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Sputter yield of curved surfaces
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The mean sputter yield produced by the impact of a single ion depends on the radii of curvature of the target
surface at the point of impact. Using the Sigmund model of ion sputtering, we develop analytical formulas for this
dependence for the case in which the radii of curvature are large compared to the size of the ion-induced collision
cascade; both locally perpendicular and oblique ion impact are considered. The sputter yield is increased for
impact on convex surfaces. The influence of surface curvature along the incident-ion azimuth and perpendicular
to it are discussed separately. Our analytical results are in good agreement with Monte Carlo simulations for the
specific case of 20 keV Ar ion impact on a cylindrical nanowire consisting of amorphous silicon. We also extend
the results for this case to small radii of curvature using both Monte Carlo and molecular dynamics simulations.
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I. INTRODUCTION

Sputtering of nanoparticles and nanostructured surfaces has
recently received increased interest [1]. Applications range
from ion irradiation of dust grains in the space environ-
ment [2,3] to the sputtering of nanoparticles supported on flat
surfaces [4].

Most previous studies focus on the irradiation of spherical
particles. Molecular dynamics simulations have been em-
ployed to analyze specific cases [5–10]. A recent study [11,12]
systematically explores the size dependence of the sputtering
of a sphere by a single ion and finds that for large radii R

and perpendicular impact, the sphere’s sputter yield, Y sphere
R , is

greater than that of a flat surface, Y∞:

Y
sphere
R = Y∞

[
1 +

(
β

α

)2
a

R

]
. (1)

Here a is the mean depth at which the ion-induced collision
cascade deposits its energy below the surface of a flat target,
and α and β denote the longitudinal and lateral widths of
the energy deposition profile. In that study deviations from
Eq. (1) for small sphere radii are also investigated by Monte
Carlo (MC) and molecular dynamics (MD) simulations for
the specific case of 20 keV Ar ions impinging on amorphous
silicon (a-Si) spheres [12].

The effect of local surface curvature on the sputtering of
nonspherical particles has not been explored nearly as well.
In their review [1] Krasheninnikov and Nordlund give an
overview of recent research on ion irradiation of nanostruc-
tured and two-dimensional systems which concentrates on
carbon systems such as nanotubes and graphene layers in
particular. Ronning et al. [13] review available experimental
work on irradiation of semiconducting nanowires that focuses
on ion implantation. Prototype electronic, photonic, and
sensing devices based on semiconducting nanowires have
been developed [13]. More recently Ronning and coworkers
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extended their work to the sputtering of GaAs and ZnO
nanowires and demonstrated that the sputter yields attain
a maximum if the ion range matches the nanowire diam-
eter [14,15]. Finally, Greaves et al. [16] showed that the
sputter yield of a cylindrical Au nanorod that is subjected
to 80 keV Xe irradiation can exceed the yield of a flat surface
by more than an order of magnitude. These examples show
that sputtering of nanorods and nanowires is currently being
vigorously explored; however, a general assessment of how
curved nano-objects sputter has been lacking.

In the present paper we explore how the sputter yield
produced by the impact of a single ion on an arbitrarily curved
surface deviates from that of a flat surface. Using the Sigmund
model of ion sputtering [17], analytical results are obtained in
Sec. II for surfaces whose radii of curvature are large compared
to the depth of the energy deposition profile, a. Our results
show that the sputter yield depends on the geometrical form
of the surface only via the curvature radius R1 in the direction
of the ion impact azimuth and via the curvature radius R2

perpendicular to it. We also establish that to find the yield for
an arbitrarily curved surface, it is sufficient to study impacts on
cylinders of radius R for the special cases in which R1 = R and
R2 = ∞ (impacts normal to the cylinder axis) and in which
R1 = ∞ and R2 = R (central impacts).

In order to test these results and to extend them to smaller
surface curvatures, we perform MC simulations for the special
case of 20 keV Ar impact on a-Si nanocylinders. We simulate
impacts normal to the cylinder axis and central impacts for a
range of cylinder radii R; these results will be presented in
Sec. IV B. Our MC results validate the analytical theory for
large radii of curvature. In addition they allow us to extend
our results to smaller curvature radii. Finally we perform MD
simulations to corroborate our findings for the case of small
cylinder radii.

