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Density-functional calculation of static screening in two-dimensional materials:
The long-wavelength dielectric function of graphene
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We calculate the long-wavelength static screening properties of both neutral and doped graphene in the
framework of density-functional theory. We use a plane-wave approach with periodic images in the third
dimension and truncate the Coulomb interactions to eliminate spurious interlayer screening. We carefully address
the issue of extracting two-dimensional dielectric properties from simulated three-dimensional potentials. We
compare this method with analytical expressions derived for two-dimensional massless Dirac fermions in the
random phase approximation. We evaluate the contributions of the deviation from conical bands, exchange
correlation, and local fields. For momenta smaller than twice the Fermi wave vector, the static screening of
graphene within the density-functional perturbative approach agrees with the results for conical bands within the
random phase approximation and neglecting local fields. For larger momenta, we find that the analytical model
underestimates the static dielectric function by ≈10%, mainly due to the conical band approximation.
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I. INTRODUCTION

The electronic properties of two-dimensional (2D) mate-
rials have been intensively studied in the past decade. They
offer the opportunity to probe exciting new low-dimensional
physics, as well as promising prospects in electronic device
applications. Among those interesting properties is electronic
transport. In the context of electronic transport in graphene,
screening is crucial for electron scattering by charged im-
purities [1–4], electron-phonon coupling [5–7], or electron-
electron interactions [8].

Dimensionality is well known to be essential in determining
the physical properties of materials. Correctly describing
the physics of 2D materials requires careful modeling and
definition of the relevant physical quantities. This is partic-
ularly true for ab initio calculations based on a plane-wave
basis set, as they rely on periodic boundary conditions along
the three dimensions. In this framework, when simulating
low-dimensional materials, periodic images of the system are
necessarily included in the calculation. For some physical
properties, the interactions between the periodic images are
sufficiently suppressed by imposing large distances between
them [9]. However, if the electronic density is perturbed at
small wave vectors, long-range Coulomb interactions between
electrons from different periodic images persist even for
very large distances, leading to some spurious screening. On
the other hand, ab initio calculations have the advantage of
describing a complete band structure and accounting for local
fields. Local fields designate electronic density perturbations
at wavelengths smaller than the unit-cell dimensions [10–12].
Accounting for local fields usually requires heavier analytical
and computational work [13–15]. They have been estimated
in various semiconductors using first-principles calculations
[16–20] and usually renormalize the screening by a few tens
of percent.

The static dielectric function of graphene has been derived
analytically within a 2D Dirac cone model [21–27] in the
random phase approximation (RPA). In those derivations, the
role of higher energy electronic states, the deviation from

conical bands, and the so-called local fields were neglected.
Later, quasiparticle self-consistent GW calculations [28] of
the screening of point charges in neutral graphene seemed
to indicate a significant contribution from the local fields.
The general behavior of the static dielectric function was
found to be quite different from the analytical RPA derivation.
However, Coulomb interactions between periodic images were
not disabled. There have been some propositions [29,30],
within density-functional theory, to correct the contributions
from the periodic images. More simply, complete suppression
of those spurious interactions can be achieved by cutting off
the Coulomb interactions between periodic images [31–33].
In a recent study of the energy loss function of neutral isolated
graphene [34], the use of a truncated Coulomb interaction
(Coulomb cutoff) was implemented in the framework of
time-dependent density-functional theory. It was found that
the dynamical screening properties of graphene were strongly
affected by the spurious interactions between periodic images.

In this work, we focus on the long-wavelength and static
screening properties of both neutral and doped graphene.
We use density-functional perturbation theory (DFPT) as
it includes the complete band structure of graphene and
the effects of local fields [35,36] and exchange correlation
in the local density approximation (LDA). We implement
the Coulomb cutoff technique and carefully address the
issue of extracting two-dimensional dielectric properties from
simulated three-dimensional potentials. We then compare our
DFPT calculations with the analytical derivations for the
two-dimensional massless Dirac fermions within RPA.

In Sec. II, we set the general background of this work by
defining the static dielectric function in different dimension-
ality frameworks. In Sec. III, we present different methods
to calculate the static dielectric function of graphene. This
includes analytical derivations previously developed [21–27]
and a self-consistent solution implemented in the phonon
package of the Quantum ESPRESSO (QE) distribution. In
Sec. IV those methods are applied to both doped and neutral
graphene and the results are compared.
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II. STATIC DIELECTRIC FUNCTION

In this section we introduce the quantities of interest in
the formulation of the static dielectric response. We use the
density-functional framework within LDA and atomic units
to be consistent with the following ab initio study. Both the
unperturbed system and its response to a perturbative potential
are described within this framework. We start with a quick
description of the unperturbed system. Since we are interested
only in the static limit here, we consider a time-independent
Kohn-Sham (KS) potential [37] VKS(r), where r = (x,y,z) is
a space variable. This potential is the sum of three potentials:

VKS(r) = Vext(r) + VH(r) + VXC(r). (1)

In the unperturbed system, the external potential Vext is simply
the potential generated by the ions of the lattice. The remaining
potentials are functionals of the electronic density. The Hartree
potential VH reads

VH(r) = e2
∫

dr′ n(r′)
|r − r′| , (2)

and VXC is the exchange-correlation potential. Since the KS
potential determines the solution for the density which in turn
generates part of the KS potential, this approach leads to a self-
consistent problem. When solved for the system at equilibrium
with no perturbation, the ground-state density n0(r) is found.

We now proceed to the description of this system within
perturbation theory. An external perturbing potential δVext

is applied. This triggers a perturbation of the electronic
density such that the total density is n0 + δn, where δn is
the first-order response to the perturbing potential. Likewise,
all the previously introduced potentials can be separated
into an equilibrium and a perturbed part. The screened
perturbation δVKS felt by an individual electron is the sum of
the bare external perturbation δVext and the screening potential
δVH + δVXC induced by the density response δn:

δVKS(r) = δVext(r) + δVH(r) + δVXC(r). (3)

This leads to another self-consistent system [19] solved by
the density response δn. From this response we can extract the
quantities characterizing the screening properties of a material.
The induced electron density δn can be seen as independent
electrons responding to the effective perturbative potential
δVKS:

δn(r) =
∫

dr′χ0(r,r′)δVKS(r′), (4)

thus defining the independent particle static susceptibility χ0.
It can also be seen as interacting electrons responding to the
bare external perturbative potential:

δn(r) =
∫

dr′χ (r,r′)δVext(r′), (5)

thus defining the interacting particle susceptibility χ .
We can now proceed to further description of the screening

properties of the material. The static dielectric function is first
defined in three- and two-dimensional frameworks in order
to highlight and clarify their differences. We then treat the
intermediary cases of a 2D-periodic system of finite thickness
and a periodically repeated 2D system, particularly relevant for

ab initio calculations. For those cases, we will determine the
conditions in which it is suitable to define a 2D static dielectric
function.

A. Three-dimensional materials

In a periodic system, it is more convenient to work with the
Fourier transform of Eq. (4). Considering a periodic external
potential δVext(r) = δVext(q)eiq·r of wave vector q, we have in
linear response theory

δn(q + G) =
∑
G′

χ0(q,G,G′)δVKS(q + G′). (6)

Here, reciprocal lattice wave vectors G,G′ were introduced.
Even though δVext(r) only has a q component, the electronic
density response can include larger wave vectors q + G.
Consequently, the induced and total potentials can also have
q + G components. Those small wavelength components
(smaller than the lattice periodicity) in the response of the
electrons are called local fields [28]. In a three-dimensional
framework, the Fourier components of the induced Hartree
potential are

δVH(q + G) = v3D
c (q + G)

κ0
δn(q + G), (7)

v3D
c (q + G) = 4πe2

|q + G|2 , (8)

where v3D
c (q + G) is the q + G component of the Fourier

transform of the 3D Coulomb interaction. The static dielectric
constant κ0 renormalizes the Coulomb interaction depending
on the dielectric environment. We focus here on an isolated
graphene layer, so that κ0 = 1. This constant can also be used
in a simple Dirac cone model to include the effects of other
bands [21–27], though no definite value has been proposed.
This will be discussed in Sec. IV. Until then, we set κ0 = 1. The
Fourier components of the XC potential are written δVXC(q +
G). From Eqs. (3), (6), and (7), we can write

δVKS(q + G) = δVext(q) δG,0 + δVXC(q + G)

+v3D
c (q + G)

∑
G′

χ0(q,G,G′)δVKS(q + G′),

(9)

where δG,0 represents Kronecker’s delta.
The inverse screening function is defined as the ratio of

the G = 0 component of the KS potential (the coarse-grained
effective potential) over the external potential:

ε−1
3D(q) = δVKS(q)

δVext(q)
. (10)

B. 2D materials

We now wish to work with 2D electronic densities δñ(rp),
defined in the {x,y} plane as follows:

δñ(rp) ≡
∫ +∞

−∞
δn(rp,z)dz, (11)

where rp is the in-plane component of r, and z is the out-of-
plane component.
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We first consider the system usually studied in analytical
derivations, which will be called the strictly 2D framework. By
strictly 2D, we mean that the electronic density can be written
as follows:

δn(rp,z) = δñ(rp)δ(z), (12)

where δ(z) is the Dirac delta distribution. There is no peri-
odicity in the out-of-plane direction. Considering an external
potential δVext(qp) with an in-plane wave vector qp, we can
define the Fourier transform of the 2D electronic density
δñ(qp + Gp) where Gp is a 2D reciprocal lattice vector. The
Hartree potential δVH(rp,z) generated by this infinitely thin
electronic distribution is three-dimensional. We thus separate
in-plane and out-of-plane space variables to stress the fact that
the induced Hartree potential does extend in the out-of-plane
(z) direction, in contrast with the density. Using Eq. (7) and
performing an inverse Fourier transform in the out-of-plane
direction only, we find

δVH(qp + Gp,z) = 2πe2

|qp + Gp|δñ(qp + Gp)e−|qp+Gp |z. (13)

For our purpose, only the value of the Hartree potential where
the electrons lie δVH(qp + Gp,z = 0) is of interest. Similarly,
the KS potential also extends in the out-of-plane direction,
but we consider only the z = 0 value. We can work in a
2D reciprocal space with δñ(qp + Gp) and the following
potentials:

δṼH(qp + Gp) ≡ δVH(qp + Gp,z = 0), (14)

δṼKS(qp + Gp) ≡ δVKS(qp + Gp,z = 0), (15)

δṼXC(qp + Gp) ≡ δVXC(qp + Gp,z = 0), (16)

δṼext(qp) ≡ δVext(qp,z = 0). (17)

Note that since qp is in-plane, δṼext(qp) = δVext(qp,z). It is
then common practice to use the 2D version of Eq. (7), with
the 2D Coulomb interaction v2D

c (qp + Gp) (and κ0 = 1):

δṼH(qp + Gp) = v2D
c (qp + Gp)δñ(qp + Gp), (18)

v2D
c (qp + Gp) = 2πe2

|qp + Gp| . (19)

We also define a 2D independent particle susceptibility as
follows:

δñ(qp + Gp) =
∑
G′

p

χ̃0(q,Gp,G′
p)δṼKS(qp + G′

p). (20)

Working with the 2D quantities defined above, Eq. (9) becomes

δṼKS(qp + Gp)

= δṼext(qp) δGp,0 + δṼXC(qp + Gp)

+ v2D
c (qp + Gp)

∑
G′

p

χ̃0(qp,Gp,G′
p)δṼKS(qp + G′

p),

(21)

and the definition of the inverse screening function is modified
as follows:

ε−1
2D(qp) = δṼKS(qp)

δṼext(qp)
. (22)

We wish to use this definition in an ab initio framework. This
raises some issues that we address now.

C. 2D-periodic materials with finite thickness

In ab initio calculations, the electronic density extends
also in the out-of-plane direction. In this section we consider
the consequences of a finite out-of-plane thickness of the
electronic density. We consider now an isolated layer with
an electron density of thickness 2d. The results of the purely
2D system should be recovered if the wavelength of the
perturbation is very large compared to d. We illustrate this
idea by considering an electronic density such that∫ +∞

−∞
δn(rp,z)dz = δñ(rp), δn(rp,z) = 0 if |z| > d.

(23)

Using Eq. (7), the z = 0 value of the Hartree potential is then
found to be

δṼH(qp + Gp)

= v2D
c (qp + Gp)

∫ +d

−d

e−|qp+Gp ||z|δn(qp + Gp,z)dz. (24)

From this equation one can easily deduce that the condition
|qp + Gp|d � 1 is necessary to obtain results equivalent to
the strictly 2D system. Since the largest value of |Gp|−1 is
only a fraction of the lattice parameter, the above condition
can only be fulfilled for Gp = 0. The qp + Gp components
of the induced perturbation have wavelengths comparable to
or much smaller than d and the thickness of the electronic
density cannot be ignored. However, as long as |qp|d � 1, the
coarse-grained induced potential can be written

δṼH(qp) ≈ v2D
c (qp)δñ(qp). (25)

Working with reasonably small perturbation wave vectors,
the z = 0 value of the coarse-grained induced potential is
equivalent to that of the purely 2D system. It is then reasonable
to use Eq. (21) at Gp = 0 and it makes sense to define the
dielectric function as in Eq. (22).

