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Plastic yielding in nanocrystalline Pd-Au alloys mimics universal behavior of metallic glasses
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We studied solid solution effects on the mechanical properties of nanocrystalline (NC) Pd100−xAux alloys
(0 � x < 50 at.%) at the low end of the nanoscale. Concentration has been used as control parameter to tune
material properties (elastic moduli, Burgers vector, stacking fault energies) at basically unaltered microstructure
(grain size D ≈ 10 nm). In stark contrast to coarse grained fcc alloys, we observe solid solution softening
for increasing Au content. The available predictions from models and theories taking explicitly into account the
effect of the nanoscale microstructure on the concentration-dependent shear strength have been disproved without
exception. As a consequence, it is implied that dislocation activity contributes only marginally to strength. In
fact, we find a linear correlation between shear strength and shear modulus, which quantitatively agrees with
the universal behavior of metallic glasses discovered by Johnson and Samwer [Phys. Rev. Lett. 95, 195501
(2005)].
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I. INTRODUCTION

Over the past two decades, it has been well established
that decreasing the grain size D of polycrystalline metals
into the nanometer regime, D < 100 nm, results in, e.g., a
substantial increase of strength [1], improved fatigue [2], as
well as wear resistance [3]. Gaining insight into the physics of
the underlying deformation mechanisms has motivated intense
research efforts with a focus on studying microstructure-
dependent deformation behavior with grain size as a prominent
control parameter [4]. In particular, when decreasing the grain
size to the lower end of the nanoscale, D � 10 nm, it has
been argued that intragranular crystal plasticity becomes
to a large proportion replaced by intergranular plasticity,
i.e., deformation processes which essentially emerge in the
core region of grain boundaries (GBs). Indeed, computer
simulations and experiments unraveled a variety of modes of
plastic deformation that are mediated by GBs: GB slip and slid-
ing [5–7], and grain rotation [8–10] that may even lead to grain
coalescence but is also an integral part of stress-driven GB mi-
gration (SDGBM) [8,11,12] as well as of shear transformations
(STs) [13,14]. The latter involve shuffling or flipping of groups
of atoms and may act as flow defect operating in the core
region of GBs, thus playing a role in a disordered proximity
similar to the role of dislocations in a crystalline environment.
Moreover, GB facets or ledges and triple junctions act as stress
concentrators, thereby effectively reducing the barrier for
partial dislocation nucleation and emission [15,16]. Because
of the complex interplay of disparate mechanisms, operating
either sequentially or simultaneously, it is still a controversial
issue which role they play in responding to the intrinsic stress
field and which share of overall strain propagation is carried by
them.

To improve our understanding of how different plasticity
mechanisms interact and contribute to strain propagation
on the nanoscale, we study solid solution alloying and its
effect on the strength of the material. Fortunately, the Pd-Au
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alloy system, which is fully miscible and has a negligibly
small tendency to segregation, enables us to prepare any
Au concentration at basically fixed grain size of ≈10 nm. It
so becomes feasible to gradually tune material parameters
(lattice parameter, Burgers vector, elastic moduli, stacking
fault energy, GB energy) and explore their influence on
plastic deformation behavior without changing the character
of microstructure (grain size, texture).

Regarding deformation mechanisms, recent studies on NC
Pd90Au10 have unraveled that plastic deformation is governed
by shear shuffling (STs) at or along GBs, while dislocation
activity more likely plays a minor role [17,18]. Nevertheless,
it is an open problem whether or not an increase of Au
concentration involving a concomitant change of material
parameters will lead to a change of the dominant deformation
mechanism(s) operating at the nanoscale. In particular, the
Pd-Au alloy system exhibits a high stacking fault energy
of ≈180 mJm−2 in the Pd-rich alloys and a low stacking
fault energy of ≈50 mJm−2 on the Au-rich side [19,20]
and, therefore, we expect an increasing propensity for partial
dislocation emission from GBs that goes in parallel with
lowering stacking fault energies. To explore this scenario,
we compare the evolution of strength of coarse-grained (CG)
and NC Pd100−xAux alloys (0 � x < 50) with the predictions
of available theories of solid solution strengthening, relying
without exception on dislocation physics.