II. ANALYTICAL THEORY

Consider the impact of a single ion with energy ε at a point
on the surface of an elemental material. The local angle of
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FIG. 1. (Color online) Impact of a single ion at the point O on
the solid surface. The z axis is normal to the surface at O and the
ion’s direction of incidence −ê is in the x-z plane. The local angle of
incidence is θ .

incidence of the ion will be denoted by θ . We place the origin
O at the point of impact and put the z axis along the outward-
pointing normal to the surface, as shown in Fig. 1. We orient
the x and y axes so that the ion’s direction of incidence −ê lies
in the x-z plane and is given by −ê = −x̂ sin θ − ẑ cos θ . Let
h = h(x,y) be the height of the surface above the point (x,y)
in the x-y plane. (In the figure, h � 0.)

Our goal is to compute the average number of sputtered
atoms Y using the Sigmund model of ion sputtering. The value
of Y depends upon θ and the shape of the surface near the point
of impact.

We will assume that the principal radii of curvature of the
surface at O are much larger than the mean depth of energy
deposition a. Sputtering is appreciable only at surface points
whose distance to O is of order a. For these points, we may
approximate h by discarding terms of third order and higher
terms from its Taylor series: we set

h(x,y) = 1
2K11x

2 + K12xy + 1
2K22y

2, (2)

where

Kij ≡ ∂2h

∂xi∂xj

(0,0) (3)

for x1 = x, x2 = y.
Recently the so-called crater function formalism has been

introduced as a tool to calculate the effects of ion irradi-
ation on surfaces [18,19]. While there are inconsistencies
in the original approach [20,21], Harrison and Bradley [21]
pointed out that these difficulties can be surmounted by
properly including the curvature dependence of the crater
function in the theory.

In the crater function formalism of Harrison and Bradley,
the crater function F (x,y,θ,K11,K12,K22) is defined to be
minus the average change in the surface height h above the
point (x,y) in the x-y plane that occurs as a result of the ion
impact [21]. The zeroth-order moment of the crater function is

M = M(θ,K11,K12,K22)

=
∫ ∞

−∞

∫ ∞

−∞
F (x,y,θ,K11,K12,K22)dxdy. (4)

The average sputter yield is given by

Y = M(θ,K11,K12,K22)/�, (5)

where � is the atomic volume. For convenience, we set

MK11 = M(θ,K11,0,0), (6)

MK12 = M(θ,0,K12,0), (7)

and

MK22 = M(θ,0,0,K22). (8)

By assumption, the Kij ’s are small compared to 1/a. We
may therefore expand M in powers of the Kij ’s and only retain
terms up to first order. This yields

M(θ,K11,K12,K22)

∼= M(θ,0,0,0) + ∂MK11

∂K11

∣∣∣∣
K11=0

K11

+ ∂MK12

∂K12

∣∣∣∣
K12=0

K12 + ∂MK22

∂K22

∣∣∣∣
K22=0

K22. (9)

M(θ,0,0,0) and the partial derivatives of the MKij
’s that appear

on the right-hand side of Eq. (9) were evaluated in Ref. [21].
Inserting these results into Eq. (9) and using Eq. (5), we obtain

Y = Y∞ (1 − ag1K11 − ag2K22) . (10)

The sputter-yield correction functions g1 and g2 are given by

g1(θ ) = A2B2

2B2
1

+ A3C

B3
1

+ B2

2B1
+ 3AC

B2
1

, (11)

g2(θ ) = 1

a2
β

(
B2

2
+ AC

B1

)
, (12)

where α and β denote the longitudinal and lateral widths of
the energy deposition profile and

aα = a/α,

aβ = a/β,

A = a2
α sin θ,

B1 = a2
α sin2 θ + a2

β cos2 θ,

B2 = a2
α cos θ,

C = 1
2

(
a2

β − a2
α

)
sin θ cos θ.

The functions g1(θ ) and g2(θ ) are positive for all angles of
incidence θ < 90◦.