D. 2D materials periodically repeated in the third dimension

In ab initio calculations, in addition to the nonzero thickness
of the simulated electronic density, another issue arises.
Current DFT packages such as QE rely on the use of 3D
plane waves, requiring the presence of periodic images of
the 2D system in the out-of-plane direction, separated by a
distance c (interlayer distance). For many quantities, imposing
a large distance between periodic images is sufficient to obtain
relevant results for the 2D system. However, simulating the
electronic screening of 2D systems correctly is computa-
tionally challenging due to the long-range character of the
Coulomb interaction. As illustrated in Eq. (13), the Hartree
potential induced by a 2D electronic density perturbed at
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wave vector qp goes to zero in the out-of-plane direction on
a length scale 1/|qp|. For the layers (or periodic images) to
be effectively isolated, they would have to be separated by
a distance much greater than 1/|qp|. The computational cost
of calculations increasing linearly with interlayer distance,
fulfilling this condition is extremely challenging for the wave
vectors considered in the following. It is thus preferable to use
an alternative method.

In order to isolate the layers from one another, the
long-range Coulomb interaction is cutoff between layers, as
previously proposed in such context [32–34]. We use the
following definition of the Coulomb interaction in real space:

v̄c(rp,z) = e2θ (lz − |z|)√|rp|2 + z2
, (26)

where θ (z) = 1 if z � 0 and θ (z) = 0 if z < 0. The cutoff
distance lz should be small enough that electrons from different
layers do not see each other, but large enough that electrons
within the same layer do. In other words, if d is representative
of the thickness of the electronic density, we need the following
inequalities to be true:

d < lz < c − d. (27)

The interlayer distance can be chosen such that c � d within
reasonable computational cost. Then we choose to cut off
the Coulomb potential midway between the layers, lz = c

2 .
The Coulomb interaction is generally used in reciprocal
space. Setting lz = c

2 and considering an external perturbative
potential with in-plane wave vector δVext(qp), the Fourier
transform of the above Coulomb interaction is written as
follows [32,33]:

v̄c(qp + Gp,Gz) = 4πe2

|qp + Gp|2 + G2
z

×[1 − e−|qp+Gp |lz cos(Gzlz)], (28)

where Gz is the out-of-plane component of the reciprocal
lattice vector G. In an ab initio framework, the 3D Coulomb
interaction v3D

c should thus be replaced by the cutoff Coulomb
interaction v̄c:

δVH(qp + Gp,Gz) = v̄c(qp + Gp,Gz)δn(qp + Gp,Gz).
(29)

Within the DFT LDA framework, the exchange-correlation
potential is short-range, such that we can neglect interlayer
interactions originating from that term. When the Coulomb
interaction is cut off and within the region z ∈ [−lz; +lz],
everything happens as if the system was isolated, and it can
be treated as the 2D-periodic system with finite thickness of
the previous paragraph. For the layer at z = 0, and as long
as |qp|d � 1, we can thus work with the z = 0 values of the
potentials and use the definition of Eq. (22) for the dielectric
function.

III. STATIC SCREENING PROPERTIES OF GRAPHENE

In this section we present several methods to calculate the
inverse static dielectric function of graphene. First, the deriva-
tion of an analytical expression and a seminumerical solution
are presented, following Refs. [21–27]. Graphene is treated as

a strictly 2D material, its electronic structure is represented
by the Dirac cone model, the random phase approximation is
used, and local fields are neglected. Then, we present an ab
initio method based on the phonon package of QE. This second
method allows one to relax the approximations involved in the
analytical derivations.

A. Analytical and seminumerical solutions

When the out-of-plane thickness of the electronic density
can be neglected with respect to the wavelength of the external
potential, we can work in a strictly 2D framework and Eqs. (21)
and (22) can be used. In this section, two other approximations
are used to simplify Eq. (21). Namely, we set δṼXC(qp +
Gp) = 0 (RPA) and we neglect the local fields, that is, all
Gp 	= 0 components. Equation (22) then reads

ε−1
2D(qp) = 1

1 − 2πe2

|qp | χ̃
0(qp)

, (30)

where it is understood that χ̃0(qp) = χ̃0(qp,0,0). In a model
including only π -π∗ bands, the independent particle suscepti-
bility is written as follows [21–27]:

χ̃0(qp) = 1

π2

∫
K

d2k
∑
s,s ′

|〈k,s|k + qp,s ′〉|2
f s

k − f s ′
k+qp

εs
k − εs ′

k+qp

.

(31)

The integral is carried out over electronic wave vectors k
in one valley around Dirac point K, with a factor two for
valley degeneracy. The indexes s and s ′ designate the π or
π∗ bands. The occupation of the state of momentum k in
band s is labeled f s

k and εs
k is the corresponding energy.