II. SOLID SOLUTION STRENGTHENING:
THEORY AND MODELS

Traditional solid solution strengthening theories rely on
the idea that solute atoms, which modify the elastic energy
of a dislocation, act as obstacles to dislocation motion in a
crystalline environment. To characterize the dependence of
flow stress or hardness on composition c, different models have
been suggested which predict linear or power-law (c1/2,c2/3)
increase of flow stress with concentration [21–23]. As shown
later, solid solution strengthening of CG Pd-Au alloys, which
serve as the reference system, can be sufficiently described by
the classical Fleischer theory [22]. Here, the increase of shear
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strength is given by

�τ = AGε3/2c1/2, (1)

ε =
∣∣∣∣ εG

1 + 1/2 |εG| − 3εb

∣∣∣∣ , (2)

where A is a material constant, G is the shear modulus of
the solvent, b is the Burgers vector of the solvent, and c

is the concentration of solute atoms. The increase in shear
strength �τ is primarily a consequence of the local mismatch
in shear modulus (εG = 1

G
∂G
∂c

) and size (εb = 1
b

∂b
∂c

). Overall,
this mismatch results in an effective barrier for dislocation
glide.

Clearly, at the low end of the nanoscale the abundance
of GBs, the volume fraction of which scales as 1/D has to
be taken into account. Rupert et al. [24] adapted Fleischer’´s
model to NC metals by adding two terms which allow for
strength enhancement as well as softening. The first term
comprises dislocation pinning at GBs and the second term
is renormalization of this pinning potency by considering the
global changes of elastic properties and Burgers vector of the
abutting crystallites which are sensed when dislocations are
bowing across them. The total shear strength of NC alloys has
been expressed as

τnc = Gb

D
+ AGε3/2c1/2+ Gb

D

(
1

G

∂G

∂c
+ 1

b

∂b

∂c

)
c, (3)

where D is the grain size of the pure metal and all other
symbols have the meaning already introduced above. The
critical shear strength has three contributions: grain size in-
duced hardening, classical Fleischer hardening, and hardening
or softening related to the global effects of solute addition
(∂G/∂c,∂b/∂c) which are linear in c. In fact, the derived
relation is capable of predicting solid solution softening
whenever G decreases sufficiently with increasing c. The
experimentally observed softening in NC Ni-Cu alloys [25]
and NC Fe-Cu alloys [26] could be well described by
Eq. (3), but also solution strengthening observed in NC Ni-W
alloys [24] that revealed a rather linear increase in hardness
could be equally well described by Eq. (3).

To point to the significance of the stacking fault energy in
controlling strength in NC metals, Asaro et al. [16] proposed
that emission of partial dislocations from GBs, which basically
traverse the entire grain at D ≈ 10 nm, may determine the
strength of the NC material. In this scenario, pre-existence of
dislocations (partial or perfect segments) in GBs is assumed.
The shear stress resolved along the direction of the lead partial
dislocation τped is given as

τped

G
= γisf

Gb
+ 1

3

b

D
, (4)

where γisf is the intrinsic (or stable) stacking fault energy
which controls the equilibrium spacing of partial dislocations
in an unstressed crystal. Alternatively, Asaro et al. also
considered emission of partial dislocations from locations
of stress concentrations at GBs such as GB facets or triple
junctions. The required shear stress to activate such a source

is given by

τsc

G
=

√
8

π

γusf

G(1 − ν)

1

D
, (5)

where γusf is the unstable stacking fault energy and it has been
assumed that D is twice the size of a GB facet. Both models
have been devoted to pure metals. Nevertheless, we may
presume that the effect of alloying is basically captured by the
concentration-dependent stacking fault energies, shear moduli,
and Burgers vectors. The bowing of partial dislocations across
a medium which is modified by substitutional solute atoms is,
however, not taken into account here. For the sake of argument,
we assume that the concentration-dependent and markedly
varying stacking fault energy dominates the deformation
behavior.

As a result of the above survey, validation of solid solution
strengthening theories by experiment requires evaluating how
shear modulus G, Poisson ratio ν, Burgers vector b, which for
fcc metals has a direct relation to lattice parameter a, grain size
D, and stable or intrinsic γisf as well as unstable γusf stacking
fault energy vary with Au concentration. Knowledge of the full
set of material parameters then allows one to compare theory
and experiment on a quantitative basis. Except for stacking
fault energies, we have determined all relevant material param-
eters by experiment. Values for the stable and unstable stacking
fault energies of the Pd-Au system are provided by molecular
dynamics simulations of Schäfer et al. [19] as function of
concentration as well as ab initio calculations of Jin et al. [20]
for the pure metals Pd and Au. Linear variation of stacking fault
energies with composition across the whole composition range
of Pd-Ag alloys were found in experiment [27] and ab initio
electronic structure calculations [28]. To allow for comparison,
we also linearly extrapolate the values from [20]. Relevant
stacking fault energies are summarized in Fig. 3. In what
follows, we discuss sample preparation and how we extract
material parameters by utilizing x-ray diffraction, ultrasound,
and Vickers microhardness indentation tests.

