to study the
correlation function C4(r,tw). Progress in this direction are
still incipient. Spatial resolution has been reached only for
a structural glass [63]. For spin glasses, recent experimental
efforts focus on confining geometries [29,64] (which can be
seen as an indirect way to study the correlation function).
On the other hand, the direct quench is a rather crude
approximation: the experimental sample never reaches the
working temperature instantaneously [65,66]. The protocol of
Ref. [41] is, probably, more suitable to model the experimental
setup. However, as Fig. 1 shows, mixing temperatures in the
dynamic evolution is a delicate procedure that requires further
investigation.
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36 days of the full (3072 AMD cores) Memento cluster (see
http://bifi.es). We were partly supported by MINECO (Spain)
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APPENDIX A: SYNCHRONOUS MULTISPIN CODING

Modern CPUs, both Intel and AMD, support 256-bit words
in their streaming extensions. This means that one can perform
basic Boolean operations (AND, XOR, etc.) in parallel for
all 256 bits. Now, it is well known that the Metropolis
update of a single spin can be cast into a sequence of
Boolean operations, see, e.g., [67]. One can use this idea
to simulate several, up to 256, independent systems. This
approach, named asynchronous multispin coding, has been
used many times, see Refs. [22,31,35,68–70] for instance.
References [36,37] offer a creative alternative: In their parallel
tempering simulation each bit represents an independent
system copy (all of them evolve under the same couplings,
but at different temperatures [71,72]). Instead, our aim is to
exploit the streaming extensions to speed up the simulation
of a single system (which is named synchronous multispin
coding).

The main problem with synchronous multispin coding is
that we need 256 independent random numbers, if the 256
spins coded in a word belong to the same physical system.
This breaking of parallelism is usually regarded as a major
inconvenience (see, however, Ref. [41]).

For the sake of clarity, we shall first explain our geometrical
setup and then describe how one can use the Gillespie
method [38,39] to reduce drastically the number of needed
random numbers.

1. Our multispin coding geometry

Physical spins sit on the nodes of a L = 256 lattice with
periodic boundary conditions. Euclidean coordinates then run
as 0 � x,y,z � 255. Each physical spin is a binary variable to
be coded in a single bit, s(x,y,z) = ±1.

We pack 256 physical spins into one superspin. Our
superspins sit in the nodes of a different lattice. It will be
also a cubic lattice with periodic boundary conditions (the
overall geometry is that of a parallelepiped, rather than a
cube). The major requirement is that nearest-neighbor spins
in the physical lattice should be as well nearest neighbors in
the superspin lattice. Our solution is as follows.

Superspins are placed at the nodes of a cubic lattice
with dimensions Lx = Ly = L/8 and Lz = L/4. The relation
between physical coordinates (x,y,z) and the coordinates in
the superspin lattice (ix,iy,iz) is

x = bxLx + ix, 0 � ix < Lx, 0 � bx < 8,

y = byLy + iy, 0 � iy < Ly, 0 � by < 8, (A1)

z = bzLz + iz, 0 � iz < Lz, 0 � bz < 4.

In this way, exactly 256 sites in the physical lattice are given
the same superspin coordinates (ix,iy,iz). We differentiate
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between them by means of the bit index:

ib = 64bz + 8by + bx, 0 � ib � 255. (A2)

An added bonus of Eq. (A1) is that the parity of the original
site, namely the parity of x + y + z, coincides with the parity
of the corresponding superspin site ix + iy + iz. In fact, the
single cubic lattice is bipartite. It can be regarded as a two
interleaved face-centered cubic lattice. A given site is said
to belong to the even or the odd sublattice according to the
parity of x + y + z. For models with only nearest-neighbors
interactions, sites belonging to (say) the even sublattice interact
only with the odd sites.

An important consequence of the even-odd decomposition
is that it eases parallelism. Indeed, we define the full lattice
Metropolis sweep as the update of all the L3/2 even sites,
followed by the update of all the L3/2 odd sites. The bipartite
nature of the lattice makes it irrelevant the updating order of
sites of a given parity. Hence, several updating threads may
legitimately concur on the same lattice, provided that all of
them simultaneously access only sites of the same parity.

2. Saving random numbers

For our synchronous multispin coding we do need to
generate 256 random numbers in order to update a single
superspin. Yet, it has been realized several times that most of
the effort in generating (pseudo) random numbers is wasted
when simulating discrete models at low temperatures [38,39].
In fact, at a given time the simulation may try to overcome
an energy barrier 	E. However, we should overcome it only
with probability e−	E/T . In other words, we waste ∼e	E/T

random numbers (that deny us the permit to overcome the
barrier) until we generate one random number that really
allows us to walk uphill in energy. Let us plug some numbers
for our model, where the possible barrier heights are 	E = 4,
8, or 12. So, at Tc, in the best of cases we use only one random
number out of e4/1.1 ≈ 38.