Within the Dirac cone model, a linear dispersion is assumed
εs

k = s �vF |k|, with s = −1 (s = +1) for the π (π∗) band,
and vF is the Fermi velocity. The wave function overlap is
then written |〈k,s|k + q,s ′〉|2 = [1 + ss ′ cos(θk − θk+qp

)]/2,
where θk (θk+qp

) is the angle between k (k + qp) and an arbi-
trary reference axis. The Dirac cone band structure is isotropic
and χ̃0 depends only on the norm of the perturbation wave
vector |qp|. The numerical implementation of this integral in
the Dirac cone model will be referred to as the “seminumerical
solution.” It has the advantage of accounting for temper-
ature effects. In the zero-temperature limit and following
the tedious but straightforward calculus in Refs. [21–27],
the following analytical forms can be found. In the case
|qp| � 2kF :

ε2D(|qp|) = 1 + 2e2

�vF

2kF

|qp| , (32)

where kF = |εF |
�vF

is the Fermi wave vector, if εF is the Fermi
energy taken from the Dirac point. In the case |qp| > 2kF :

ε2D(|qp|) = 1 + 2e2

�vF

2kF

|qp| ×
[
π |qp|
8kF

+ 1 − 1

2

√
1 − 4k2

F

|qp|2

−|qp|
4kF

sin−1

(
2kF

|qp|
) ]

. (33)

Those expressions are relevant for doped graphene. For neutral
graphene, we are in the case |qp| > 2kF , but since kF → 0,
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Eq. (33) simplifies to

ε2D(|qp|) = 1 + πe2

2�vF

. (34)

The following work aims at investigating the validity of those
expressions.

B. DFPT LDA solution

Several approximations (Dirac cone model, neglecting local
fields, RPA, etc.) were used in order to derive the previous an-
alytical expressions. Their validity is not obvious in graphene.
Ab initio methods such as DFPT offer the opportunity to
relax those approximations [19]. In this section we detail
how we obtain the 2D static dielectric function as defined
in Eq. (22) from DFPT. The issues of the periodic images
and finite thickness in the out-of-plane direction are treated
as previously discussed. The remaining issues are to apply
the adequate perturbation and extract relevant 2D quantities.
The equilibrium system is calculated using the usual DFT
plane-wave package. At that point, interlayer interactions can
be neglected in graphene. To study the screening properties,
we develop the response of the electronic density to an external
potential within QE. The code originally calculates the induced
electronic density in response to a phonon perturbation [36].
Here, we replace the phonon perturbation by the perturbation
δVext(qp). This perturbation is constant in the out-of-plane
direction and modulated by a single wave vector qp in the
plane. As shown previously, the relevant quantity is the
z = 0 value of the KS potential, coarse-grained in the plane
δṼKS(qp). Note that the Gz 	= 0 components are needed to
perform a Fourier transform and then take the z = 0 value.
The number of Gz elements is limited only by the kinetic
energy cutoff. We then use the definition of Eq. (22).

1. Technical details of DFPT calculations

Our DFT/DFPT calculations were performed using the
Quantum ESPRESSO distribution [38]. The electronic struc-
ture is obtained by DFT calculations within the local density
approximation [39] (LDA). Since the electronic structure
is calculated without cutoff, it can contain some spurious
interlayer states above the Dirac point. In the calculations,
it is thus safer to dope graphene with holes to avoid those
states. We will assume electron-hole symmetry and consider
the following results valid for both electron and hole doping.
We use norm-conserving pseudopotentials with 2s and 2p

states in valence and cutoff radii of 0.78 Å. We use a 0.01
Ry Methfessel-Paxton smearing function for the electronic
integrations, a 65 Ry kinetic energy cutoff, and a 96 × 96 × 1
electron-momentum grid. The lattice parameter is a = 2.46 Å
and the distance between graphene and its periodic images
is c = 4.0 × a ≈ 9.8 Å. The Coulomb interaction is cutoff
when calculating the response of the system to an external
perturbative potential. The results presented here were ob-
tained for a perturbation wave vector in the direction � → K
of the Brillouin zone. Identical calculations were performed in
different directions. The variations on the results were small
enough to assume that the screening properties of graphene
are isotropic. Occasionally, variations from this setup were
required and will be specified.

n 0(G
p=0

, z
)

-5 -4 -3 -2 -1 0 1 2 3 4 5
z (Å)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

δV
H

(q
p, z

)/δ
V

ex
t(q

p)

|qp|= 0.015 |Γ-K|

|qp|= 0.05 |Γ-K|

|qp|= 0.1 |Γ-K|

FIG. 1. (Color online) The induced potential δVH(qp,z) in the
out-of-plane direction at different values of |qp|, expressed in units
of the distance between the � and K points of the Brillouin zone.
Calculations were performed for a Fermi level of εF = 0.25 eV,
taken from the Dirac point. Details of the numerical calculations
can be found in Sec. III B 1. The typical profile of n0(Gp = 0,z)
is represented. The equilibrium density was chosen here to have a
common reference for all perturbations.

2. Validity of the 2D framework

Now we quickly discuss the validity the 2D treatment with
respect to the thickness of the electronic density.