III. PREPARATION AND METHODOLOGY

The binary NC Pd-Au samples, with Au concentration
between 0 and 50 at.%, were prepared by inert gas
condensation (IGC) and compaction at 1.8 GPa [29] to obtain
disk-shaped samples with a diameter of 8 mm and a thickness
of about 1 mm. IGC-prepared samples have a random texture
and log-normally distributed equiaxed grains [30,31] with a
volume-weighted average grain size of Dvol ≈ 10 nm. The
latter was determined using Klug and Alexander’s [32,33]
modified Williamson-Hall technique applied to Bragg-peak
broadening of x-ray diffraction diagrams. Lattice parameters
have been determined from a Nelson-Riley [34] plot of {hkl}-
dependent Bragg peak positions. All diffraction experiments
were performed on a laboratory diffractometer (PANalytical
X’Pert Pro) operated in Bragg-Brentano focusing geometry
and θ -θ mode. The composition of as-prepared specimens was
determined by energy dispersive x-ray spectroscopy (EDAX
TSL Trident system) in a scanning electron microscope
(SEM, JEOL F 7000). CG Pd-Au samples were prepared
by arc melting, cold deformation to a disk, and subsequent
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annealing at 900 ◦C which causes primary and secondary
recrystallization to end in an average grain size of ≈100 μm.
Alternatively, we annealed NC Pd-Au specimens at 400 ◦C to
induce curvature-driven grain growth, resulting in an average
grain size of ≈100 μm. CG specimens were characterized in
analogy to the NC samples except grain size was determined
by electron backscatter diffraction (EBSD) in the SEM.

All specimens were coupled to a 20-MHz ultrasonic
transducer (Panametrics V2173), capable of simultaneously
transmitting longitudinal and transverse waves. The ultrasonic
transducer was connected to a LeCroy WaveRunner 6051
digital oscilloscope, which allowed us, by applying the pulse-
echo overlap method [35], to extract time-of-flight times of the
waves. The velocities of longitudinal and transverse (shear)
waves are given by the ratios of two times the specimen thick-
ness over the respective time of flight. For a quasi-isotropic
material, assuming linear elasticity, the following relations
hold between the scalar shear (G) and Young’s (E) moduli and
the longitudinal and transverse sound velocities, vl and vs [36]:

G = ρv2
s , (6)

E = ρv2
s

3v2
l − 4v2

s

v2
l − v2

s

, (7)

where ρ is the sample density. The overall density of NC
materials is reduced compared to the density of their CG
counterparts. This is due to the fact that the core regions of
GBs carry excess volume [37,38] resulting from atomic site
mismatch that is created when two differently oriented crystal
lattices meet along a common interface. A few percent porosity
due to processing is a second source of density reduction. The
overall density of NC materials can be determined with high
accuracy using the method of Archimedes in conjunction
with a microbalance (reference media: air and diethyl
phthalate) [39]. In the Appendix, we discuss how excess free
volume and porosity can be discriminated and likewise how
measured densities can be corrected for porosity.

It remains to be addressed that Poisson’s ratio ν depends
on E and G and assumes the following form:

ν = (E − 2G)/2G; (8)

more details on this matter can be found in Ref. [40]. Vickers
hardness measurements were performed on a Frank Durotest
38151 testing device applying a testing force of 980 mN
(HV0.1) and averaging over 20 indents per NC sample.
Following the pertinent literature [41,42], we employed the
relation HV ≈ 3σy ≈ 3(2τy) and used microhardness (indent-
diagonal >20 μm) as a measure of shear stress at yielding.

IV. RESULTS AND DISCUSSION

In Fig. 1 we display the Vickers hardness as a function
of Au concentration for both CG and NC Pd-Au alloys. As
expected, CG Pd-Au (D ≈ 100 μm) shows classical solid
solution hardening behavior, whereas the hardness of the
NC alloys decreases with rising Au content. Before focusing
on this fundamental discrepancy, we set the benchmark for
comparison by examining whether the CG alloys agree with
the predictions from Fleischer’s model [Eq. (1)].

FIG. 1. (Color online) Vickers hardness HV of nanocrystalline
(black squares) and coarse-grained [(blue) circles] Pd-Au as a
function of Au concentration. Dashed line represents a least-squares
fit to the data points based on the prediction from Fleischer’s model
according Eq. (1).

The needed material parameters (lattice parameter, shear
modulus) are displayed in Fig. 2 together with the data for
the NC alloys. Clearly, the lattice parameters follow Vegard’s
rule and it is straightforward to determine ∂b/∂c = (13.32 ±
0.06) × 10−2pm/at.%, where it has been assumed that for full
dislocations in a fcc lattice b = a/

√
2, and bp = a/

√
6 for

partial dislocations. Surprisingly, the shear modulus of the
CG alloys exhibits only a weak concentration dependence
∂G/∂c = (−0.3 ± 0.2) × 10−3GPa/at.%. With the solvent
values for b = 275.0 ± 0.1 pm and G = 44.0 ± 0.5 GPa taken
from the pure Pd specimen and using least-squares fitting, we
can verify that the Fleischer model (dashed line in Fig. 1) is in
good agreement with our experimental data. The parameter A

in Eq. (1) is a material-specific constant which was treated
as free fit parameter and has been determined to be A =
0.029 ± 0.001.