The way out is simple [38,39]: One simulates the random
number generator. Indeed, we may regard the random-number
generator as a collection of flags. Most of the flags are red
(denying us the right to increase the energy), but there is a
diluted set of green flags (at sites where the generator does
allow us to increase the energy). The trick is setting all flags
to red by default, and then caring only of placing green flags
with the correct probability.

Before explaining how we simulate our random number
generator, let us describe it. By default, let us assume that all
flags are red, for all sites and all barriers 	E = 4, 8, and 12.
Now, for each site in the physical lattice, we draw one 64-bits
uniformly distributed random number: 0 � R4 < 1. If R4 <

e−4/T then we put a green flag for 	E = 4 and draw a second
uniform random number 0 � R8 < 1. Now, if R8 < e−4/T we
put a green flag for 	E = 8,5 and draw a third uniform random
number 0 � R12 < 1. Finally, if R12 < e−4/T we also put a
green flag for 	E = 12. Of course ours is just an instance
among many valid generators. This particular random number
generator was chosen because it is fairly easy to simulate.

5Probability[R4 < e−4/T and R8 < e−4/T ] = e−8/T .

Let us describe how we simulate the generation of R4

(the procedure for R8 and R12 are trivial generalizations).
We generate an integer n4 � 0, with the following meaning:
One performs n4 unfruitful calls to the generator, but on call
1 + n4 we should put a green flag. The cumulative probability
for n4 is

F (n4 � k) ≡ Prob(n4 � k) = 1 − (1 − e−4/T )k+1. (A3)

Hence, we just need to draw an uniform random number 0 �
R < 1 and select n4 = k, where k is the non-negative integer
that verifies

F (k − 1) � R < F (k) [F (−1) ≡ −1]. (A4)

Combining these ideas with the use of look-up tables, we
have found that the overall cost of generating random numbers
can be made quite bearable.

APPENDIX B: INTERPOLATIONS

The major theme of this work is a change of variable: rather
than the the waiting time tw, we wish to employ the coherence
length ξ (tw). Besides, the quantities computed in the left-hand
side of Eq. (3) of the main text were obtained for a discrete
set of values of temperatures T , waiting times, and box sizes
(l). However, our analysis of the right-hand side of the same
equation assumes that the scaling variables y, λ = l/ξ (tw), and
ξ (tw) are continuous. In order to solve this problem we perform
several interpolations.

Let us describe our interpolations. In all cases we perform
a jackknife error analysis. Let us stress that we are talking here
about interpolations, rather than extrapolations.6

The easiest task is the l interpolation. Data are very smooth
(due to their extreme statistical correlation) and a simple cubic
spline does an excellent job.

Let us now address ξ (tw). We take data for times of the form
tw = [2n/4], where n is an integer and [· · · ] is the integer part.
We find that, even for neighboring times in our logarithmic
time mesh, the statistical fluctuations in the coherence length
are significant (see Fig. 1). However, we need a monotonously
increasing function ξ (tw) if we are to invert it [that is, to obtain
tw(ξ )]. Also it is desirable to have a smooth ξ (tw) to eliminate
the short time-scale fluctuations. Our best solution has been
to fit our data to a high-order polynomial in log tw (in the
fits, see main text, we considered only the diagonal part of
the covariance matrix). We checked that χ2

diagonal/d.o.f was
smaller than one. However, in order to avoid an excessive
data smoothing, we enlarged the degree of the polynomial
well beyond that. Basically we stopped before the polynomial
became nonmonotonically increasing in the working time
range. Notice that our error computation (namely a different fit
for each jackknife block) identifies spurious oscillations due
to a too large-order fitting polynomial.

Having in our hands an inverse function tw(ξ ) we proceed to
compute (using the same fitting approach in log tw) U4(λ,ξ,T ).
When needed, see, e.g., Appendix C, we interpolated in the
same way the integrals I2(tw).

6Exceptionally we allowed extrapolations no larger than one grid
spacing in tw, or one fourth of the maximum grid spacing in
temperature.
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Finally, we need to interpolate in T the U4 values computed
at fixed λ and ξ (tw) for our simulation temperatures. In this
case, the variations among neighboring temperatures are typ-
ically much larger than error bars. Hence, even a Lagrangian
polynomial interpolation works well. However, when the
number of data available from the different temperatures is
large, we prefer a fit to a low-order polynomial in T . In practice,
we restrict ourselves to polynomials of at most fifth degree.

APPENDIX C: DYNAMIC CROSSOVER IN THE
CORRELATION FUNCTION

The dynamic crossover (that becomes a true phase transition
with the temperature only for infinitely long waiting time)
was studied in the main text by focusing on the four-legs
correlation function of the overlap field. One could wonder
whether one could study the same crossover on the two points
correlation function. Indeed, this was the route chosen in
Ref. [47] (although the language in Ref. [47] was slightly
different).

Let us start by recalling Eqs. (2) and (8):7

C4(r,tw) ≡ 1

L3

∑
x

qx(tw)qx+r (tw) ∼ e−[r/ξ (tw)]b

rθ
. (C1)

The asymptotic form in Eq. (C1) is expected to hold only for r

much larger than the lattice spacing. Our expectations for the
asymptotic regimes.