Figure 1 shows the out-of-plane variations of the coarse-
grained induced potential δVH(qp,z) and the equilibrium
electronic density n0(Gp = 0,z) of a single isolated graphene
layer in our ab initio framework. We use three values of |qp|
covering the range of values used in the following section. In
that range, Fig. 1 shows negligible variations of the induced
potential over the extent of the electron distribution. The
two-dimensional description of the screening properties is
thus valid. This range of wave vectors covers a large span
of situations where static screening plays a role. For example,
in the case of electronic transport we are typically interested
in values of |qp| on the scale of the Fermi wave vector for
relatively small doping levels. Thickness effects are negligible
in this situation.

IV. RESULTS

In this section we present the results of the full DFPT LDA
method (Sec. III B, labeled “LDA”) and compare them to the
analytical solution [Eqs. (32)–(34), labeled “Analytical”] for
the static dielectric function of doped and neutral graphene. We
identify the contributions of temperature, bands, local fields,
and exchange correlation by using different methods. When
the analytical derivation presented in Sec. III A is used, the
Fermi velocity is the only parameter needed to define the
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TABLE I. Summary of the various methods used in the plots of
Sec. IV. For each method, we report (i) the treatment of electron-
electron correlation, LDA referring to the use of the XC potential
within LDA, “= 0” meaning that the XC potential is set to zero; (ii)
whether local fields are included (YES) or neglected (NO); and (iii)
which band structure model was used, the full ab initio band structure
or the simpler Dirac cone model for π -π∗ bands.

Label Exchange Correlation Local Fields Bands

LDA LDA YES ab initio
RPA = 0 YES ab initio
RPA no LF = 0 NO ab initio
Analytical = 0 NO Dirac cones

Dirac cone band structure. For consistency with the ab initio
methods, we use the Fermi velocity obtained in the linear part
of the DFT band structure, such that �vF = 5.49 eV Å. It
is well known that electron-electron interactions increase this
value by approximately 20% (depending on doping) within
the GW approximation [40]. The renormalized value is in
good agreement with experiments. This renormalization is
ignored here, but should be accounted for when comparing
with experiment. Three intermediary methods were used to
investigate the differences between the analytical solution
and the self-consistent DFPT LDA solution. The first is the
seminumerical method introduced in Sec. III A. The indepen-
dent particle susceptibility χ̃0(qp) is obtained by numerical
integration of Eq. (31), and inserted into Eq. (30). This
solution relies on the same approximations as the analytical
solution but it can be carried out at a chosen temperature (or
energy smearing) as long as the integration grid is adequately
fine. The second is labeled “RPA” and consists in setting
the exchange-correlation potential to zero within the DFPT
method. The third is labeled “RPA no LF” and consists in
evaluating the DFPT independent particle susceptibility and
inserting it in Eq. (30). This implies using RPA and neglecting
local fields, as well as a strictly 2D treatment, since Eq. (30)
was derived in a strictly 2D framework. This method boils
down to the evaluation of Eq. (30), within a more complete
ab initio model for the band structure. Table I summarizes the
labels and main characteristics of the various methods used in
the following plots.

A. Importance of cutting off the Coulomb interactions

We begin by presenting the DFPT LDA results and pointing
out the importance of the Coulomb cutoff in Fig. 2. We plot the
inverse dielectric function obtained with the LDA method with
and without cutoff. In the latter case, we follow the process
of Sec. III B but the original 3D Coulomb interaction v3D

c is
used. Two different interlayer distances are displayed, namely
c ≈ 9.8 Å and c ≈ 40 Å. It is clear that interlayer interactions
play a major role in the screening without cutoff, as a strong
dependency on the interlayer distance is shown. For c ≈ 9.8 Å,
the effect of the cutoff is drastic. When the interlayer distance
is increased, the results without cutoff slowly approach the
results with cutoff. This is also the case in the limit of large
wave vectors. In general, the results with and without cutoff are
similar when the scale on which the induced Hartree potential
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(εF= 0.25 eV)
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FIG. 2. (Color online) DFPT LDA results are plotted with and
without cutoff of the Coulomb interactions. The inverse dielectric
function, as defined in Eq. (22), is plotted as a function of the
adimensional variable |qp|/|� − K|, where |� − K| ≈ 1.7 Å−1 is
the distance between the � and K points of the Brillouin zone. The
calculations were performed for neutral graphene (lower panel) and
doped graphene (upper panel) with εF = 0.25 eV, measured with
respect to the Dirac point. In the upper panel, we also represent
the scale |qp|/kF where kF ≈ 0.27|� − K| refers to the Fermi wave
vector in the doped case. Two interlayer distances were used c ≈ 40 Å
and c ≈ 9.8 Å to convey the dependency of the results (without cutoff)
on that parameter. When the Coulomb interaction is cutoff, the results
are independent of the interlayer distance c. Finally, note that for the
neutral case at small wave vectors and with cutoff, the results are
quite sensitive to energy smearing/grid effects. In this situation, we
used a 140 × 140 × 1 grid and 0.005 Ry energy smearing to be as
close to room temperature as manageable.