To analyze the observed solution softening behavior of
NC Pd-Au alloys (Fig. 1), the model of Rupert et al. [24]
seems predestined to be applied here since the negative slope
of ∂G/∂c [Fig. 2(b)] is a necessary prerequisite for showing
softening. With the grain size D of pure NC Pd taken from
Fig. 2(a) and A = 0.029, it is straightforward to compute τnc

according to Eq. (3). As displayed in Fig. 4, the model of
Rupert et al. neither reveals softening nor is it capable of
agreeing with the magnitude of the combined size and alloying
effects in the NC Pd-Au alloys.

Concerning this discrepancy, one could argue that the
effect of dislocation motion through NC pinning points is
better approximated by the grain sizes related to the alloy
specimens instead of the slightly larger value of pure NC Pd,
but this would even enhance the discrepancy connected with
the magnitude of strength without giving rise to softening.
Segregation or desegregation of solutes to or from GBs may
also be invoked as a source of disagreement. However, as
shown in Fig. 2(a), the lattice parameters of CG as well as
NC Pd-Au alloys follow the same Vegard rule, implying that
pronounced Au segregation to GBs can be ruled out to cause
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FIG. 2. (Color online) The following parameters are plotted as
function of global Au concentration: (a) Mean grain size Dvol (black
triangles) of NC Pd-Au and lattice parameter a of both NC Pd-Au
(black dots) and coarse-grained samples [(blue) circles]. Dashed line
connects aPd and aAu = 407.9 pm [43] according to Vegard’s rule. (b)
Shear modulus G of coarse grained [open (blue) squares] and NC
Pd-Au. Black squares represent G values not corrected for porosity
and the open (green) squares show the related G values but corrected
for porosity (for details see the Appendix). Dashed or dashed-dotted
lines are linear fits to the data points. (c) Poisson’s ratio ν of CG [(blue)
circles] and NC samples (black dots); ν is basically not affected by
porosity.

softening. We are not intending to discard the model of Rupert
et al.; in fact, we suppose that the assumptions made in this
model may properly describe the deformation behavior of NC
alloys at grain sizes larger than 20–30 nm.

Eventually, we scrutinize the influence of stacking fault
energy on the deformation behavior of NC Pd-Au alloys by
referring to Asaro’s models. The material parameters shown
in Figs. 2 and 3 have been used as input parameters to Eqs. (4)
and (5). When increasing Au concentration is followed by a
decrease in stacking fault energy, one argues that the respective
Pd-Au alloy systems become increasingly susceptible to
partial dislocation emission, planar slip, fault formation,
and twin formation. To discriminate between twinning and
dislocation-mediated slip, Jin et al. [20] defined a characteristic
material measure � = γisf/γusf (see inset in Fig. 3), which
is correlated with the tendencies to emit partial dislocations,
perfect dislocations, and twins. Based on a universal scaling
law for planar fault energy barriers, they argued that a relatively

FIG. 3. (Color online) Stable (isf) and unstable (usf) stacking
fault energies γ of Pd100−xAux. Data (full lines) were taken from
Schäfer et al. [19], and values for pure Pd and Au (squares) are from
Jin et al. [20]. Broken lines represent linear interpolations between
the pure material values from Jin et al. [20]. Inset: ratio between γisf

and γusf plotted against Au concentration.

large value of � ≈ 0.7, e.g., of NC Pd90Au10 (inset in Fig. 3)
indicates that emission of trailing partials leading to perfect
dislocations is favored over twin nucleation. When � > 0.8,
it is suggested that twinning can be basically discarded as
competitive deformation mode [20]. It is therefore tempting
to assume that partial dislocation emission dominates strain
propagation. However, this reasoning is in conflict with recent
detailed studies of dislocation activity in NC Pd90Au10 [18,30].
Even at high applied strains �1, partial and full dislocation
glide has been shown to only marginally contribute to overall
strain. This evidence fully agrees with our observations
displayed in Fig. 4, reflecting that neither the emission of
partials from pre-existing dislocation segments [Eq. (4)] nor
from stress concentrators located in or at GBs [Eq. (5)] are
reasonably compatible with the experimental data. Therefore,
we conclude that either these models are imperfect or the
invoked presuppositions are not met by the NC Pd-Au alloys.