In the Sigmund model, the mean distance that a surface
point recedes as a result of an ion impact is proportional to
the energy density that is deposited there by the collision
cascade [17]. We will denote the constant of proportionality
by �. The sputter yield for a flat surface is then

Y∞ = a2ε�

(2π )1/2aαβ
√

B1
exp

(
A2

2B1
− a2

α

2

)
. (13)

For a flat surface, K11 = K22 = 0 and Y reduces to Y∞, as
it must. A sphere of radius R has K11 = K22 = −1/R. In the
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case of normal-incidence ion impact,

g1(0) = g2(0) = 1

2

(
β

α

)2

, (14)

and we recover Eq. (1) for the mean sputter yield of the
sphere at perpendicular impact. We also immediately obtain
the generalization of this result to arbitrary impact angles θ :

Y
sphere
R (θ ) = Y∞

{
1 + [g1(θ ) + g2(θ )]

a

R

}
. (15)

The sputter yield of a general surface for perpendicular
incidence is given by

Y = Y∞

[
1 − a

(
β

α

)2

H

]
, (16)

where H = (K11 + K22)/2 is the mean curvature of the
surface [22]. Thus, the sputter-yield correction to the flat-
surface yield is positive for a concave surface and is negative
for a convex surface.

Sputtering of a cylinder

For later use, we will apply our results to the sputtering
of a solid cylinder of radius R. The impact of the ion on the
cylinder’s surface is characterized by two angles (see Fig. 2):
φ characterizes the tilt towards the cylinder axis, while ϑ

characterizes the impact parameter of the ion relative to the
cylinder’s axis.

We are interested in the cases of incidence normal to the
cylinder axis (φ = 0) and of central impacts on the cylinder
(ϑ = 0). For normal-to-axis impacts, θ = ϑ , K11 = −1/R,
K22 = 0, and hence

Y = Y∞

[
1 + g1(ϑ)

a

R

]
. (17)

For central impacts, on the other hand, θ = φ, K11 = 0, K22 =
−1/R, and

Y = Y∞

[
1 + g2(φ)

a

R

]
. (18)

FIG. 2. (Color online) Sketch of the definition of impact angles
on a cylindrical surface. (a) Normal-to-axis impacts are characterized
by the incidence angle ϑ and the impact parameter b. (b) Central
impacts are characterized by the incidence angle φ.
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FIG. 3. (Color online) Sputter-yield correction functions
(a) g1(ϑ) for normal-to-axis impacts and (b) g2(φ) for central
impacts, as obtained by analytical theory for a cylinder surface,
Eqs. (11) and (12).

Here the gi’s are the sputter-yield correction functions (11)
and (12) evaluated for the angles indicated.

In Fig. 3, we plot these two functions. We adopt the
parameters aα = 1.70 and aβ = 2.62 that are appropriate for
20 keV Ar impact on a-Si (see Sec. IV below and Ref. [12]).
Both curvature corrections are positive for all angles, since, in
the case of the Sigmund model, the collision cascade deposits
more energy on the cylinder’s surface than on a flat surface. At
perpendicular incidence, the sputter-yield correction function
is 0.21. At glancing incidence, it vanishes; note that in this
case the flat-surface sputter yield also vanishes, since the ion
is not able to deposit energy in the surface.

At oblique incidence, the central-impact correction, g2,
shows only a weak dependence on the angle φ up to about 60◦,
and then monotonically decreases. For normal-to-axis impacts,
however, the correction increases with incidence angle and
goes through a maximum at ϑ = 69◦, where g1 assumes a
value roughly 6 times larger than at perpendicular incidence.
At such angles, the impact parameter b is already 0.93R and
the center of the collision cascade is close to the cylinder
periphery; the high-energy deposition at the curved surface
maximizes sputtering.

Equations (17) and (18) show that to test the Sigmund
theory’s predicted forms for g1(θ ) and g2(θ ) using MC
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simulations, it is sufficient to simulate normal-to-axis and
central impacts on a cylinder. We therefore will carry out
simulations of ion impacts on cylinders for these two special
cases.