decreases 1/|qp| is negligible compared to the interlayer
distance c. However, even using large interlayer distance,
the effect of cutting off the Coulomb interactions remains
significant. To obtain accurate ab initio results for an isolated
layer, it is thus essential to cut off the Coulomb interactions.
To give a clearer picture of the effects of the Coulomb cutoff,
we plot the Hartree potential with and without cutoff for
two different interlayer distances c in Fig. 3. With cutoff,
the Hartree potentials corresponding to the two interlayer
distances coincide exactly with each other within the region
[−lz; +lz], lz being half the smaller interlayer distance here.
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FIG. 3. (Color online) The Hartree potentials are plotted in the
out-of-plane direction with and without cutoff and for two different
interlayer distances c ≈ 40 Å and c ≈ 9.8 Å. The calculations
were performed for doped graphene with εF = 0.25 eV, at |qp| ≈
0.32 |� − K| ≈ 1.2 kF .

This confirms that within this region, everything happens as if
the layers were isolated. Without cutoff, in contrast, the Hartree
potentials are significantly different, stressing the fundamental
difference in the response of systems with different interlayer
distances.

B. Comparison of analytical and LDA methods:
Band structure effects

In Fig. 4, we compare the LDA results (with cutoff) to the
analytical solution of Eqs. (32)–(34). The results of the two
methods are rather close overall. In doped graphene, the LDA
results are in very good agreement (≈3%) with the analytical
method for |qp| � 2kF . A more pronounced discrepancy
(≈10%) is observed for |qp| > 2kF . In the neutral case, a
similar ≈10% discrepancy occurs for most values of |qp|,
but agreement seems to be reached in the small-|qp| limit.
For neutral graphene at small wave vectors, smearing plays a
significant role. Though not plotted here, the seminumerical
method is equivalent to the analytical solution when performed
with an energy smearing corresponding to room temperature.
Using the same energy smearing and grid as in DFPT to
perform the numerical integration of Eq. (31) showed that
smearing effects are negligible except in the small wave vector
limit of the neutral case. For DFPT LDA calculations in this
regime, we lowered the smearing to 0.005 Ry and changed
the grid accordingly to 140 × 140 × 1 in Figs. 2 and 4. For
this smearing, agreement between LDA and analytical results
is reached around |qp| ≈ 0.025|� − K|. Although quite low
in terms of what is computationally manageable in DFT,
this energy smearing is still large compared to the value
corresponding to room temperature. At room temperature, we
expect that DFPT LDA calculations would show the agreement
to be reached for smaller |qp|. In the zero-temperature limit, it
should be reached for |qp| → 0. Thus, for graphene in general,
we can consider that LDA and analytical results significantly
differ only for |qp| > 2kF , which corresponds to |qp| > 0 in
the neutral case.
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FIG. 4. Comparison of the static dielectric function of graphene
obtained within the LDA and analytical methods. We use the same
axes as in Fig. 2. We also plot the results of the “RPA” and “RPA no
LF” methods. For this last method applied to neutral graphene, the
point with the smallest |qp| was not converged and is not represented.

To investigate the origin the ≈10% discrepancy above
2kF , we use the aforementioned “RPA no LF” method. In
Fig. 4, this method gives a smaller inverse dielectric constant
than both the LDA (≈8%) and analytical (≈16%) methods
above 2kF . Comparing the “RPA no LF” and LDA methods
indicates that the combined effect of RPA, neglecting local
fields, and a strictly 2D framework is a ≈8% decrease of
the results. As mentioned before, the band structure model is
the only difference between the “RPA no LF” and analytical
methods. This suggests that the effects of using the Dirac
cone approximation are more sizable (≈16%) but somewhat
compensate the other approximations. Overall, we end up with
the ≈10% discrepancy above 2kF between LDA and analytical
method. When setting the exchange-correlation potential to
zero in DFPT, see “RPA” in Fig. 4, the results are only
slightly changed. This means that neglecting the local fields
in the plane [what is meant by RPA in the derivation of
Eq. (30)] and out-of-plane (equivalent to making the strictly
2D approximation) has more important effects than exchange
correlation. Although the use of an LDA exchange-correlation
potential has negligible consequences for the results presented
here, we would like to point out that such potentials are
derived in the framework of a three-dimensional electron gas.
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FIG. 5. Comparison of the independent electron susceptibility
of graphene obtained within the “RPA no LF” and analytical
methods. We use the same axes as in Fig. 2. The contributions of
intraband and interband processes to χ̃ 0 are represented by circles
and crosses, respectively. To calculate those contributions, we used
the seminumerical solution with a small energy smearing (0.001 Ry).
The analytical and seminumerical methods are equivalent in that case.