In fact, the latter argument seems to be valid because
detailed studies of thermal activation parameters in NC
Pd90Au10 [17] in conjunction with the above-mentioned in-
vestigations of dislocation activity [18,30] have unraveled that
dislocation scarcity makes room for GB-mediated deformation
in NC metals [18]. In particular, shear shuffling or STs have
been identified as the major carrier of strain. In other words,
in the limit of small grain sizes (D � 10 nm), it appears that
NC metals mimic glassy behavior. In order to independently
verify this idea, we compare the mechanical behavior of NC
Pd-Au alloys with the deformation behavior of bulk metallic
glasses (BMG).

Johnson and Samwer [44] noted that the shear yield
stresses τy of metallic glasses at room temperature exhibit
universal behavior. Based on compressive yield stress σy

data and using τy = σy/2, they extracted the linear corre-
lation τy/G = 0.0267 ± 0.002 from mechanical testing of
more than 30 different metallic glasses. Mechanistically, the
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FIG. 4. (Color online) Comparison of different theories for lim-
iting shear strength (τy) mechanisms and experiment. Black squares,
shear strength of NC Pd-Au deduced from Vickers hardness measure-
ments using HV ≈ 6 τy . Open (green) circles, NC pinning model for
solid solution strengthening or softening. Open (blue) symbols and
solid lines, emission of partials from stress concentrations (τsc); open
(red) symbols and dashed lines, emission of partials from pre-existing
dislocations (τped). Diamonds represent data using stacking fault
energies from Schäfer et al. [19] and triangles refer to the straight
line extrapolations connecting the stacking fault energy data from Jin
et al. [20].

elastic-to-plastic transition involves a percolation of STs in
space and further deformation increments generate new STs.

A second aspect of universal behavior relates to the temper-
ature dependence of shear yield stress. Based on a cooperative
shear model, they predicted and experimentally verified that
temperature dependencies of the shear yield stresses of a
large number of metallic glasses fit the universal scaling law
τy = τ̂ − τ (γ̇ ,T )(T/Tg)2/3 for temperatures T � Tg , where
Tg is the glass transition temperature. The athermal threshold
stress τ̂ represents the maximum level of shear resistance
as T → 0 K. The term τ (γ̇ ,T ), where γ̇ is the prescribed
strain rate, has been estimated to be very weakly temperature
dependent and for typical strain rates of 10−2–10−4 s−1 can be
approximated as constant τ (γ̇ ,T ) = (0.016 ± 0.002) G.

A third aspect of universality of this data set has been iden-
tified by Argon [45]. Introducing an appropriate normalization
of the (T/Tg)2/3 scaling relation, he has demonstrated that the

FIG. 5. (Color online) Shear stress at yielding as a function of
room temperature shear modulus. Open (blue) circles, coarse grained
Pd-Au; black squares, NC Pd-Au samples related to their shear moduli
not corrected for porosity; open (green) squares: same samples related
to shear moduli corrected for porosity; (red) squares, green data
points related to the effective shear moduli of grain boundaries; gray
diamonds, more than 30 different bulk metallic glasses from Johnson
and Samwer [44].

athermal threshold stress τ̂ ∼= 0.035 G also manifests universal
character. Moreover, he pointed out that all metallic glasses
that can be idealized as hard-sphere structures, regardless
of their packing in various forms of short-to-medium-range
order, have a rather universal plastic response in their yield
behavior.

The available material parameters for the Pd-Au alloys
enable us to plot shear yield stress versus room-temperature
shear modulus to reveal whether agreement or conflict prevails
related to the universal behavior τy ≈ 0.0267 G seen in BMGs.
For comparison, we display data of shear stress at yielding
versus room temperature shear modulus for a variety of
metallic glasses taken from Johnson et al. [44] together with
our data from CG and NC Pd-Au alloys in Fig. 5. We note that
the data points of the CG specimens are certainly not related in
any aspect to the metallic glasses since the latter cannot sustain
the formation of dislocations or other soliton-like defects.
By contrast, the data points of the nanoscale microstructures
(D ≈ 10 nm) approach the slope of the universal behavior of
BMGs (see the Appendix for more details) but otherwise are
shifted to shear modulus values being too large. A rationale
that may explain this remaining discrepancy is the following.