III. SIMULATION METHODS

We study the sputtering of cylinders by 20 keV Ar ions using
both MC and MD simulations. The techniques employed are
analogous to those used in a previous study of the sputtering
of nanospheres [12]. We assemble the essential details for the
convenience of the reader.

The MC code TRI3DST employed in this paper makes use
of collisional algorithms which are taken from the sputtering
version of TRIM.SP [23] of the popular simulation code
TRIM [24,25], with several modifications as described in a
recent paper on 3D dynamic simulations [26]. Basically, the
propagation of incident projectiles and the generated recoils
in an amorphous medium are traced as a sequence of binary
collisions in a repulsive screened Coulomb potential with the
Kr-C parametrization [27]. Electronic stopping is included
as an equipartition of nonlocal (according to Lindhard and
Scharff [28]) and local (according to Oen and Robinson [29])
energy losses. TRI3DST is applicable to homogeneous three-
dimensional multicomponent bodies with surfaces that can
be described by an analytical function. For the transmission
of sputtered atoms through the surface, a locally planar
surface barrier is assumed with the local surface normal being
deduced from the analytical contour function. This means
that any dependence of the surface binding energy on the
local curvature is not taken into account. The surface binding
energy is set to U = 4.7 eV in accordance with the enthalpy
of sublimation of Si. Data are based on 105 impacts for each
combination of cylinder radius and impact angle.

MD simulations are performed for small cylinder radii,
R = 1, 1.5, 2.5, and 3.5 nm, and only for perpendicular
impact (ϑ = 0,φ = 0). Cylinders are cut out of an a-Si target
that was prepared according to the recipe of Luedtke and
Landman [30], and then relaxed for 50 ps. The cylinders have
a length of 10 nm; periodic boundary conditions are employed
along the axial direction to emulate an infinitely long cylinder.
Silicon atoms interact via the Stillinger-Weber potential [31].
For small interaction distances the potential is fitted to the
Ziegler-Biersack-Littmark (ZBL) potential [32]. Ar and Si
atoms interact via the ZBL potential. For each cylinder radius,
1000 impacts have been simulated for a time of 3 ps. The
impacts differed in that in each case a different impact point
was chosen at random on the cylinder surface. All atoms that
are a distance greater than 7.54 Å from the original cylinder
surface (i.e., twice the cutoff radius of the Stillinger-Weber
potential) are considered to have been sputtered.

IV. SIMULATION RESULTS

In this section we present simulation results for 20 keV
Ar impacts on a-Si cylinders. We first present and discuss
the information obtained from the MC calculations; the
comparison with MD data is given in Sec. IV D.

From previous simulations [12], we know the sputter yield
of a flat target, Y∞(θ ), as a function of the incidence angle.

In addition, the geometrical parameters describing the spatial
distribution of the energy deposited in a flat target are known:
they are a = 208.9 Å, α = 123.0 Å, and β = 79.7 Å.

A. Perpendicular impact

We first study sputtering for perpendicular impacts, i.e., for
ϑ = 0 and φ = 0. Figure 4(a) compares the MC results to the
prediction of the analytical theory,

Y = Y∞

[
1 + 1

2

(
β

α

)2
a

R

]
= Y∞

(
1 + 0.21

a

R

)
, (19)

where the last equality holds for our values for α and β.
We observe good agreement for R � 2a. We also include the
MC results obtained for spheres of radius R in Ref. [12]; the
analytical prediction for the curvature correction for the sphere
[see Eq. (1)] is exactly twice that for the cylinder. The MC data
corroborate this prediction nicely.