Consequently, their relevance in a 2D framework is limited and
the RPA method might be more reliable than the LDA one.

A better interpretation of the effects of band structure
can be achieved by comparison of the independent particle
susceptibility χ̃0 from the “RPA no LF” and analytical methods
in Fig. 5. In the |qp| � 2kF regime, the screening is dominated
by the zeroth-order of χ̃0, proportional to the density of states.
The linear part of the DFT band structure of graphene is well
represented by the Dirac cone model. As long as the Fermi level
is reasonably small (but finite), the densities of states obtained
in DFT and analytically are very close. We then find a very
good agreement with the analytical derivation in this regime.
In the upper panel of Fig. 5, it is clear that a higher-order (in
|qp|) term in χ̃0 from DFPT is responsible for the gradual
disagreement with the analytical solution as |qp| increases.
In the neutral case, the zeroth order of χ̃0 vanishes with the
density of state, and χ̃0 is always dominated by contributions
of higher-order terms. For the |qp| > 2kF regime in general,
the first-order in |qp| seems to dominate. The susceptibility
χ̃0 is then ruled by interband processes, some of them going
beyond the range of validity of the Dirac cone model.

Overall, we find a rather good agreement with the analytical
derivation of Refs. [21–27]. This is in strong contrast with the
conclusions of a previous ab initio study [28] of the screening
of point charges in neutral graphene. Our work differs notably
on the use of a Coulomb cutoff, and the treatment of ab initio
results to extract the 2D screening properties of a system that is
effectively 3D. The authors of Ref. [28] state that they checked
the negligibility of the interlayer interactions by looking at
the effects of interlayer distance on the bands. Such test is
misleading. Indeed, interlayer interactions are negligible on
the bands for spacing larger than ≈5 Å. However, as discussed
in Sec. II D, the interlayer interactions affect the calculation of
the dielectric response when the wavelength of the perturbation
is comparable with the interlayer distance, making the use of a
Coulomb cutoff essential. We can also comment on the use of
the constant κ0 in Eq. (7) to include the effects of other bands.
Such a constant is not appropriate since it would affect all
the orders in χ̃0, including the zeroth order that is correct. To
have an analytic expression quantitatively closer to the DFPT
LDA results, one should only renormalize the contribution
from the interband processes. Finally, as mentioned before,
we used the DFT Fermi velocity in this work. One should
keep in mind that within the GW approximation and consistent
with experimental results, the Fermi velocity is increased by
20%. This yields very similar curves, with a ≈16% increase
of the value of ε−1

2D at large qp, as easily found by plotting the
analytical expressions.

V. CONCLUSION

Definitions of the dielectric function depend on the di-
mensionality. The study of the screening properties of 2D
materials first requires precise definitions of the relevant
quantities. After setting such a formalism, we review previous
analytical derivations of the screening properties of graphene.
We highlight the approximations involved in those derivations
and propose a DFT-based method to overcome them. The
DFPT method with Coulomb cutoff presented here is general
and can be applied to study the screening properties of
other 2D materials. We showed that cutting off the Coulomb
interactions is essential to recover the screening properties of
an isolated layer. Our DFPT LDA calculations on graphene
lead to an inverse dielectric function that is very close to the
analytical form of Refs. [21–27] for |qp| � 2kF , and smaller
by ≈10% for |qp| > 2kF . Overall, the Dirac cone model in a
strictly 2D framework, in the zero-temperature limit, using
RPA and neglecting local fields leads to a quite accurate
and simple analytical expression for the static dielectric
function of graphene. Smearing effects are negligible at room
temperature and exchange-correlation effects within LDA are
also quite small. Neglecting the local fields leads to a ≈8%
underestimation of the inverse dielectric function above 2kF .
The largest error comes from the Dirac cone model for the band
structure. This model remains an excellent approximation in
the |qp| � 2kF regime, as long as the Fermi level lies in the
region where the bands are linear. In the |qp| > 2kF regime,
however, the Dirac cone model leads to a ≈16% overestimation
of the inverse dielectric function due to the contribution of
interband processes probing states beyond the Dirac cones.
This overestimation compensates the local-fields effects and
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the analytical model ends up overestimating the DFPT LDA
inverse dielectric function by ≈10% above 2kF .
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