We have recently shown [40] that the shear modulus of
GBs in NC metals is reduced by about 30% compared to
the respective bulk value. It seems therefore plausible to
assume that the activation of STs essentially takes place in
the core region of GBs. When the shear resistance of GBs as
a consequence controls the onset of yielding, it thus naturally
follows that the measured shear yield stress should correlate
with the shear modulus Ggb of GBs.
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Based on the ray approach of ultrasound propagation and
assuming that time of flights through crystallites and GBs
are additive, we can write for the ultrasound velocity vgb in
GBs [40]

vgb = β vnc vx

(β − 1) vnc + vx
, (9)

where vx is the sound velocity in the related CG material
and vnc is the overall ultrasound velocity in NC specimens.
The parameter β defines the length share of GBs, which is
proportional to δ/D, where δ is the GB thickness; explicit
expressions for β and δ are given in the Appendix. By exciting
transversal sound waves, measuring vx and vnc, and solving
for vgb according to Eq. (9), it is straightforward to determine
Ggb = ρgbv

2
gb, where ρgb is the GB density. Using a rule of

mixture approach ρnc = (1 − α)ρx + αρgb, we can solve for
ρgb, where ρnc represents the density of the NC Pd-Au alloys,
ρx is set to the known bulk densities, and the parameter α

represents the volume fraction of GBs; for more details we
refer to the Appendix.

Alluding to the rationale given above, it is recommended
that we correlate shear yield stresses with Ggb instead of Gnc.
As shown in Fig. 5, the renormalization of τy with Ggb shifts
the data points now right onto the straight line manifesting
the universal behavior of BMGs. This evidence not only
suggests that STs are dominant carriers of plastic strain in
NC Pd-Au alloys but also implies that strain propagation
dominantly takes place at or along GBs. Nevertheless, to
make deformation happen in a compatible manner, other
deformation mechanisms that support strain accommodation
and dissipate local stress concentrations should coexist, not
least to avoid catastrophic failure appearing in the early
stage of plastic material response. Likewise, using molecular
dynamics simulations, Rupert [46] found that the yield
strength for a broad variety of Cu-based NC alloys with
D = 5 nm was linearly related to the Young’s modulus of those
samples in agreement with experimental work on metallic
glasses by Takeuchi et al. [47]. Rupert pointed out that this
behavior of NC metals manifests collective GB deforma-
tion physics reminiscent of amorphous metal deformation
physics.

The conclusions given above are in line with a detailed
analysis of the microstructural evolution of NC Pd90Au10

during in situ deformation and high-energy x-ray microbeam
diffraction [18]. The central evidence suggests that strain
propagation in the so-called microplastic regime is solely due
to linear elasticity and STs. The latter carry about 70 % of
the overall strain at the onset of yielding. Beyond yielding,
dislocation activity and stress-driven GB migration accompany
STs but their respective share is on the order of 10% only, just
as the share of linear elasticity. Moreover, by investigating
the stress dependence of the free energy of activation, �G(τ ),
related to inelastic deformation of NC Pd90Au10 alloys, Grewer
et al. [17] found that the barrier height �G exhibits univer-
sal scaling behavior �G ∝ �τ 3/2, where �τ is a residual
load [48,49]. They have also shown that this scaling behavior
leads to a generalization of the universal T 2/3 temperature
dependence of plastic yielding in metallic glasses. From the
functional form of �G = �G(τ ), the athermal threshold
stress τ̂ = τ (�G = 0) = 1.2 GPa, representing the maximal

shear resistance as T → 0 K, has also been determined [17].
The ratio τ̂ /Gnc = 0.033 compares favorably with Argon’s
universal relation τ̂ ∼= 0.035 G. When T → 0 K, we expect
the thermally activated GB-mediated deformation modes to
become frozen out. Therefore, we use the shear modulus Gnc

to normalize τ̂ of NC Pd90Au10. Overall, it emerges that the
yield (inelastic flow) behavior of NC Pd90Au10 alloys in the
limit of small grain sizes agrees remarkably well with the three
distinct aspects of the universal yield behavior of BMGs. It
remains to be verified that this is true for the whole composition
range.

V. CONCLUSIONS

Studying solid solution effects on the strength of NC Pd-Au
alloys, we present compelling evidence that the deformation
physics of NC metals at the low end of the nanoscale (D �
10 nm) is reminiscent of the deformation behavior of metallic
glasses. In particular, it could be verified that the universal yield
behavior of metallic glasses, i.e., the strictly linear relation
between shear yield stress and shear modulus, is also obeyed
for NC Pd100−xAux alloys (0 � x < 50 at.%).