For cylinders with smaller radii [see Fig. 4(b)], we find that
the sputter yield goes through a maximum at R/a ∼= 0.5; here
the yields are a factor of around 6.3 higher than for the flat
target. This increase is due to the fact that with decreasing R the
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FIG. 4. (Color online) Sputter yield of a cylinder for perpendicu-
lar impact YR(ϑ = 0,φ = 0), normalized to the sputter yield of a flat
surface, Y∞. (a) MC data for cylinders with large radii compared to
the theoretical result Eq. (19). (b) MC data for all cylinders, compared
to the data for spheres. Data plotted vs

√
R/a in order to compress

the abscissa axis.
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FIG. 5. (Color online) Emission-site distribution for impact on a
cylinder of radius R/a = 0.19 with impact parameter b = 0.6R and
φ = 0. Direction of ion incidence and impact point are indicated by
the red line. The distribution has been obtained with 1000 incident
projectiles.

cylinder surface moves closer to the center of the distribution
of deposited energy; the energy density at the cylinder surface
increases and hence the sputter yield does as well. For even
smaller radii, the sputter yield decreases again, since less and
less energy is deposited within the cylinder. A sputter yield
maximum was also found by Johannes et al. in a Monte Carlo
study of the sputtering of nanowires [14].

For small radii (R � a), the sputter yields of spheres
and cylinders of the same radius nearly coincide. At these
small radii, the deposited-energy density in the irradiated
particle is quite homogeneous and so the sputter yield is
determined mainly by the active surface area from which
atoms are sputtered. At first glance, one would expect a long
cylinder to have a larger sputter yield than a sphere of equal
radius due to its larger surface area. However, the lateral
width of the collision cascade is also influenced by the small
radius; fewer recoils reach lateral distances greater than R

than for a flat target, effectively limiting the lateral width
of the deposited-energy distribution to a value of order R.
As a consequence, the effective surface area from which a
cylinder with a small value of R sputters is similar to that
of a sphere of equal radius, and hence the sputter yields of
these two objects become comparable for R � a. This fact is
illustrated by plotting the sites where atoms are sputtered from
a narrow cylinder (see Fig. 5). This figure demonstrates that the
surface region where sputtering from narrow cylinders occurs
is limited in the axial direction. This figure shows the emission
site distribution of atoms sputtered from a cylinder with the
rather small radius R = 0.19a. We observe that indeed the
axial width of the emission sites (which is a measure of the dis-
tribution of the deposited energy at the cylinder’s surface) is
comparable to the cylinder’s radius.

B. Oblique incidence

We study sputtering by obliquely incident ions first for
normal-to-axis impacts (φ = 0) with a range of ϑ values, and
then for central impacts (ϑ = 0) with a range of φ values.
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FIG. 6. (Color online) (a) Ratio of the sputter yield of a cylinder
of radius R, YR , to the sputter yield of a flat target, Y∞, as a function of
the impact angle ϑ for normal-to-axis impacts, i.e., for φ = 0. (a) MC
data for a cylinder of radius R = 9.574a compared to the analytical
result given by Eq. (17). (b) All MC data.

The angular dependence of the sputter yield for cylinders
of various radii R is displayed in Fig. 6; the data are divided
by the sputter yields of a flat target of the same incidence
angle in order to highlight the changes brought about by the
cylinder’s curvature. For a large cylinder radius (R = 9.574a),
the MC results are compared to the analytical prediction given
by Eq. (17) in Fig. 6(a). The form of the sputter-yield correction
has already been discussed in Sec. II A. We observe very
satisfactory agreement up to angles of around 70◦. At higher
angles, the theoretical result remains qualitatively correct in
predicting a drop-off of the sputter-yield correction, but the
MC data show a slightly stronger effect.

Figure 6(b) shows how the angular dependence of
YR(ϑ)/Y∞(ϑ) changes if the cylinder’s radius is varied. In
order to discuss the complex behavior observed, we note
that the sputtering behavior of nanoparticles shows distinct
differences from that of a flat surface. A flat surface shows only
backward sputtering, while sufficiently small nanoparticles
will also feature forward sputtering. In addition, lateral
sputtering may occur if an ion impinges at near grazing
incidence. Emission in the forward and lateral directions is
illustrated in the emission site distribution, Fig. 5.
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FIG. 7. (Color online) (a) Ratio of the sputter yield of a cylinder
of radius R, YR , to the sputter yield of a flat target, Y∞, as a function
of the impact angle φ for central impacts, i.e., for ϑ = 0. (a) MC data
for a cylinder of radius R = 9.574a compared to the analytical result
given by Eq. (18). (b) All MC data.