(1) When we reach equilibrium in the paramagnetic phase,
we expect a free-field behavior, namely θ = 1, b = 1 in
Eq. (C1).

(2) In the critical regime, y of order one {recall from the
main text that y = [T − Tc][ξ (tw,T )]1/ν} or T = Tc, we expect
θ = D − 2 + η, where D is the space dimension and η is the
anomalous dimension. We are not aware of any prediction for
exponent b. In this work we have found b = 1.46(1).

(3) There is a considerable controversy regarding the
spin-glass phase y  −1. On the one hand, the droplets
model [73–76] predicts θ = 0, although the asymptotic limit
is reached fairly slowly, with corrections of order 1/ξa≈0.2. On
the other hand, the replica symmetry breaking scenario [15]
expects a nontrivial exponent θ ≈ 0.37 [26] and corrections
of order 1/ξθ . To our knowledge, neither of the two theories
have predictions for exponent b in Eq. (C1). It was empirically
found in Ref. [16] that b ≈ 1.5. In fact, we have found that
b = 1.46(1) works just as well in the low temperature phase
(see also Ref. [48]).

In order to bypass the unknown exponent b, one may
consider the integrals (see [20,21] and main text)

In(T ; tw) =
∫ ∞

0
dr rnC4(r,tw,T ) (C2)

∝ ξn+1−θ

∫ ∞

0
du un−θ e−ub

. (C3)

From them we obtain the integral estimator ξ12 = I2/I1 ∝ ξ .

7The standard naming two-legs or four-legs correlation function is
somehow confusing in the spin-glass context. In fact, the product
of the overlap field at two sites (the two-legs function) involves the
product of four spins, hence the name C4.
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FIG. 5. (Color online) For several temperatures, we plot the
susceptibility ratio of Eq. (C5) as a function of the inverse coherence
length.

Our analysis will be based on the scaling properties of the
integral

I2 ∝ ξ 3−θ
12 . (C4)

Note that, in three spatial dimensions, χ = 4πI2, where χ is
the (nonequilibrium analog of) the spin-glass susceptibility.8

The analysis of Ref. [47] was based on the susceptibility
χ (T ,tw) (however, Ref. [47] did not use the variance reduc-
tion methods available for the computation of the integrals
In [20,21] which are most effective because ξ is much smaller
than the system sizes).

As explained in the main text, for any given temperature
we may seek two times t (1)

w and t (2)
w such that ξ12(t (2)

w ,T ) = 2ξ ,
ξ12(t (1)

w ,T ) = ξ .9 Hence, for y of order one, we expect

I2(2ξ,T )/I2(ξ,T ) = 22−ηf (y) + · · · , (C5)

where the scaling function f (y) is such that f (y = 0) = 1 and
the dots stand for corrections to scaling of order ξ−ω. Note that
Eq. (C5) is analogous to Eq. (3) in the main text (where we
were considering the Binder’s parameter instead).10

The crossover implicit in Eq. (C5) is shown in Fig. 5, which
can be directly compared with Fig. 2. One can consider the
ξ → ∞ limits in the plot.

(1) At the critical point T = Tc one expects 22.3900(36) =
5.242(13) [31].

8The relation χ = 4πI2 assumes spatial isotropy in C4, which
becomes an excellent approximation when ξ grows [21].

9One could just as well consider pairs of times such that their
coherence lengths are in any prescribed ratio r . In such a case, Eq. (C5)
would read as I2(rξ,T )/I2(ξ,T ) = r2−ηfr (y) + · · · .

10A statistically irrelevant artifact is the presence of wiggles in Fig. 5
if the order of the fitting polynomial in log tw is large. The origin of
this wiggles has been known for some time [20]. The point is that
each polynomial is evaluated twice, one in the numerator and the
other in the denominator in Eq. (C5). In fact, the effect can be much
alleviated by keeping the order of the polynomial limited to 13. Even
with these polynomials, χ 2

diagonal/d.o.f. lies well below one.
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(2) In the spin-glass phase, the droplets model predict
a common limit 23 = 8 for all T < Tc, while the replica-
symmetry breaking theory expects a limit 2θRSB ≈ 6.19.

(3) The paramagnetic phase is more complicated to dis-
cuss. In fact, for T > Tc, the coherence length grows only
up to its equilibrium value for that temperature ξeq(T ). This
means that all the (paramagnetic) curves in Fig. 5 have an end
point. At this end point the longest time t (2)

w corresponds to

the equilibrium regime (i.e., θ2 = 1), while the earliest time
is still in the nonequilibrium regime. Hence it is not easy to
anticipate the numerical value of the paramagnetic long-time
limit, obtained when ξeq(T ) tends to infinity.

Data in Fig. 5 can be analyzed in exactly the same way we
did for the Binder’s parameter [see Eq. (4) and Fig. 3]. How-
ever, with the susceptibility ratio Eq. (C5), errors are one order
of magnitude larger. This is why we abandoned this approach.
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