Moreover, we have shown that the predictions from
dislocation-based models and theories related to solid solution
effects on strength (hardening, softening) are violated. The
general notion that twin and stacking fault formation probabil-
ities increase with decreasing ratio � = γisf/γusf of intrinsic to
unstable stacking fault energy [20,50], where � is decreasing
from ≈0.75 for pure Pd to ≈0.30 in case of pure Au (see
inset Fig. 3), is contradicted here. Altogether, this evidence
also casts doubts on the applicability of traditional concepts
of work or strain hardening in NC alloys at D < 10 nm. As
in metallic glasses, it would be desirable to study a variety
of different material systems to further validate the findings
discussed above. In the end, we would like to understand which
atomic-scale feature(s) makes GBs propagating strain via
shear transformations (STs) the generic flow defect in metallic
glasses, but nevertheless avoiding serrated flow behavior and
eventually runaway shear band formation. The identified
alliance between metallic glasses and NC alloys may open
an avenue to create ultrastrong, plastically deformable alloys
that prevent catastrophic failure.
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APPENDIX: DETERMINATION OF
GB SHEAR SOFTENING

In what follows, we present the full set of equations, addi-
tional experimental and literature data, as well as assumptions
and approximations that have been made to arrive at the
conclusions drawn from Fig. 5.

In Fig. 6, we display the crystalline bulk density ρx, which
has been computed based on the continuous increase of lattice
parameter with increasing Au concentration and the associated
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FIG. 6. (Color online) Experimentally determined density of NC
Pd-Au, ρmeas (error bars within symbol size), which includes porosity.
For comparison, the theoretical crystal density ρx and grain boundary
density ρgb derived from ρmeas corrected for porosity are shown.

change of the fcc unit cell volume of the continuous miscible
Pd-Au alloy system. We also show the measured density
ρmeas of the as-prepared NC Pd-Au alloy specimen. The
density deficit ρx − ρmeas of as-prepared specimens is related
to porosity P , entailed by processing, as well as excess volume
〈Vex〉 stored in the core region of grain boundaries.

The latter quantity is, in the spirit of Gibbsian excess quan-
tities, defined as 〈Vex〉 := (Vnc − Vx)/AGB ≡ e and therefore
has the dimension of length; Vx represents the same amount
of material as contained in Vnc but constituting a homogenous
crystalline phase (reference state) characterized by A/Vx → 0,
where A represents surface and/or interface (grain boundary)
area. Experimental and theoretical (computer simulation)
values for e are given in the pertinent literature [37,51,52]. For
NC Pd, we find values of e for as prepared specimens in the
range 0.06 nm < e < 0.14 nm; structurally relaxed specimens
experience a roughly 50% decrease of e. Since we compare
as-prepared NC samples with as cast—neither annealed, aged,
nor rejuvenated—metallic glasses, it is in order to also utilize
as-prepared values as input parameter for further analysis; in
what follows, we employ the mean value e = 0.10 nm. In case

of Au, we find values of e ≈ 0.01 nm for fully relaxed grain
boundaries [53,54]. In analogy to NC Pd, we assume that the
excess volume of unrelaxed Au grain boundaries amounts to
e ≈ 0.02 nm, and we further assume, in lack of available data,
that e decreases linearly with increasing Au concentration to
eventually approach the pure Au value.

Porosity is defined as P := 1 − (ρmeas/ρnc) where ρnc is the
density of pore-free but excess-volume-carrying NC material.
Alternatively, the measured density is given as ρmeas =
Pρvoid + (1 − P )ρnc which simplifies to ρmeas = (1 − P )ρnc

as ρvoid ≈ 0. Since NC metals in the limit of small grain
sizes can be treated as statistically homogenous and isotropic
objects, we use a rule of mixture approach to express ρnc

in terms of ρx and ρgb where the latter quantity denotes the
grain-boundary density. With the volume fraction α of grain
boundaries (interface), we then obtain

ρnc = αρgb + (1 − α)ρx. (A1)

The ansatz we use to estimate α = Agbδ/V = 2δ/〈L〉area relies
upon the stereological identity A/V = 2/〈L〉area, where A/V

represents the interface area per unit volume of crystal and
〈L〉area denotes the area-weighted average column length of
crystal. In reference [31], we show that 〈L〉area is related to
the experimentally (XRD) extracted grain size via 〈D〉vol =
3
2 〈L〉area exp {(ln σ )2}, where σ measures the width of the grain
size distribution function, which is also deducible from peak
profile analysis of x-ray diffraction patterns [31]. The symbol
δ describes the average structural width of grain boundaries
and enters ρgb := m/Agb · δ. Assuming that low hkl-indexed
lattice planes abut the grain boundary, it is practical and in the
spirit of the structural unit model of GBs [55,56] to write δ ≈
3(a/

√
3) + e where a denotes the lattice parameter. Since e as

well as a depend on the Au concentration, the structural width
is also concentration dependent. However, we compute that
the increase of a with increasing Au concentration is basically
compensated by the decrease of e, so it is straightforward
to accept δ ≈ (0.76 ± 0.01) nm being constant, where aPd =
0.389 nm has been used. We eliminate the mass m by looking
into the ratio ρgb/ρx = 1/(1 + e/(

√
3a)).