We identify the following general trends in the sputtering
behavior of cylinders [see Fig. 6(b)]:

(1) For large radii (R � 2a), sputtering is enhanced at
intermediate angles of incidence; the reason is that for these
impact angles lateral sputtering at the cylinder periphery gives
an additional contribution to the sputter yield.

(2) At near glancing incidence angles the yield decreases
below that of the infinite medium; this is plausible since a
near glancing incidence ion has a shorter trajectory under the
curved surface than it would in a flat target.

(3) For smaller radii (R ∼ a) we see a general enhance-
ment of sputtering for all impact angles 0 < ϑ < 40◦. At these
angles, the center of the collision cascade is situated close to
the cylinder axis, and a large range of incidence angles is
favorable for sputtering.

(4) For even smaller radii (R/a � 0.5) forward sputtering
becomes dominant.

Figure 7 displays the analogous data for central impacts. In
this case ϑ = 0 and the angle φ is varied. For a large cylinder
radius (R = 9.574a) our analytical result, Eq. (18), is well
corroborated by the MC data throughout the entire range of φ

values. The angular dependence of the sputter yield for smaller
radii [see Fig. 7(b)] is simpler than the ϑ dependence discussed

above. The data primarily show a general increase of sputtering
above the values for a flat target as soon as the cylinder radius
is � a; this feature is analogous to item 3 discussed above and
is caused by forward sputtering for thin cylinders. For oblique
incidence angles, the deviations from the flat-target sputter
yields become less pronounced, since for central impacts (i.e.,
for ϑ = 0) the cylinder’s curvature along the ion incidence
azimuth vanishes and the ion sees a target extending far along
this direction. As a consequence the sputter yield does not fall
below its value for a flat surface at glancing incidence angles;
this is in contrast to item 2 above. The slight dip seen for
the smallest cylinder radius (R = 0.048a) at incidence angles
around φ = 60◦–70◦ is caused by the increased probability that
ions fully penetrate the thin cylinder and deposit less energy
than in a flat target.

C. Average sputter yield

The average sputter yield of a cylinder, 〈YR〉, can be defined
as follows. Consider a unidirectional flux � of projectile ions
incident on a cylinder segment of length ; it sputters a number
of 2R�〈YR〉 atoms from the cylinder per unit time. Using the
impact parameter b = x/R = sin ϑ (see Fig. 2), we can write

〈YR〉 = 1

R

∫ R

0
YR(b) db. (20)

〈YR〉 depends on the angle 90◦ − φ the incident ions make
with the the cylinder axis; here we calculate the yield for
normal-to-axis impacts, i.e., for φ = 0. The results shown in
Fig. 8 demonstrate that with increasing curvature the average
yield rises and reaches a maximum at R/a = 0.479, where the
average yield is increased by a factor of 2.70. This behavior
is comparable to the results for sputtering of a sphere [12],
where the maximum occurs at R/a = 0.957 with a maximum
increase of 2.24. For small radii the yield decreases once more,
since less energy is deposited in the cylinder and accordingly
less is available for sputtering.
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FIG. 8. (Color online) Average sputter yield, 〈YR〉, of a cylinder
of radius R for central impact (i.e., for φ = 0) as a function of
the dimensionless inverse cylinder radius, a/R. Data have been
normalized to the value for a flat target. Data for impacts on a sphere
of radius R (Ref. [12]) have been added for comparison.
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FIG. 9. (Color online) Absolute sputter yields for central impact
(ϑ = φ = 0) as a function of the dimensionless inverse cylinder
radius, a/R. The MC data are compared to the results of MD
simulations.

D. MD results for small cylinders

For the narrowest cylinders studied, the range of validity of
the MC model may have been exceeded, since several effects
not included in this model may play a role. First, the surface
binding energy of atoms may be reduced at strongly curved
surfaces; next, the nanorod may be totally fragmented by the
impacting ion; and finally collision spikes [33–35] may lead
to abundant sputtering. All these effects are included naturally

in MD simulations and hence we will compare our MC results
for the case of small cylinder radii to the results from MD
simulations.