As a result, ρmeas becomes a function of P,Dvol, and σ when
δ is treated as constant. We can solve now for P to retrieve
the composition-dependent porosity related to the specimens
shown in Fig. 2. With these results (see Table I), we are

TABLE I. Parameters: gold concentration in PdAu, lattice parameter a, width of the log-normal crystallite size distribution σ , GB volume
fraction α, GB length fraction β, porosity P , transversal sound velocity vs,nc, measured density ρmeas, grain size Dvol, GB density ρgb, and GB
shear modulus Ggb.

at.% Au 0.00 13.05 27.18 34.55 45.17
a (pm) 388.5 ± 0.2 391. ± 0.1 393.5 ± 0.1 395.3 ± 0.2 397.1 ± 0.2
σ 1.70 1.70 1.71 1.65 1.58
α 0.23 ± 0.01 0.23 ± 0.03 0.28 ± 0.03 0.29 ± 0.04 0.28 ± 0.03
β 0.29 ± 0.03 0.30 ± 0.05 0.38 ± 0.06 0.37 ± 0.07 0.34 ± 0.0
P (%) 2.58 2.13 3.18 1.04 3.56
vs,nc (m/s) 1566 ± 50 1447 ± 71 1430 ± 58 1332 ± 78 1257 ± 72
ρmeas (g/cm3) 11.20 12.278 ± 0.006 13.184 ± 0.007 13.992 ± 0.003 14.479 ± 0.003
Dvol (nm) 10.5 ± 1.1 10.0 ± 2.0 7.7 ± 1.4 7.2 ± 1.8 7.0 ± 1.2
ρgb (g/cm3) 9.6 ± 0.2 10.7 ± 0.8 11.9 ± 0.6 12.5 ± 1.5 13.4 ± 0.9
Ggb (GPa) 24 ± 2 22 ± 3 24 ± 2 22 ± 4 21 ± 3
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able to also display the shear modulus Gnc−corr = ρnc v2
s,nc =

ρmeas/(1 − P ) v2
s,nc, which is corrected for porosity. Overall,

we find that such small amounts of porosity have rather little
influence on the shear modulus when compared with the
difference between coarse-grained bulk and nanocrystalline
material [see Fig. 2(b)].

The quantity of interest is the shear modulus of grain
boundaries Ggb that is formally defined as

Ggb = ρgb v2
s,gb, (A2)

where ρgb is a known quantity as discussed above. An expres-
sion for vgb, generally applicable to transverse or longitudinal
sound velocity, has been derived by Grewer et al. [40] based
on the assumption that running times of sound waves across
crystalline and grain boundary phase add up. Equation (9)
represents this expression, which we repeat here for the sake
of clarity:

vgb = β vnc vx

(β − 1) vnc + vx
. (A3)

Apart from the experimentally determined values for vs,x

and vs,nc, the length share of grain boundaries [40], β =
4δ/(4δ + 3〈L〉area exp {−2 ln(σ )2}), enters vs,gb but is also a
function of known quantities. Putting all this information (see
Table I) into Eq. (A2) finally yields the re-evaluated data points
displayed in Fig. 5. We are aware of a computer simulation
study [57] addressing the effect of porosity on the elastic and
yield behavior of NC Pd. Our observed slight decrease of
moduli is consistent with their results. Unlike our observations,
they identify the onset of plasticity at much larger stresses, on
the order of 5 GPa, which has been associated with dislocation
nucleation at stress concentrators. It is also found that porosity
entails a linear but slight decrease of the onset of yielding.
We refrain from correcting our shear yield stress values for
porosity by adapting their data because it is a priori not
obvious how different deformation mechanisms are affected

FIG. 7. (Color online) Shear stress at yielding as a function of
room temperature shear modulus. Black squares, NC Pd-Au samples
related to their shear moduli not corrected for porosity; open (green)
squares, same samples related to shear moduli corrected for porosity;
(red) squares, green data points related to the effective shear moduli
of grain boundaries. Gray diamonds, more than 30 different bulk
metallic glasses from Johnson and Samwer [44]. Dash-dotted gray
line, universal yield behavior of BMGs; dashed (green) line, linear fit
to green data points.

by porosity and how this is influencing the yield behavior.
In any case, however, we would expect that our yield stress
values would shift to larger values if it were possible to come
up with a valid correction procedure for porosity. As a final
result, Fig. 7 shows with magnified scale to which precision the
bulk metallic glasses, shown by our corrected and uncorrected
data points, follow the universal behavior represented by the
dash-dotted straight line. The observation of basically identical
slopes of BMGs and NC Pd-Au lends additional support to our
contention that the deformation physics of NC metals at the
low end of the nanoscale is reminiscent of the deformation
behavior of metallic glasses.
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