Figure 9 compares the results of MD simulations for
cylinders of radius R = 1–3.5 nm with the MC data; only
collisions with perpendicular impact (i.e., ϑ = φ = 0) were
simulated. We observe that the MD results are consistently
larger than the MC data. This finding is similar to our
previous result for spheres [12], and the discussion proceeds
analogously. There are subtle differences between the MC
and MD algorithms which, however, only have a minor effect
on the results: (i) The differences in the surface binding
energies in MD and MC (which are around 8%) lead to
differences in the sputter yield of the same relative size. (ii)
The influence of electronic stopping, which is included in the
MC but not in the MD simulations, leads to further sputter-
yield differences of around 10%. (iii) Different screened
Coulomb potential parametrizations have been chosen in
the MC and MD simulations (Kr-C and ZBL, respectively).
However, in selected MC simulations using the ZBL screening
function, the influence on the results was shown to be
negligible.

These effects cannot explain the difference between the
MC and MD sputter yields for small cylinder radii in Fig. 9,
which amount to a factor of almost 2. We attribute these
differences to the action of collision spikes which are included
in a natural way in MD, but not in MC simulations. In order to
demonstrate the effect of the spikes, a number of snapshots of
the sputtered cylinders at 3 ps after ion impact are displayed

FIG. 10. (Color online) Perspective view of sputtered cylinders 3 ps after ion impact in MD simulations. In all cases, the ion was incident
from the top (ϑ = φ = 0) onto the middle of the cylinder segments displayed. Atoms are colored according to the local temperature.
(a) Representative events in which impact leads to the average sputter yield. (b) Events with abundant sputtering. Note the change in color code
between (a) and (b).
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in Fig. 10. The top row shows representative events in which
the average number of atoms is sputtered; the bottom row
shows particularly abundant sputtering events. For the smallest
cylinder radii (R � 1.5 nm), the cylinder starts melting close
to the irradiated zone even for an average energy deposition.
For events that produce abundant sputtering, on the other hand,
the cylinder is nearly torn in two by the impact. For larger radii,
e.g., for R = 3.5 nm, chunks of matter are violently ejected
from the cylinder’s surface. In summary, these snapshots
demonstrate that collision spikes increase the sputter yield
above the values predicted by MC simulations.

V. SUMMARY

In this paper, the mean sputter yield produced by the
impact of a single ion on a curved solid surface was studied
analytically and using Monte Carlo and molecular dynamics
simulations. Using the Sigmund model of ion sputtering,
analytical formulas were developed for the sputter yield of an
arbitrarily curved surface for the case that the radii of curvature
at the point of ion impact are large compared to the mean
depth at which the ion deposits its energy, a. We tested the
validity of these formulas for the specific case of a cylindrical
target by comparing to a set of Monte Carlo simulations of
the irradiation of an amorphous Si cylinder by 20 keV Ar
ions. We found good agreement for large cylinder radii R.
For smaller cylinder radii, the sputter yield goes through a
maximum and decreases again when R is reduced below a.
Our molecular dynamics simulations revealed that collision

spikes that produce copious ejecta become important in this
regime.

In detail our study reveals the following features:
(1) For large radii of curvature and angles of incidence

that are not too close to grazing, sputter yields from convex
surfaces are greater than for a flat surface, and less for concave
surfaces.

(2) For perpendicular incidence a simple expression,
Eq. (16), allows one to easily assess the sputter-yield cor-
rection.

(3) For small radii of curvature, we discussed the effect of
curvature along the ion incidence azimuth and perpendicular
to it separately by studying impacts on cylindrical surfaces.

Curvature along the ion incidence azimuth leads to
(a) enhanced sputtering at intermediate angles of inci-

dence due to lateral sputtering from the cylinder;
(b) reduced sputtering for impacts at glancing angles;

and
(c) a strong contribution to emission from forward

sputtering for cylinder radii R � 0.5a.
(4) Curvature perpendicular to the ion incidence azimuth

increases sputtering if the cylinder radius becomes smaller
than a, and forward sputtering becomes possible.
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